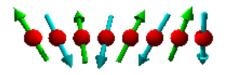

Lecture #3 Basics of Relaxation

- Topics
 - Molecular motion
 - Stochastic processes
 - A simple model of relaxation
 - T₁ and T₂
- Handouts and Reading assignments
 - Levitt, Chapters 19.1-3, 20.1-3,
 - Kowalewski, Chapter 2.

NMR Relaxation

- Relaxation is the process by which the phase coherence among spins returns to its equilibrium value (as given by the Boltzmann distribution).
- Restoration of longitudinal magnetization, $M_z = \gamma \hbar \langle \hat{I}_z \rangle$, is characterized by a time constant, T_1 .
- Disappearance of transverse magnetization, $M_{xy} = \gamma \hbar \left(\overline{\langle \hat{I}_x \rangle} + i \overline{\langle \hat{I}_y \rangle} \right)$, is characterized by a time constant, T_2 .

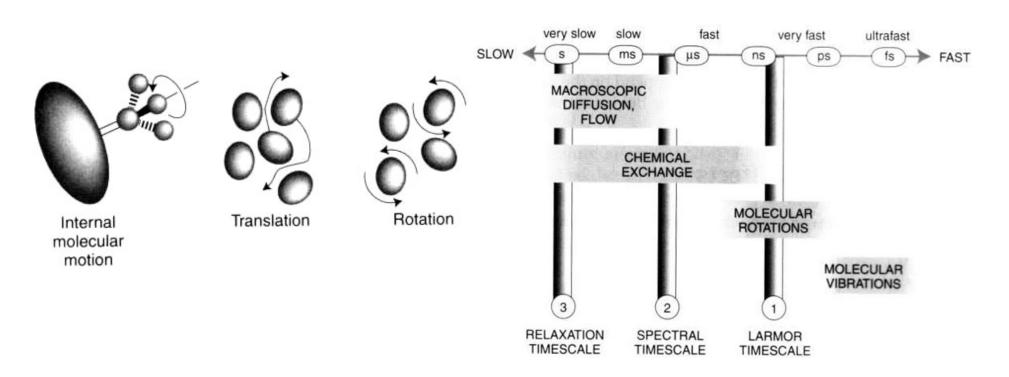

• We'll first look at some simple relaxation models to build intuition.

Nuclear Spins

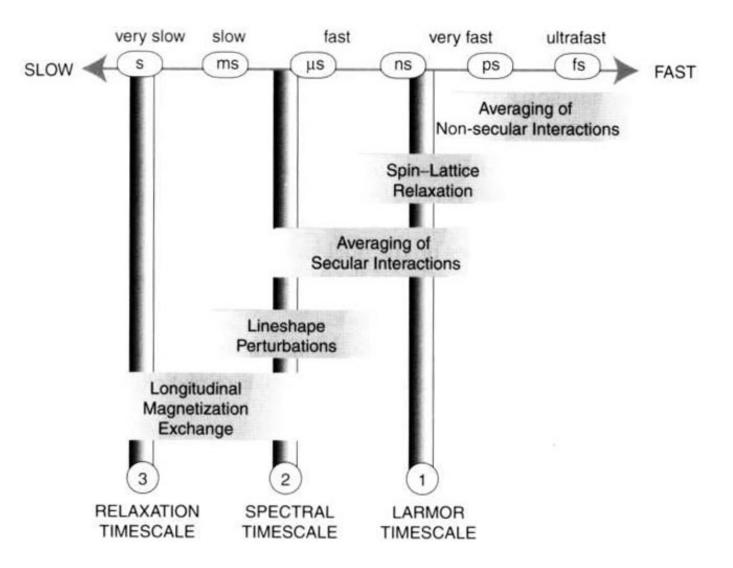
Precession frequency $\omega = \gamma B$

- A spin in a magnetic field simply undergoes Larmor precession.
- Relaxation is all about phase coherence among groups of spins

- Magnetic fields are the only way to interact with the magnetic moment of a spin ½ nuclei. (spins > ½ interact w/ E-field gradients)
- In general, any change in the magnetic field (magnitude and/or direction) seen by a nuclear spin will change its magnetic moment

