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Lecture #3
Basics of Relaxation

• Topics
– Molecular motion
– Stochastic processes
– A simple model of relaxation
– T1 and T2

• Handouts and Reading assignments
– Levitt, Chapters 19.1-3, 20.1-3, 
– Kowalewski, Chapter 2.
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NMR Relaxation
• Relaxation is the process by which the phase coherence among 

spins returns to its equilibrium value (as given by the Boltzmann 
distribution).

• We’ll first look at some simple relaxation models to build intuition. 

• Disappearance of transverse magnetization,                                   , 
is characterized by a time constant, T2. 

Mxy = γ! Î x + i Î y( ) 
• Restoration of longitudinal magnetization,                   , is 

characterized by a time constant, T1. 
Mz = γ! Îz

Do the other coherences, e.g.
…, also relax?2 ÎzŜz , 2 Î xŜx , 2 Î yŜy ,
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Nuclear Spins
• A spin in a magnetic field simply undergoes Larmor precession.

Precession 
frequency
ω = γB

• Magnetic fields are the only way to interact with the magnetic 
moment of a spin ½ nuclei. (spins > ½ interact w/ E-field gradients)

• Relaxation is all about phase coherence among 
groups of spins

Basic principle: spatial and temporal magnetic field 
variations are the primary source of NMR relaxation.

• In general, any change in the magnetic field (magnitude and/or 
direction) seen by a nuclear spin will change its magnetic moment

Ĥ = −
!̂
µ ⋅
!
BHamiltonian: Magnetic moment: µ̂ = γ!Î
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Molecular Motion

Physical effects

• In vivo, molecular motion is the key source of spatially and 
temporally varying magnetic fields.

• Time scales of these motions determine the corresponding 
physical effects.
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NMR Effects of Molecular Motion
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In Vivo Magnetic Fields
• One source of magnetic field variations is due to dipolar coupling 

and molecular tumbling.  

Water 
molecule 

in a 
magnetic 

field

Spins remain 
aligned with B0

€ 

B = B0 + ΔB(t)

€ 

ΔB(t)

€ 

t

with 
tumbling 

Called �tumbling� rather than 
�rotating� since molecules 

constantly bumping into each other.

• We need to take a close look at the properties of 

€ 

ΔB(t).

• While                  , the instantaneous effect is not negligible.  

€ 

ΔB(t) = 0
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Brief Review of Stochastic Processes
• The perturbing magnetic field, ΔB(t), is modeled as a stochastic 

process and represents a family of time functions.
• For example, consider a collection of nuclear spins, Ii, for i=1,…N. 

Let ΔBi(t) be the time varying field seen by the ith spin.

- For a stationary process: G(t, τ) = G(τ), i.e. independent of t.

€ 

tΔB1

€ 

tΔB2

€ 

tΔBN

…

At any time, t0, ΔB(t0) is a random 
variable with zero mean and 
variance =        .  ΔB(t) is stationary
if statistics independent of t0. 

B2

- A second highly useful function is the Fourier transform of G(τ).

S(ω) is called the power spectrum and represents the power 
available at each frequency. This function plays a fundamental 
role in NMR relaxation theory.

S ω( ) = G τ( )
−∞

∞

∫ e−iωτdτ Wiener-Khinchin Theorem

- ΔBi(t) is a random function of time. Process is ergodic if time 
averages equal averages over i: e.g. ΔBi

2 t0( )
i
= ΔBi

2 t( )
t
= B2

- One function we care about is the statistical correlation between 
ΔBi(t) and ΔBi(t+τ), Averaging 
over all spins yields G(t, τ).

Gi t,τ( ) = ΔBi t( )ΔBi t +τ( ) .
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Molecular Tumbling
• Consider a water molecule undergoing isotropic tumbling 

(Brownian motion).  For simplicity, we’ll arbitrarily place the I
spin at the origin and assume the inter-nuclear distance is fixed.

• tc = rotational correlation time = average time for a molecule to 
rotate over one radian, a measure of rotational coherence.

Ensemble of Molecules at

€ 

t = t + τ

€ 

τ  small

€ 

τ  large

• Almost all NMR relaxation processes are described by an 
exponential correlation function:  G(τ ) =G 0( )e−τ τ c

• That is, the correlation between the position of a molecule at two 
points in time falls off exponentially.
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G(τ) for a simple case

G(τ ) = F(t)F* t +τ( )

• For the case of a (nearly) spherical molecule undergoing 
isotropic tumbling, let ΔB(t)=F(Ω), where for convenience 
Ω is a single angle variable representing (θ(t),ϕ(t)).  

