Problem Set \#1 BioE 326B/Rad 226B

1. Maximizing image contrast
2. Thermal polarization
3. Eigenoperators

Maximizing contrast (from de Graaf, problem 4.11)
a. For tissues A and B with $T_{2, A}=T_{2, \mathrm{~B}}$ but $\mathrm{T}_{1, \mathrm{~A}} \neq \mathrm{T}_{1, \mathrm{~B}}$, calculate the recovery delay TR that leads to the largest signal difference in a standard gradient-echo sequence. Assume a 90° excitation pulse and complete removal of transverse magnetization prior to excitation.
b. For tissues with $T_{1, A}=T_{1, B}$ but $T_{2, A} \neq T_{2, B}$, calculate the echo time TE that leads to the largest signal difference in a standard gradient-echo sequence. Assume a 90° excitation pulse and complete removal of transverse magnetization prior to excitation

Thermal polarization (from de Graaf, problem 1.1)
Consider a spin system with two possible states having an energy difference of ΔE, where n_{α} and n_{β} are the number of spins in the lower and upper energy states respectively. From the Boltzmann distribution,

$$
\left(\frac{n_{\alpha}}{n_{\beta}}\right)=e^{\Delta E / k T}=e^{\hbar \omega / k T}
$$

The NMR high temperature yields the following approximation:

$$
\left(\frac{n_{\alpha}}{n_{\beta}}\right)=1+\left(\frac{\hbar \omega}{k T}\right) .
$$

Consider a 2 liter water-filled sphere $(\mathrm{T}=298.15 \mathrm{~K})$ placed inside a 3.0 T MR magnet.
a. Calculate the net excess of proton spins in the low-energy state (hint: water density $=1.00 \mathrm{~g} / \mathrm{mL}$ and Avogadro constant $\left.=6.02214 \times 10^{23} \mathrm{~mol}-1\right)$.
b. Calculate the error made by ignoring the higher order terms in the high temperature approximation for $\mathrm{T}=298.15 \mathrm{~K}, 4.0$ K and 0.01 K .

Eigenoperators

Just as operators have associated eigenkets, superoperators have associated eigenoperators.
Let $\hat{\hat{A}}$ be a commutation superoperator.
then, if $\hat{\hat{A}} \hat{B}=\lambda \hat{B}$ where λ is a scalar, \hat{B} is an eigenoperator of $\hat{\hat{A}}$ with corresponding eigenvalue λ.
Consider the Hamiltonian \hat{H}_{0} with eignenkets $|m\rangle$, i.e.

$$
\hat{H}_{0}|m\rangle=\omega_{m}|m\rangle \text { for } m=1, \cdots, N
$$

a. Show that the transition operators, defined as

$$
\hat{T}_{n m}=|n\rangle\langle m|
$$

are eigenoperators of $\hat{\hat{H}}_{0}$. What are their corresponding eigenvalues?
b. Let $\hat{H}_{0}=-\omega_{I} \hat{I}_{z}-\omega_{S} \hat{S}_{z}$ and $\hat{I}_{ \pm}=\hat{I}_{x} \pm i \hat{I}_{y}, \quad \hat{S}_{ \pm}=\hat{S}_{x} \pm i \hat{S}_{y}$

Show that $2 \hat{I}_{z} \hat{S}_{z}, \hat{I}_{ \pm} \hat{S}_{ \pm}, \hat{I}_{ \pm} \hat{S}_{\mp}, 2 \hat{I}_{ \pm} \hat{S}_{z}, 2 \hat{I}_{z} \hat{S}_{ \pm}$
are all eigenoperators of $\hat{\hat{H}}_{0}$, and complete the following table:

Eigenoperator	Eigenvalue	Corresponding transition operator(s)
$2 \hat{I}_{2} \hat{S}_{z}$	0	$\hat{T}_{11}-\hat{T}_{22}-\hat{T}_{33}+\hat{T}_{44}$
$\hat{I}_{+} \hat{S}_{+}$		
$\hat{I}_{\Lambda} \hat{S}_{-}$		
$\hat{I}_{+} \hat{S}_{-}$		
$\hat{I}_{\Lambda} \hat{S}_{+}$		
$\hat{I}_{+} \hat{S}_{z}$		
$\hat{I}_{-} \hat{S}_{z}$		
$\hat{I}_{2} \hat{S}_{+}$		
$\hat{I}_{2} S_{-}$		

