Problem Set \#3
 BioE 326B/Rad 226B

1. Solomon equations
2. Time-dependent perturbation theory
3. T_{1} and T_{2} of bone
4. Temperature mapping

Solomon equations

Using the Solomon equations, derive the relaxation rate of longitudinal two-spin order $2 \hat{I}_{z} \hat{S}_{z}$.

Hint, the energy diagram for this coherence is:

Time-dependent Perturbation Theory

Given a Hamiltonian of the form $\hat{H}(t)=\hat{H}_{o}+\hat{H}_{1}(t)$ where $\hat{H}_{1}(t)$ is a perturbation small compared to \hat{H}_{0} and $\left|m_{n}\right\rangle, n=1 \ldots N$ are the eigenkets of the unperturbed Hamiltonian \hat{H}_{0} with eigenvalues E_{n} / \hbar, the goal is to show that if the system starts at time $t=0$ in the state $\left|m_{j}\right\rangle$, then the probability of finding the sytem in state $\left|m_{k}\right\rangle$ at time t is given by:

$$
\left.\mathcal{P}_{k j}=\left|\int_{o}^{t}\left\langle m_{k}(0)\right| \hat{H}_{1}\left(t^{\prime}\right)\right| m_{j}(0)\right\rangle\left. e^{-i\left(E_{j}-E_{k}\right) t^{\prime} / \hbar} d t^{\prime}\right|^{2}
$$

a) Consider an arbitrary wavefunction $|\psi\rangle=\sum_{n=1}^{N} c_{n}(t)\left|m_{n}\right\rangle$.

Using Schrodinger's equation: $i \frac{\partial|\psi\rangle}{\partial t}=\hat{H}|\psi\rangle$,
show $\quad \dot{c}_{k}(t)=-i \sum_{n=1}^{N} c_{n}(t)\left\langle m_{k}\right| \hat{H}_{1}(t)\left|m_{n}\right\rangle$.
b) Given the state of the system at $t=0$ is specified by $c_{j=1}$, $c_{n \neq j}=0$, the perturbation assumption is that the $\hat{H}_{1}(t)$ will only have a small effect on the dynamics, i.e.

$$
c_{n}(t) \ll c_{j}(t) \text { for } n \neq j \text { and } c_{j}(t) \approx 1
$$

Using these assumptions and the results from (a), show

$$
\left.\mathcal{P}_{k j}=\left|\int_{o}^{t}\left\langle m_{k}(0)\right| \hat{H}_{1}\left(t^{\prime}\right)\right| m_{j}(0)\right\rangle\left. e^{-i\left(E_{j}-E_{k}\right) t^{\prime} / \hbar} d t^{\prime}\right|^{2}
$$

$\mathbf{T}_{\mathbf{1}}$ and $\mathbf{T}_{\mathbf{2}}$ of bone (from de Graaf, problem 3.3)
a. Given a longitudinal relaxation time constant T_{1} of 4.0 s for free water $\left(\tau_{\mathrm{c}}=10^{-11} \mathrm{~s}\right)$ at 7.05 T , calculate the T_{1} for bone $\left(\tau_{\mathrm{c}}=\right.$ $10^{-6} \mathrm{~s}$) under the condition of pure dipolar relaxation. Assume equal dipolar distances r for all compounds.
b. Calculate the minimum T_{1} relaxation time constant at 7.05 T as a result of pure dipolar relaxation.
c. Calculate the transverse relaxation time constants T_{2} for water and bone at 7.05 T .

Temperature mapping (from de Graaf, problem 2.1)
In a proton spectrum acquired from rat brain at 7.05 T , the water resonance appears on-resonance while the NAA methyl resonance appears -801 Hz off-resonance. On a phantom the relation between the temperature T (in Kelvin) and the chemical shift difference (in ppm) between water and NAA, \square waterNAA, was established as:

$$
T=-95.24 \delta_{\text {water }-N A A}+564.15
$$

a. Calculate the brain temperature (in Kelvin) using the phantom calibration data.
b. Following a period of ischemia a proton spectrum is acquired in which the water appears +11 Hz off-resonance. The NAA methyl resonance now appears at -796 Hz offresonance. Calculate the brain temperature (in Kelvin).