• To derive an expression of G(τ), we’ll start with Fick’s law of 
diffusion.

probability of finding the molecule at 
Ω0 starting at angle Ω after a time τ

= 1
4π F Ω0( )F* Ω( )P Ω0 Ω,τ( )dΩ0 dΩ

Ω0

∫
Ω

∫

• Are exponential correlation functions a good fit for in vivo NMR?

G(τ ) = ΔB(t)ΔB(t +τ ) =G 0( )e−τ τ c?

Let’s find out… 
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Fick’s law of diffusion
• Fick’s second law

∂P Ω0 Ω,τ( )
∂t

= DrΔrP Ω0 Ω,τ( )
Fick’s law for 

rotational diffusion.

Rotational diffusion constant

Legendre operator (Laplacian with fixed r)

∂f (x, y, z)
∂t

= D ∂2 f (x, y, z)
∂x2

+
∂2 f (x, y, z)

∂y2
+
∂2 f (x, y, z)

∂z2
"

#
$

%

&
'

• In our case, fixing the radius r and just considering the angular 
components, yields 

= DΔf x, y, z( )

Δ =
1
r2

∂
∂r

r2 ∂
∂r

#

$
%

&

'
(+

1
r2 sinθ

∂
∂θ

sinθ ∂
∂θ

#

$
%

&

'
(+

1
r2 sin2θ

∂2

∂φ 2

• In spherical coordinates, the Laplacian operator is:

Diffusion 
constant

Laplacian
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G(τ) for a simple case (cont.)

P Ω0 Ω,τ( ) = Yl
m* Ω0( )

m
∑

l
∑ Yl

m Ω( )e−l l+1( )Drτ

• The spherical harmonics,      , are eigenfunctions of     , and form a 
complete orthonormal basis set, and the solution for Fick’s law of 
rotational diffusion can be written as:

Yl
m Δr

• Spherical harmonics: Yl
m θ,φ( )

- orthonormal over the surface of a sphere.
- arise in multiple physical applications, e.g. atomic orbitals
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The first few spherical harmonics

Y1
±1 = ∓ 3

8π sinθe
±iφ

Y1
0 = 3

4π cosθ

Y0
0 = 1

4π

Plotted on a 
sphere

Polar plot 
(mag)

Y2
0 = 5

16π 3cos
2θ −1( )

Y2
±1 = ∓ 15

8π cosθ sinθe
±iφ

Y2
±2 = 15

32π sin
2θe±2iφ

Rank 0

Rank 1

Rank 2
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G(τ) for a simple case (cont.)

G(τ ) = 1
4π e−l l+1( )Dr τ

m
∑

l
∑ Yl

m* Ω0( )F Ω0( )dΩ0 F* Ω( )Ylm Ω( )
Ω

∫ dΩ
Ω0

∫

• In general, solving can be difficult, except when the 
functions, F(Ω), can be expressed as sums of spherical 
harmonics.

• Substituting back into the equation for G(τ)

s are orthonormal:Yl
m Yl

m Y !l
!m = 1     for   l = !l  and m = !m

0     for   l ≠ !l  or m ≠ !m

#
$
%
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G(τ) for a simple case (cont.)

HD = F Ω( ) = µ0γ
2!

4πr3
3
2 3cos

2θ t( )−1( )

• Example: the secular approximation of the dipolar coupling 
Hamiltonian is:

• Because of the orthogonality of     s, all of the terms but 
one are zero:

Yl
m

A simple decaying 
exponential! 

G(τ ) = 3µ0
2γ 4!2

40π 2r6
e−6Drτ Y2

0* Y2
0 2

=
µ0γ

2!
4πr3

24π
5 Y2

0

= 3µ0
2γ 4!2

40π 2r6
e−τ τ c

τ c = 1
6Dr

Dr = kT
8πa3η

where and Stokes-Einstein equation for nearly spherical molecules: 
a = radius, η = viscosity



15

The Spectral Density Function

• The corresponding power spectrum is:

S(ω) = G(τ )e−iωτ dτ
−∞

∞

∫

• Hence, the correlation function is typically taken to be of the form:

€ 

G(τ) = ΔB(t)ΔB(t + τ ) =G(0)e−τ τ c stationary with exponential decay

– a molecule’s �memory� of its orientation decays exponentially in time.

– virtually all correlation functions in NMR are exponential.

Note, we’ll address the G(0) term later.

