Problem Set #3 BioE 326B/Rad 226B

- 1. Solomon equations
- 2. Time-dependent perturbation theory
- 3. T_1 and T_2 of bone
- 4. Temperature mapping

Solomon equations

Using the Solomon equations, derive the relaxation rate of longitudinal two-spin order $2\hat{I}_z\hat{S}_z$.

Hint, the energy diagram for this coherence is:

Time-dependent Perturbation Theory

Given a Hamiltonian of the form $\hat{H}(t) = \hat{H}_o + \hat{H}_1(t)$ where $\hat{H}_1(t)$ is a perturbation small compared to \hat{H}_0 and $|m_n\rangle$, n = 1...N are the eigenkets of the unperturbed Hamiltonian \hat{H}_0 with eigenvalues E_n/\hbar , the goal is to show that if the system starts at time t=0 in the state $|m_j\rangle$, then the probability of finding the sytem in state $|m_k\rangle$ at time t is given by: 2

$$\mathcal{P}_{kj} = \left| \int_{o}^{t} \langle m_{k}(0) | \hat{H}_{1}(t') | m_{j}(0) \rangle e^{-i\left(E_{j} - E_{k}\right)t'/\hbar} dt' \right|^{2}$$

a) Consider an arbitrary wavefunction $|\psi\rangle = \sum_{n=1}^{N} c_n(t) |m_n\rangle$. Using Schrodinger's equation: $i \frac{\partial |\psi\rangle}{\partial t} = \hat{H} |\psi\rangle$,

show
$$\dot{c}_{k}(t) = -i \sum_{n=1}^{N} c_{n}(t) \langle m_{k} | \hat{H}_{1}(t) | m_{n} \rangle.$$

b) Given the state of the system at t = 0 is specified by $c_{j=1}$, $c_{n\neq j}=0$, the perturbation assumption is that the $\hat{H}_1(t)$ will only have a small effect on the dynamics, i.e.

$$c_n(t) \ll c_j(t)$$
 for $n \neq j$ and $c_j(t) \approx 1$.

Using these assumptions and the results from (a), show

$$\mathcal{P}_{kj} = \left| \int_{0}^{t} \langle m_{k}(0) | \hat{H}_{1}(t') | m_{j}(0) \rangle e^{-i(E_{j} - E_{k})t'/\hbar} dt' \right|^{2}$$

T₁ and T₂ of bone (from de Graaf, problem 3.3)

- a. Given a longitudinal relaxation time constant T₁ of 4.0 s for free water ($\tau_c = 10^{-11}$ s) at 7.05 T, calculate the T₁ for bone ($\tau_c = 10^{-6}$ s) under the condition of pure dipolar relaxation. Assume equal dipolar distances r for all compounds.
- b. Calculate the minimum T_1 relaxation time constant at 7.05 T as a result of pure dipolar relaxation.
- c. Calculate the transverse relaxation time constants T_2 for water and bone at 7.05 T.

Temperature mapping (from de Graaf, problem 2.1)

In a proton spectrum acquired from rat brain at 7.05 T, the water resonance appears on-resonance while the NAA methyl resonance appears -801 Hz off-resonance. On a phantom the relation between the temperature T (in Kelvin) and the chemical shift difference (in ppm) between water and NAA, \Box water-NAA, was established as:

 $T = -95.24\delta_{water-NAA} + 564.15$

- a. Calculate the brain temperature (in Kelvin) using the phantom calibration data.
- b. Following a period of ischemia a proton spectrum is acquired in which the water appears +11 Hz off-resonance. The NAA methyl resonance now appears at -796 Hz off-resonance. Calculate the brain temperature (in Kelvin).