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“A model is unordered if it is not ordered.” (Amemyia 1985, 292).

1 Ordered Outcomes

Often dependent variables are ordinal, but are not continuous in the sense
that the metric used to code the variables is substantively meaningful. For
instance, it is customary to employ a 7-point scale when measuring party-
identification in the U.S., assigning the numerals {0, ..., 6} to the categories
{“Strong Republican”, “Weak Republican”, ..., “Strong Democrat’}. But the
metric underlying party identification is not necessarily the same as the linear
metric relating the numerals zero through 6 (i.e., the real line). In substantive
terms, the difference between 0 and 2 on the coded party identification
scale (moving from ‘“Strong Republican” to “Republican Leaner”) may be
quite different from the difference between 2 and 4 (“Republican Leaner” to
“Democrat Leaner”), or 4 and 6 (“Democrat Leaner” to “Strong Democrat™).
These variables are sometimes also called “polychotomous” (as opposed to
“dichotomous”).

When such a variable appears on the left-hand side of a statistical model
it is obvious that LS regression will suffer from many of the short-comings
we saw LS regression to face in the binary case: i.e., heteroskedasticity,
predicted probabilities outside the unit interval, etc.

2 The Ordered Probit Model

A widely used approach to estimating models of this type is an ordered
response model, which almost allows employs the probit link function. This
model is thus often referred to as the “ordered probit” model. Like many
models for qualitative dependent variables, this model has its origins in
bio-statistics (Aitchison and Silvey 1957) but was brought into the social
sciences by two political scientists (McKelvey and Zavoina 1975; both PhD
candidates at the University of Rochester at the time, incidentally).
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The central idea is that there is a latent continuous metric underlying the
ordinal responses observed by the analyst. Thresholds partition the real line
into a series of regions corresponding to the various ordinal categories. The
latent continuous variable, y" is a linear combination of some predictors, x,
plus a disturbance term that has a standard Normal distribution:

y. =xp+e, e ~NO1), Vi=1,...,N. (1)

i, the observed ordinal variable, takes on values 0 through m according
to the following scheme:

Vi=] <= W1 <y?§ My

wherej = 0,...,m, and by slight abuse of notation in the pursuit of complete-
ness | define p.; = -o0, and p, = +oo.

Like the models for binary data, we are concerned with how changes in
the predictors translate into the probability of observing a particular ordinal
outcome. Consider the probabilities of each ordinal outcome:

Ply: = 0]

Pl < ¥; < Hol,
= P[-00 < ¥; < pol,
= Ply; < pol,
substituting from (1),
= P[x;B+ e < pol,
= Plei < o - xiBl,
= D(ho - X;B);
Plyi=1] = Pluo <y; <ml,
= Plpo < xiB+e; < ],
= Plpo-xiB < e < p1-xiBl,
= P(u1 - X;B) - P(uo - X;B).

It is straightforward to see that

Ply; = 2] = ®(u2 - X;B) - P(K1 - X;B),
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and that generically

Plyi = j1 = ®(u; - XiB) - (.1 - XiB).

Forj = m (the “highest” category) the generic form reduces to

Plyi=m] = ®(unm-XiB) - P(umn1 - X;B),
1-D(pm1 - XiP).

To estimate this model we use MLE, and so first we need a log-likelihood
function. This is done by defining an indicator variable Z;, which equals 1 if
y; = j and 0 otherwise. The log-likelihood is simply

N m
InL = Z Zzij In[Pj; - P;ja],

i=1 j=0

where ¢,'I' = ¢[|JI - X,'p] and cb,'_j_l = ¢[|JI'_1 - X,'I3].

2.1 Identification Constraints

As it stands, optimization of this log-likelihood will not result in a unique
solution. Without some constraints on B or the threshold parameters p an
algorithm trying to maximize the log-likelihood would endlessly circle on a
“plateau” of equally-likely combinations of  and u parameters. Formally,
these parameters of the model are said to be “unidentified”. Intuitively, this
arises because both B and p are “location” parameters that calibrate the
mapping from the observed predictors to the latent y;. There is no unique
combination of 1 and B that maximizes the fit to the data. Put differently, for
any given B there exists a fi that produces a likelihood equal to that obtained
from at least one other § and fi.

