D. Spielman spielman@stanford.edu

Problem Set #1 BioE 326B/Rad 226B

- 1. Maximizing image contrast
- 2. Thermal polarization
- 3. Eigenoperators

Maximizing contrast (from de Graaf, problem 4.11)

- a. For tissues A and B with $T_{2,A} = T_{2,B}$ but $T_{1,A} \neq T_{1,B}$, calculate the recovery delay TR that leads to the largest signal difference in a standard gradient-echo sequence. Assume a 90° excitation pulse and complete removal of transverse magnetization prior to excitation.
- b. For tissues with $T_{1,A} = T_{1,B}$ but $T_{2,A} \neq T_{2,B}$, calculate the echo time TE that leads to the largest signal difference in a standard gradient-echo sequence. Assume a 90° excitation pulse and complete removal of transverse magnetization prior to excitation

Thermal polarization (from de Graaf, problem 1.1)

Consider a spin system with two possible states having an energy difference of ΔE , where n_{α} and n_{β} are the number of spins in the lower and upper energy states respectively. From the Boltzmann distribution,

$$\left(\frac{n_{\alpha}}{n_{\beta}}\right) = e^{\Delta E/kT} = e^{\hbar\omega/kT}.$$

The NMR high temperature yields the following approximation:

$$\left(\frac{n_{\alpha}}{n_{\beta}}\right) = 1 + \left(\frac{\hbar\omega}{kT}\right).$$

Consider a 2 liter water-filled sphere (T=298.15K) placed inside a 3.0 T MR magnet.

- a. Calculate the net excess of proton spins in the low-energy state (hint: water density = 1.00 g/mL and Avogadro constant = $6.02214 \times 10^{23} \text{ mol}-1$).
- b. Calculate the error made by ignoring the higher order terms in the high temperature approximation for T = 298.15 K, 4.0 K and 0.01 K.

Eigenoperators

Just as operators have associated eigenkets, superoperators have associated eigenoperators.

Let $\hat{\hat{A}}$ be a commutation superoperator.

then, if $\hat{\hat{A}}\hat{B} = \lambda\hat{B}$ where λ is a scalar, \hat{B} is an eigenoperator of \hat{A} with corresponding eigenvalue λ .

Consider the Hamiltonian \hat{H}_0 with eignenkets $|m\rangle$, i.e.

$$\hat{H}_0 | m \rangle = \omega_m | m \rangle$$
 for $m = 1, \dots, N$

a. Show that the transition operators, defined as

$$\hat{T}_{nm} = |n\rangle\langle m|$$

are eigenoperators of \hat{H}_0 . What are their corresponding eigenvalues?

b. Let $\hat{H}_0 = -\omega_I \hat{I}_z - \omega_S \hat{S}_z$ and $\hat{I}_{\pm} = \hat{I}_x \pm i \hat{I}_y$, $\hat{S}_{\pm} = \hat{S}_x \pm i \hat{S}_y$

Show that $2\hat{I}_z\hat{S}_z, \hat{I}_{\pm}\hat{S}_{\pm}, \hat{I}_{\pm}\hat{S}_{\mp}, 2\hat{I}_{\pm}\hat{S}_z, 2\hat{I}_z\hat{S}_{\pm}$

are all eigenoperators of $\hat{\hat{H}}_0$, and complete the following table:

Eigenoperator	Eigenvalue	Corresponding transition operator(s)
$2\hat{I}_{z}\hat{S}_{z}$	0	$\hat{T}_{11} - \hat{T}_{22} - \hat{T}_{33} + \hat{T}_{44}$
$\hat{I}_{_+}\hat{S}_{_+}$		
$\hat{I}_{-}\hat{S}_{-}$		
$\hat{I}_{+}\hat{S}_{-}$		
$\hat{I}_{_}\hat{S}_{+}$		
$\hat{I}_{+}\hat{S}_{z}$		
$\hat{I}_{_}\hat{S}_{z}$		
$\hat{I}_z \hat{S}_+$		
$\hat{I}_z \hat{S}$		