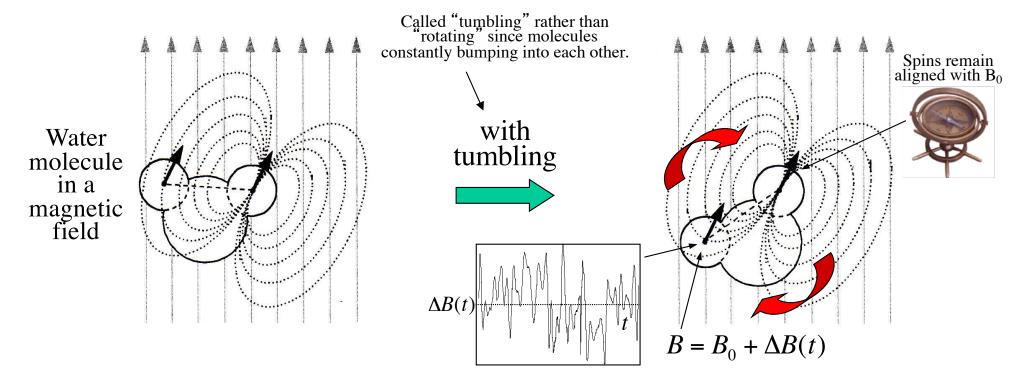

Hamiltonian: $\hat{H} = -\hat{\vec{\mu}} \cdot \vec{B}$ Magnetic moment: $\hat{\mu} = \gamma \hbar \hat{I}$

Basic principle: spatial and temporal magnetic field variations are the primary source of NMR relaxation.


Molecular Motion

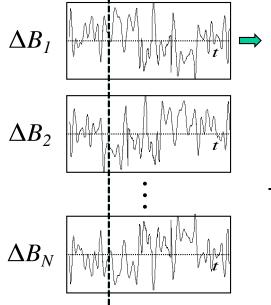
- In vivo, molecular motion is the key source of spatially and temporally varying magnetic fields.
- Time scales of these motions determine the corresponding physical effects.

Physical effects



NMR Effects of Molecular Motion

In Vivo Magnetic Fields

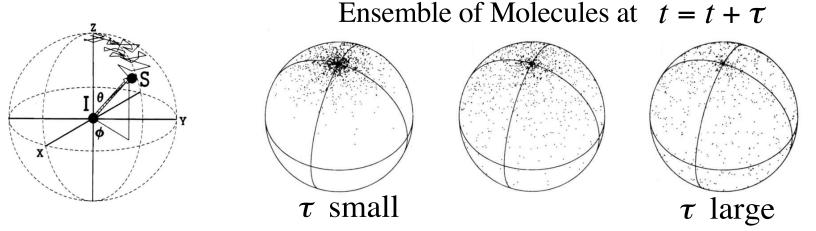

• One source of magnetic field variations is due to dipolar coupling and molecular tumbling.

- While $\langle \Delta B(t) \rangle = 0$, the instantaneous effect is *not* negligible.
- We need to take a close look at the properties of $\Delta B(t)$.

Brief Review of Stochastic Processes

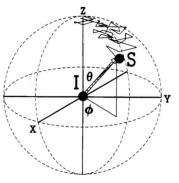
- The perturbing magnetic field, $\Delta B(t)$, is modeled as a *stochastic process* and represents a family of time functions.
- For example, consider a collection of nuclear spins, I_i , for i=1,...N. Let $\Delta B_i(t)$ be the time varying field seen by the ith spin.

At any time, t_0 , $\Delta B(t_0)$ is a random variable with zero mean and variance = $\langle B^2 \rangle$. $\Delta B(t)$ is *stationary* if statistics independent of t_0 .