To get around this problem, a number of identifying restrictions are
possible (see Table 1). The most common usual identification constraint is to
set o = 0 (LIMDEP and SST do this by default, and this is often in the very
definition of the model in some texts) or else to suppress the intercept in the
model. In any event either one of the thresholds must be “anchored” a priori
or the intercept-term dropped; we have to assume something so as to get a
toe-hold in calibrating x;B with the latent variable y;.

The other identification constraint is to do with the “dispersion” or
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B o M
1 unconstrained fixed one y; fixed
eg,o=1 e.g,pu =0
2 drop intercept fixed unconstrained
eg.,o=1
3 unconstrained unconstrained two y; fixed

e.g., see Krehbiel and Rivers (1988) or Bartels (1991)

Table 1: Ordered Probit Model, Identification Constraints.

variance parameter, o2, or more technically, the standard deviation, o. If
the variance of y; were also something to be estimated then the model’s
parameters are unidentified; even with po “anchoring” the mapping of x;p to
y;, allowing o? and B to both be “free parameters” would also result in an
infinite collection of estimates that fit the data equally well. For any candidate
B there is no unique scaling of y; viaa o2 maximizing fit to the data. Setting
the variance to a known constant a priori circumvents this problem. Standard
practice is to set o2 to 1 rather than an arbitrary known constant, since this
simplifies the ®;; terms in evaluating the log-likelihood function.

Likewise, we could identify the p and B parameters a variety of ways, and
as | make clear above, different implementations of this model use different
approaches. Setting uo = 0is somerespects highly arbitrary, and done largely
for programming convenience only, since it is the first threshold encountered
in an ordered probit model no matter how many ordinal categories the user
may pass to a computer program designed to estimate these models.

2.2 Exploiting Identification Constraints

It is important to remember that these identification constraints are
nonetheless arbitrary, and in the hands of a skillful analyst this can be a
useful way with which to extract substantive mileage from the results of an
ordered probit model. It is sometimes possible to re-define the latent variable

k

y; as substantively meaningful quantity, such as money, votes, numbers of



Jackman, Models for Ordered Outcomes, p5

soldiers, hours worked, etc, and set the thresholds to cut points in terms of
this metric, rather than in terms of the probit metric. In re-calibrating the
thresholds one also re-calibrates the B terms, so that now they are interpreted
asthe effects of the predictors have in the units of the substantively interesting
quantity.

3 Example: using the ordered probit model to esti-
mate ideal points

To see how the ordered probit model can be exploited in this fashion, |
consider how one might use the model to estimate legislator’s unobserved
ideal points on a policy dimension. Two recent examples exploiting this prop-
erty of the data are Krehbiel and Rivers’s (1988) and Bartels’ (1991) analyses
of sequences of votes in the US Congress. In both articles the parameter
estimates of the ordered probit model are rescaled to fit a substantively
meaningful metric---dollars: in the Krehbiel and Rivers case this metric corre-
sponds with senators’ ideal points on the minimum wage (dollars per hour); in
Bartels’ article the latent variable of interest is a representatives ideal points
for defense spending (billions of dollars in defense appropriations).

These ideal points are unobserved by the analyst. For various reasons
few Senators or representatives directly report their preferred level of the
minimum wage, or the defense budget. Nonetheless these ideal points are
of obvious political significance. Assessing the effects of public opinion on
ideal points over the defense budget is one of the chief concerns of the
Bartels article. In the Krehbiel and Rivers piece the focus is on less directly
on the effects of constituency-specific characteristics on ideal points over the
minimum wage, and more to do with a comparison of committee ideal points
with ideal points in the Senate as a whole. In both cases the unobserved ideal
points are posited as the latent continuous variables underlying an observed
sequence of votes.