From which we’ll define the 
spectral density function: 

J(ω) ≡ 1
2 e−τ τ ce−iωτ dτ
−∞

∞

∫ =
τ c

1+ω 2τ c
2
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Typical Correlation Times

€ 

liquids :     τ c ≈10−12 −10−10s

€ 

solids :      τ c ≈10−8 −10−6s

τ c =
1
6Dr

=
4πηa3

3kT

• For nearly spherical molecules, the Stokes-Einstein relation yields…

solvent viscosity

molecular radius
Large 

molecules

Small 
molecules short τc

long τc

Tissue or compound Rotational Correlation time
Water: cerebral spinal fluid (CSF) ~ 10-11 s

Water: muscle ~ 10-9 s
Water: bone ~ 10-7 s
Albumin (representative protein) ~ 3x10-8 s
Gd-DTPA ~ 6x10-11 s
Water: ice at -2º C ~ 10-6 s
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Random Fields
• While dipolar coupling is the most important source of in vivo 

relaxation, it is not the simplest to analyze.

• The random magnetic fields, DB(t), seen by two dipolar coupled 
nuclei are clearly not independent, but rather correlated.

• For now, we’ll ignore this complication (to be revisited next 
lecture) and assume each nuclei sees an independent, time-
varying random field DB(t) with corresponding spectral density:

J(ω) = τ c
1+ω 2τ c

2
Indicates energy from the 

lattice at frequency w. 



18

T1: Spin-Lattice Relaxation

= 2γ 2 B2 τ c
1+ω0

2τ c
2

1
T1
= γ 2 Bx

2 + By
2( )J(ω0 )

• The relaxation of Mz can then be shown to be (we’ll derive later):

• Assume an isotropic randomly fluctuating magnetic field given 
by

  

€ 

Δ
! 
B (t) = Bx (t)

! 
x + By (t)

! 
y + Bz(t)

! 
z 

€ 

Bx
2 = By

2 = Bz
2 = B2where

power of the 
interaction

fraction of the 
energy at w=w0

• The word “lattice” is a solid-state term, short for “crystal lattice”.  
We still call T1 the “spin-lattice relaxation time” even though in 
vivo there is no actual crystal.
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Key Features of T1 Relaxation

- Transverse magnetic fields at ω0 are needed to induce transitions

- Rf excitation:  we provide a coherent rotating B1 field

- T1 relaxation:  lattice provides the B1 field

= 2γ 2 B2 τ c
1+ω0

2τ c
2

1
T1
= γ 2 Bx

2 + By
2( )J(ω0 )

• Hence, T1 relaxation and Rf excitation are much the same process

• Requires energy exchange between spin system and the lattice. 

E

€ 

+
€ 

−

Îz

• Changes in Mz induced by spin transitions between energy states

• As a resonant system, energy exchange occurs at !ω0
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T2: Spin-Spin Relaxation

• Fields in the z direction cause dephasing, and the slower the 
fluctuations, the more efficient this relaxation mechanism.

1
!T2
= γ 2 Bz

2 J 0( )

• T2 relaxation concerns loss of transverse coherences:  Î x  and  Î y

• The referring to T2 as the “spin-spin relaxation time” is somewhat 
misleading as relaxation can actually occur without any spin-spin 
interactions.

• Changes in                       do not require energy transferÎ x  and  Î y
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T2: Spin-Spin Relaxation

= γ 2 B2 τ c +
τ c

1+ω0
2τ c

2

!

"
#

$

%
&

1
T2
= γ 2 B2 J 0( )+ J ω0( )( )

probes the spectral density at 0 and w0

1
T2
= γ 2 Bz

2 J 0( )+ γ
2

2
Bx
2 +By

2 J ω0( )

• Spin transitions also cause loss of transverse phase coherence 
and hence are a second factor in T2 relaxation.

1
T2
=
1
2T1

+
1
!T2

Note, technically 2T1 > T2, rather than 
the usually quoted T1 > T2

• Full expression…
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3T

The Spectral Density Function

liquid (        )

in between (             )

solid (         )
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Relaxation Rates vs tc

fast

slow

fast

slow

€ 

1
T1

=
1
T2
∝
γ 4τ c
r6

extreme 
narrowing

€ 

ω0τ c <<1

€ 

min  T1 @ ω0τ c =1
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Relaxation Rates vs B0

free water
viscous liquid
solid

0.5T 0.5T1.5T 1.5T3T 3T
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Summary

• T1 relaxation depends on transverse fields having energy at the 
Larmor frequency. 

• T2 relaxation depends on both  

€ 

J(0) and J(ω0).

• Helps explain relaxation rates versus B0 and some observed 
tissues relaxation behavior.

1
T2
= γ 2 B2 J 0( )+ J ω0( )( )1

T1
= 2γ 2 B2 J(ω0 )

• From our simple model of uncorrelated, random DB(t) ... 

• x-y components cause transitions 
• z component causes dephasing T2 relaxation

T1 relaxation (also T2)
• Lattice provides random time-varying magnetic fields.
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Next Lecture: Relaxation through 
dipolar coupling