- $\Delta B_i(t)$ is a random function of time. Process is *ergodic* if time averages equal averages over *i*: e.g. $\langle \Delta B_i^2(t_0) \rangle_i = \langle \Delta B_i^2(t) \rangle_i = \langle B^2 \rangle$
- One function we care about is the *statistical correlation* between $\Delta B_i(t)$ and $\Delta B_i(t+\tau)$, $G_i(t,\tau) = \langle \Delta B_i(t) \Delta B_i(t+\tau) \rangle$. Averaging over all spins yields $G(t, \tau)$.
- For a *stationary* process: $G(t, \tau) = G(\tau)$, i.e. independent of *t*.
- A second highly useful function is the Fourier transform of $G(\tau)$.

$$S(\omega) = \int_{-\infty}^{\infty} G(\tau) e^{-i\omega\tau} d\tau$$
 Wiener-Khinchin Theorem

 $S(\omega)$ is called the *power spectrum* and represents the power available at each frequency. This function plays a fundamental role in NMR relaxation theory.


Molecular Tumbling

• Consider a water molecule undergoing isotropic tumbling (Brownian motion). For simplicity, we'll arbitrarily place the *I* spin at the origin and assume the inter-nuclear distance is fixed.

- $\tau_c = rotational \ correlation \ time =$ average time for a molecule to rotate over one radian, a measure of rotational coherence.
- Almost all NMR relaxation processes are described by an exponential correlation function: $G(\tau) = G(0)e^{-|\tau|/\tau_c}$
- That is, the correlation between the position of a molecule at two points in time falls off exponentially.

$G(\tau)$ for a simple case

• Are exponential correlation functions a good fit for in vivo NMR?

$$G(\tau) = \left\langle \Delta B(t) \Delta B(t+\tau) \right\rangle \stackrel{?}{=} G(0) e^{-|\tau|/\tau_c}$$

Let's find out...

• For the case of a (nearly) spherical molecule undergoing isotropic tumbling, let $\Delta B(t) = F(\Omega)$, where for convenience Ω is a single angle variable representing ($\theta(t), \phi(t)$).

$$G(\tau) = \left\langle F(t)F^*(t+\tau) \right\rangle = \frac{1}{4\pi} \int_{\Omega} \int_{\Omega_0} F(\Omega_0)F^*(\Omega)P(\Omega_0|\Omega,\tau)d\Omega_0 d\Omega$$

probability of finding the molecule at Ω_0 starting at angle Ω after a time τ

• To derive an expression of $G(\tau)$, we'll start with Fick's law of diffusion.

Fick's law of diffusion

• Fick's second law

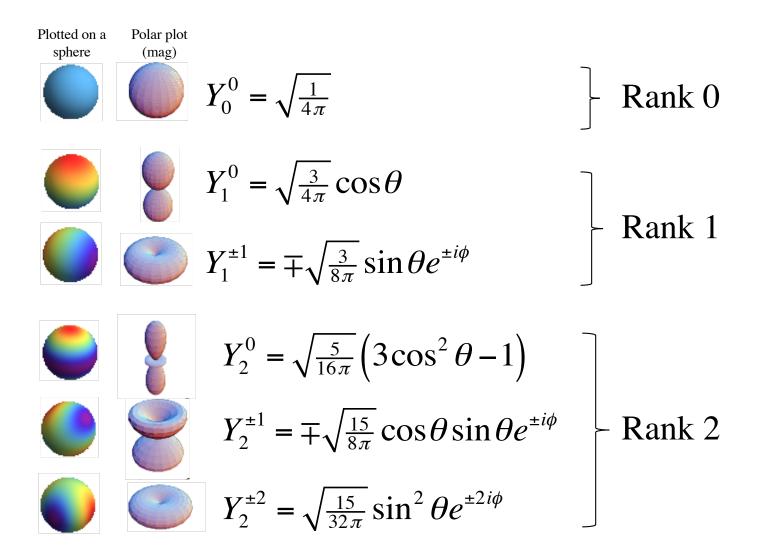
$$\frac{\partial f(x, y, z)}{\partial t} = D\left(\frac{\partial^2 f(x, y, z)}{\partial x^2} + \frac{\partial^2 f(x, y, z)}{\partial y^2} + \frac{\partial^2 f(x, y, z)}{\partial z^2}\right) = D\Delta f(x, y, z)$$
Diffusion Laplacian

• In spherical coordinates, the Laplacian operator is:

$$\Delta = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2}$$

• In our case, fixing the radius *r* and just considering the angular components, yields

Rotational diffusion constant


$G(\tau)$ for a simple case (cont.)