The observed votes over a sequence of related motions allows the analyst
to code the legislators ordinally. This follows from some assumptions about
the legislators’ utility functions over the policy dimension:

1. each legislators’ utility function is symmetric and single-peaked, i.e.,

ui(8) = ¢i(18 - xi)
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where ¢; is any monotone decreasing function (a weaker assumption
than the standard assumption about quadratic utility functions), 8 is
a policy option (8 € Q C R), and x; is the unobserved ideal point of
legislatori,i=1,...,N;

2. voting is sincere (both Krehbiel and Rivers and Bartels are quick to
discount the possibility of sophisticated voting in their respective con-
texts, with recourse to both theoretical arguments and close inspection
of the sequence and nature of the votes under consideration).

3.1 Krehbiel and Rivers: 2 votes, known alternatives

Underthese assumptions, inspecting a pattern of votes tells us something
about the regions of the policy space in which legislators’ ideal points lie. For
instance, Krehbiel and Rivers consider a sequence of two votes, each vote a
binary choice between well-specified points in a given unidimensional policy
space. First, legislators vote between 6, and 65, and say 65 wins. Then 6, is
voted against 65. With 64, 60,, and 85 known, it is then possible to rank order
the legislators in terms of where their unobserved ideal points lie in Q C R.

To see this, note that a legislator votes for 6, over 85 in the first vote
if uj(8;:) > u;(63) and otherwise votes against 6, (in the case of the utilities
being equal we assume that the legislator prefers the status quo policy, here
labelled 8,, without loss of generality.) In the second vote, a legislator votes
for 6, over 05 if u;(8;) > u;(83) and otherwise votes against 8,. Theoretically
there are four possible patterns of voting here, 22 combinations of the “yea”
and “nay” possibilities.

In general, legislator j votes for option 6; over 6 if and only if

&i(18; - xi[) > |6k - xi)-
Since ¢; is strictly decreasing in 6 about x;, this condition can be rewritten as
16k - x| > |8 - xil

i.e., proposal 6y is further away from legislator i’s ideal point than proposal
9;. These conditions imply the following:

0;+6
Xi < 12 k

8; < 6,
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6,-+9k
2

Xj > < 6, > 6.

That s, if legislator / votes for 8; over 8, then we can infer something about
where that legislator’s ideal point lies conditional on knowing something
about the relative positions of 8; and 6 in the policy space. If we assume
(again, without loss of generality) that 8; < 8, < 83 then we can summarize

the possibilities as follows:

Vote1:0; = “Yea” <= x; @
0; = “Nay” <— x> 51 ‘; 65
Vote2:0, =“Yed” +«— X< 9, ;‘ 03
0; = “Nay” <— x;> 0, '; 03

Given the assumptions that 8; > 6, > 05 and that legislators vote
sincerely, it is fairly clear that the sequence {Vote 1, Vote 2} = {*Yea”, “Nay’’}
is theoretically impossible, since this implies

82+6; _

= A

8, + 65

which in turn implies the contradiction 6, < ;.

The possibilities are summarized graphically in Figure 1. At the bottom of
the figure are listed the resulting pairs of vote outcomes, corresponding to
the ordinal categories forming the dependent variable for the ordered probit
analysis:

Vote1l Vote2 Numeral
“Yea” “Yea” 0
“Nay” “Yea” 1
“Nay” “Nay” 2
“Yea” “Nay”

When the vote choices 6;,0,, and 65 denote points in a policy-space

that has a substantively-interpretable metric, running ordered probit with a
dependent variable defined as above will result in estimates that are readily



Jackman, Models for Ordered Outcomes, p8

I 0

Z
{.feN, ‘.feN..} {oA. feN.} {BaA. " BOALY souenbes
| m | m
| " | " |
| 'ESAZ
m
I
I
I
I
I
I
I
I
I
I
I
m
I
| | |
_ {.feN..} " {oA.} _ 'ESAT
Y/ST'ES Y/50°e$ 1Y/06°2$
% % Tg
| | |
_ _ _ Sesodoid

