Problem Set \#2 BioE 326B/Rad 226B

1. Secular approximation

2. Dipolar coupling
3. Classical relaxation

A Secular Approximation

In a uniform magnetic field B_{0} (assumed to be in the +z direction), the Hamiltonian for a J-coupled 2-spin system of spin $1 / 2$ nuclei can be written in the rotating frame as:

$$
\hat{H}_{0}=\hat{A}+\hat{B}
$$

where

$$
\begin{aligned}
& \hat{A}=-\Omega_{I} \hat{I}_{z}-\Omega_{S} \hat{S}_{z} \quad \text { and } \quad \hat{B}=2 \pi J\left(\hat{I}_{x} \hat{S}_{x}+\hat{I}_{y} \hat{S}_{y}+\hat{I}_{z} \hat{S}_{z}\right) \\
& \text { for } \quad \Omega_{I}=\gamma\left(1-\sigma_{I}\right) B_{0}-\omega_{0} \quad \text { and } \quad \Omega_{S}=\gamma\left(1-\sigma_{S}\right) B_{0}-\omega_{0}
\end{aligned}
$$

a. Find a secular approximation for the Hamiltonian, i.e.

$$
\hat{H}_{0} \approx \hat{A}+\hat{B}^{s}
$$

a. Under what conditions is the secular approximation valid? How does this compare to the strong versus weak coupling approximation?

Dipole coupling

Molecules in a glass of water undergo random isotropic tumbling due to Brownian motion. Magnetically, hydrogen nuclei behave as simple dipoles. Hence, if water is placed in a uniform magnetic field, the B field at one hydrogen nucleus due to the dipole field of the other hydrogen nucleus is given by $\Delta B(\mathrm{t})$ (see figure below).

where $\Delta B(t)=\underset{\text { constant }}{b}\left(3 \cos ^{2} \theta(t)-1\right)$

What is the average value of $\Delta B(\mathrm{t})$ as defined by:

$$
\overline{\Delta B(t)}=\frac{1}{\tau} \int_{0}^{\tau} \Delta B(t) d t=?
$$

Classical Description of NMR Relaxation

For this problem, let's use a simplified model in which each spin, in addition to the main magnetic field B_{0}, sees a small field $\Delta B\left(\Delta B \ll B_{0}\right)$ whose amplitude and orientation change suddenly and randomly at random time intervals of average duration $\tau_{\mathrm{c}}\left(\tau_{\mathrm{c}}\right.$ is known as the correlation time).
a) T_{1} : consider the longitudinal magnetization M_{z} and the component of ΔB perpendicular to $B_{0}, \Delta B_{\perp}$.

During the first time interval of duration τ_{c}, the magnetization will precess around the effective field $B_{0}+\Delta B_{\perp, 1}$ resulting in forming an angle $\Delta \phi_{1}$ with respect to B_{0}. This process continues such that, after the nth time interval, the magnetization precesses around the field $B_{0}+\Delta B_{\perp, n}$ making an angle $\Delta \phi_{\mathrm{n}}$ with respect to its prior direction.

Assuming that $\Delta \phi_{1}, \Delta \phi_{2}, \ldots, \Delta \phi_{\mathrm{n}}$ are independent and identically distributed,
show:

$$
\begin{aligned}
& \frac{d M_{z}(t)}{d t} \approx-\frac{\overline{\Delta \phi^{2}}}{2 \tau_{c}} M_{z}(t), \text { hence } \frac{1}{T_{1}}=\frac{\overline{\Delta \phi^{2}}}{2 \tau_{c}} \\
& \text { Hint: } \quad \frac{1}{n}\left(\sum_{i=1}^{n} \Delta \phi_{i}\right)^{2} \approx \overline{\Delta \phi^{2}}
\end{aligned}
$$

Classical Description of NMR Relaxation

b) Use the diagram below and the fact that $\theta \approx \Delta B_{\perp} / B_{0} \ll 1$ to show: $\frac{1}{T_{1}}=\frac{\overline{\Delta B_{\perp}^{2}}\left(1-\cos \gamma B_{0} \tau_{c}\right)}{B_{0}^{2} \tau_{c}}$.

c) What is T_{1} for the limiting cases of $\omega_{0} \tau_{c} \ll 1$ and $\omega_{0} \tau_{c} \gg 1$? What value of $\omega_{0} \tau_{c}$ corresponds to the minimum value of T_{1} ?
d) What's missing from this classical derivation of T_{1} ?
e) T_{2} : Now consider the transverse magnetization and the component of ΔB parallel to $B_{0}, \Delta B_{\|}$. The Larmor frequency during the i th time interval is now given by:

$$
\omega_{\mathrm{i}}=-\gamma\left(\mathrm{B}_{0}+\Delta B_{\|, \mathrm{i}}\right)=\omega_{0}+\Delta \omega_{\mathrm{i}} .
$$

Defining the transverse relaxation time T_{2} as the time at which the root-mean-square dephasing is equal to one radian, show:

$$
\frac{1}{T_{2}}=\overline{\Delta \omega^{2}} \tau_{c}
$$