• The spherical harmonics, Y_l^m , are eigenfunctions of Δ_r , and form a complete orthonormal basis set, and the solution for Fick's law of rotational diffusion can be written as:

$$P(\Omega_0 | \Omega, \tau) = \sum_l \sum_m Y_l^{m^*}(\Omega_0) Y_l^m(\Omega) e^{-l(l+1)D_r \tau}$$

- Spherical harmonics: $Y_l^m(\theta, \phi)$
 - orthonormal over the surface of a sphere.
 - arise in multiple physical applications, e.g. atomic orbitals

The first few spherical harmonics

$G(\tau)$ for a simple case (cont.)

• Substituting back into the equation for $G(\tau)$

$$G(\tau) = \frac{1}{4\pi} \sum_{l} \sum_{m} e^{-l(l+1)D_{r}|\tau|} \int_{\Omega_{0}} Y_{l}^{m^{*}}(\Omega_{0}) F(\Omega_{0}) d\Omega_{0} \int_{\Omega} F^{*}(\Omega) Y_{l}^{m}(\Omega) d\Omega$$

• In general, solving can be difficult, except when the functions, $F(\Omega)$, can be expressed as sums of spherical harmonics.

$$Y_l^m \text{s are orthonormal: } \left\langle Y_l^m \middle| Y_{l'}^{m'} \right\rangle = \begin{cases} 1 & \text{for } l = l' \text{ and } m = m' \\ 0 & \text{for } l \neq l' \text{ or } m \neq m' \end{cases}$$

$G(\tau)$ for a simple case (cont.)

• Example: the secular approximation of the dipolar coupling Hamiltonian is:

$$H_{D} = F(\Omega) = \frac{\mu_{0}\gamma^{2}\hbar}{4\pi r^{3}}\sqrt{\frac{3}{2}}\left(3\cos^{2}\theta(t) - 1\right) = \frac{\mu_{0}\gamma^{2}\hbar}{4\pi r^{3}}\sqrt{\frac{24\pi}{5}}Y_{2}^{0}$$

• Because of the orthogonality of Y_l^m s, all of the terms but one are zero:

A simple decaying exponential!

where $\tau_c = \frac{1}{6D_r}$ and $D_r = \frac{kT}{8\pi a^3 \eta}$ Stokes-Einstein equation for nearly spherical molecules: $a = \text{radius}, \eta = \text{viscosity}$

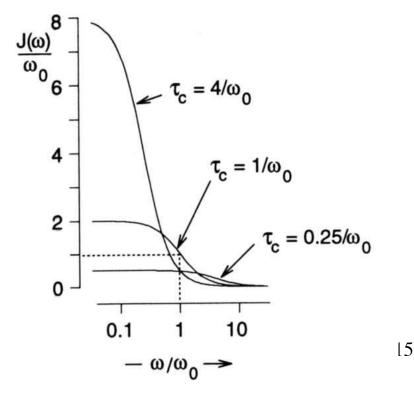
The Spectral Density Function

• Hence, the correlation function is typically taken to be of the form:

 $G(\tau) = \langle \Delta B(t) \Delta B(t + \tau) \rangle = G(0)e^{-\tau/\tau_c} \iff \text{stationary with exponential decay}$

- a molecule's "memory" of its orientation decays exponentially in time.

- virtually all correlation functions in NMR are exponential.


• The corresponding power spectrum is:

$$S(\omega) = \int_{-\infty}^{\infty} G(\tau) e^{-i\omega\tau} d\tau$$

From which we'll define the spectral density function:

$$J(\omega) = \frac{1}{2} \int_{-\infty}^{\infty} e^{-|\tau|/\tau_c} e^{-i\omega\tau} d\tau = \frac{\tau_c}{1 + \omega^2 \tau_c^2}$$

Note, we'll address the G(0) term later.

Typical Correlation Times

• For nearly spherical molecules, the Stokes-Einstein relation yields...

solvent viscosity

$$\tau_{c} = \frac{1}{6D_{r}} = \frac{4\pi\eta a^{3}}{3kT} \text{ molecular radius} \qquad \qquad \begin{array}{c} \text{Small} \\ \text{molecules} \\ \text{Large} \\ \text{molecules} \\ \text{molecules}$$

Tissue or compound	Rotational Correlation time
Water: cerebral spinal fluid (CSF)	~ 10 ⁻¹¹ s
Water: muscle	$\sim 10^{-9} \text{ s}$
Water: bone	~ 10 ⁻⁷ s
Albumin (representative protein)	~ 3x10 ⁻⁸ s
Gd-DTPA	$\sim 6 \times 10^{-11} \text{ s}$
Water: ice at -2° C	~ 10 ⁻⁶ s

Random Fields

- While dipolar coupling is the most important source of in vivo relaxation, it is not the simplest to analyze.
- The random magnetic fields, $\Delta B(t)$, seen by two dipolar coupled nuclei are clearly not independent, but rather *correlated*.
- For now, we'll ignore this complication (to be revisited next lecture) and assume each nuclei sees an independent, time-varying random field $\Delta B(t)$ with corresponding spectral density:

$$J(\omega) = \frac{\tau_c}{1 + \omega^2 \tau_c^2}$$

Indicates energy from the lattice at frequency ω.

T₁: Spin-Lattice Relaxation

• Assume an isotropic randomly fluctuating magnetic field given by $A\vec{P}(t) = B_{1}(t)\vec{z} + B_{2}(t)\vec{z}$

$$\Delta B(t) = B_x(t)\dot{x} + B_y(t)\dot{y} + B_z(t)\dot{z}$$

where $\langle B_x^2 \rangle = \langle B_y^2 \rangle = \langle B_z^2 \rangle = \langle B^2 \rangle$

• The relaxation of M_z can then be shown to be (we'll derive later):

$$\frac{1}{T_1} = \gamma^2 \left(\left\langle B_x^2 \right\rangle + \left\langle B_y^2 \right\rangle \right) J(\omega_0) = 2\gamma^2 \left\langle B^2 \right\rangle \frac{\tau_c}{1 + \omega_0^2 \tau_c^2}$$
power of the interaction fraction of the energy at $\omega = \omega_0$

The word "lattice" is a solid-state term, short for "crystal lattice".
 We still call T₁ the "spin-lattice relaxation time" even though in vivo there is no actual crystal.

Key Features of
$$T_1$$
 Relaxation

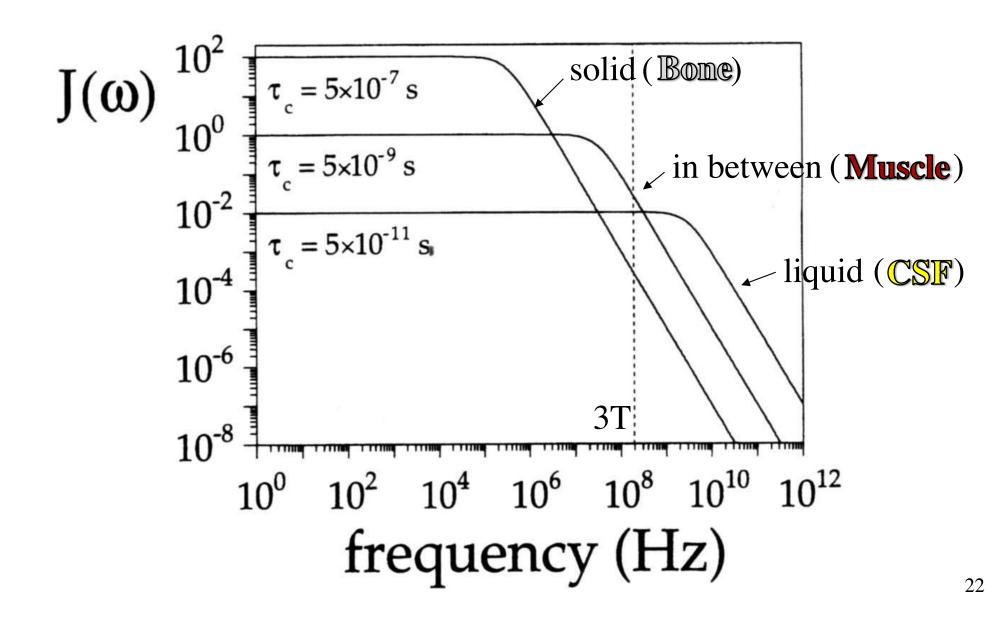
$$\frac{1}{T_1} = \gamma^2 \left(\left\langle B_x^2 \right\rangle + \left\langle B_y^2 \right\rangle \right) J(\omega_0) = 2\gamma^2 \left\langle B^2 \right\rangle \frac{\tau_c}{1 + \omega_0^2 \tau_c^2} \qquad \text{Eff}_{|+\rangle}^{|-\rangle} \text{ figure}$$

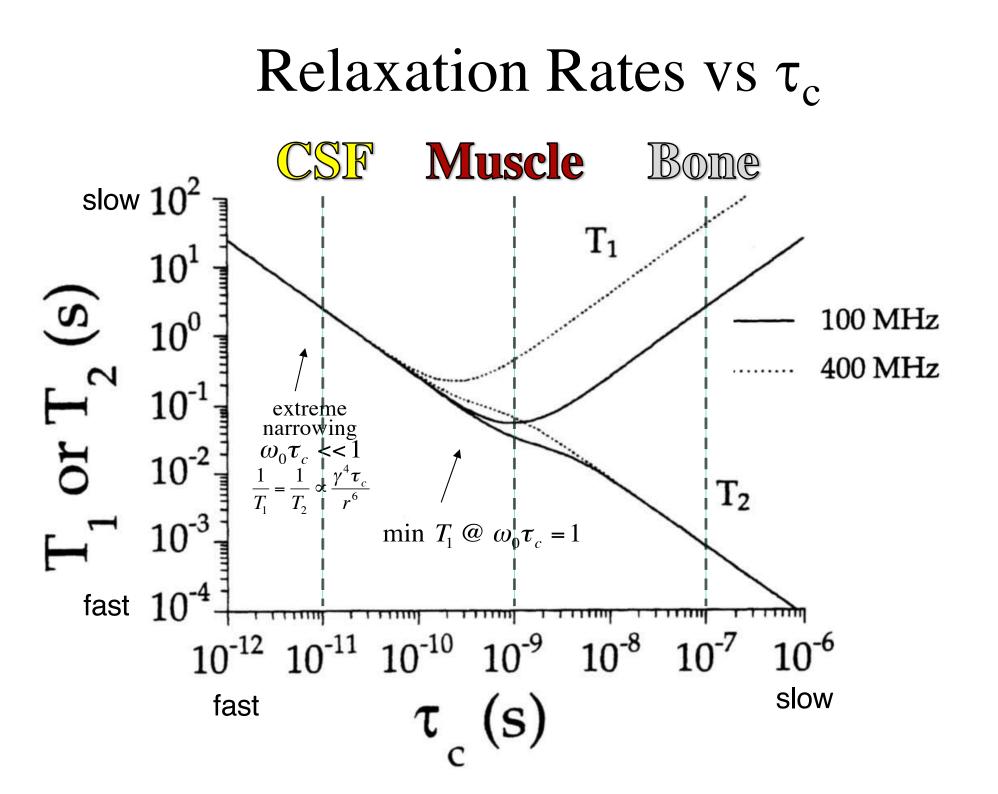
- Changes in M_z induced by spin transitions between energy states
- Requires energy exchange between spin system and the lattice.
- As a resonant system, energy exchange occurs at $\hbar\omega_0$
- Hence, T₁ relaxation and Rf excitation are much the same process
 - Transverse magnetic fields at ω_0 are needed to induce transitions
 - Rf excitation: we provide a coherent rotating B_1 field
 - T_1 relaxation: lattice provides the B_1 field

T₂: Spin-Spin Relaxation

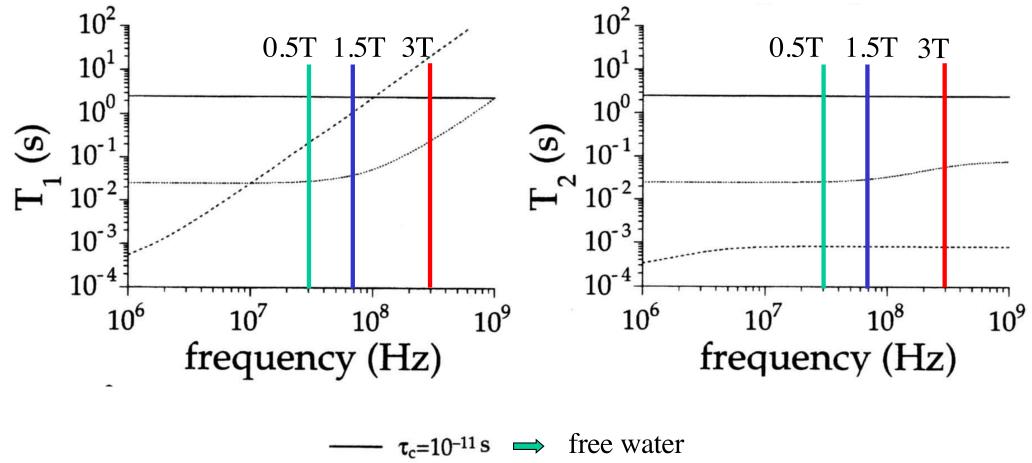
- The referring to T₂ as the "spin-spin relaxation time" is somewhat misleading as relaxation can actually occur without any spin-spin interactions.
- T₂ relaxation concerns loss of transverse coherences: $\overline{\langle \hat{I}_x \rangle}$ and $\overline{\langle \hat{I}_y \rangle}$
- Changes in $\overline{\langle \hat{I}_x \rangle}$ and $\overline{\langle \hat{I}_y \rangle}$ do not require energy transfer
- Fields in the *z* direction cause dephasing, and the slower the fluctuations, the more efficient this relaxation mechanism.

$$\frac{1}{T_2'} = \gamma^2 \left\langle B_z^2 \right\rangle J(0)$$


T₂: Spin-Spin Relaxation


• Spin transitions also cause loss of transverse phase coherence and hence are a second factor in T_2 relaxation.

• Full expression...


$$\frac{1}{T_2} = \gamma^2 \left\langle B^2 \right\rangle \left(J(0) + J(\omega_0) \right) = \gamma^2 \left\langle B^2 \right\rangle \left(\tau_c + \frac{\tau_c}{1 + \omega_0^2 \tau_c^2} \right)$$

probes the spectral density at 0 and ω_0

The Spectral Density Function

Relaxation Rates vs B₀

$$\tau_c = 10^{-9} s \implies \text{viscous liquid}$$

 $\tau_c = 10^{-7} s \implies \text{solid}$

Summary

- Lattice provides random time-varying magnetic fields.
 - x-y components cause transitions $\implies T_1$ relaxation (also T_2)
 - z component causes dephasing $\implies T_2$ relaxation
- From our simple model of uncorrelated, random $\Delta B(t)$...

$$\frac{1}{T_1} = 2\gamma^2 \langle B^2 \rangle J(\omega_0) \qquad \frac{1}{T_2} = \gamma^2 \langle B^2 \rangle (J(0) + J(\omega_0))$$

- *T*₁ relaxation depends on transverse fields having energy at the Larmor frequency.
- T_2 relaxation depends on both J(0) and $J(\omega_0)$.
- Helps explain relaxation rates versus B₀ and some observed tissues relaxation behavior.

Next Lecture: Relaxation through dipolar coupling