"spuawpuawp abom wnwyuiw / /61 Jo SisA|pup s1aAly pup )aiqyaiy| i1 iS4



Jackman, Models for Ordered Outcomes, p9

interpretable in terms of that metric. For instance, the votes analyzed by
Krehbiel and Rivers refer to proposed levels of the minimum wage, considered
by the Senate in debating the Fair Labor Standard Amendments Act (1977, S.
1871). The 6 quantities in this case are actual dollar amounts corresponding
to the 1980 minimum wage: 6; = $2.90 per hour (an amendment proposed
by Dewey Bartlett), 6, = $3.05 per hour (an amendment proposed by John
Tower), and 65 = $3.15 per hour (the level proposed by the Labor and Human
Resources Committee, then under the chairmanship of Harrison A. Williams,
and ultimately approved by the Senate, 76-14).

Given that we can associate these dollar figures with the options with the
votes, itisalso possibleto associate dollar figures with the cut points between
the categories defining the dependent variable. In this case, po = (6, + 63)/2
=$3.025 per hour, and p; = (8, + 63)/2 = $3.10 per hour. With these exact
restrictions on the p parameters Krehbiel and Rivers are able to modify the
standard identification restrictions for the ordered probit model. In particular,
this exact knowledge on p means that we can let o2 be a free parameter.

In practice, one could either write out and program a log-likelihood
function with these identifying constraints on the p “hard-wired” (and o2 a
free parameter), or use a canned ordered probit routine and re-standardize
the estimates to suit the constraints on the thresholds. This involves a
linear transformation of the parameter estimates, noting that the difference
between po = 0 and fi; is now just the difference between $3.025 per hour
and $3.10 per hour, or .075 of a dollar per hour. One would re-scale (i.e.,
multiply) the probit estimates by a constant m such that the transformed 1,
equals .075, and then add 3.025: i.e.,

Z =mz+c, 2)

where z is a location estimate from the probit model (a threshold, a slope
estimate, or an estimated ideal point), m is the re-scaling constant, and c is
the location shift. Note that when re-scaling dispersion parameters like o or
the standard errors of the parameter estimates one needs only the scale shift
given by the multiplier m, and not the location shift given here by m = 3.025.
Table 1 of the Krehbiel and Rivers article includes estimates of o produced by
this scale shift, and since o = 1 is the typical parameterization, the scaling
constant m is simply the estimate of o in Table 1. That is, Krehbiel and
Rivers could have obtained the estimates in Table 1 by taking the usual probit
output, multiplying the estimates by .105, and adding 3.025 to the result for
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location parameters (slope parameters and the threshold parameters).

3.2 Bartels: three votes, same unknown alternative on two

The situation studied by Krehbiel and Rivers seems the exception to the
rule. Only under fairly specialized circumstances are legislative options or
responses to a survey precisely defined in terms of a substantively interesting
metric. It is often the case that legislators choose between some specific
quantity and an unknown or yet-to-be decided reversion point. Or in the
survey research context, responses of the form “Strong Democrat™ or “Weakly
Opposed” etc can be ordered but it is unclear what the thresholds between
these categories correspond to in terms of an underlying, substantively-
meaningful metric.

The Bartels application has some of these features. Bartels analyses a
sequence of three votes in the House of Representatives in November and
December 1981 on the increased defense expenditures President Reagan
requested in his first budget. However, unlike the situation analyzed by
Krehbiel and Rivers the cut-points between the votes are not clearly defined.
Instead, legislators choose between an alternative stated in dollar figures,
and an unknown reversion point, Q. In two of the three votes, the cut-point
for two of the three votes is known only as the midpoint between $197.44
billion and Q, which is just $98.72+Q/2 billion (for CQ 303, a vote on the
appropriations bill) and as the midpoint between $199.69 billion (the figure
reported after conference with the Senate) and Q, which is just $99.85+Q/2
billion (for CQ 345). The first vote in the sequence, CQ 302, was a vote on an
amendment seeking to cut the funds appropriated for weapons procurement
and research and development by 2%, and so the cut-point for this vote is
known a priori to be $196.61 billion, (195.78 + 197.44)/2 billion dollars,
again subject to the fairly uncontroversial assumptions about the legislators’
utility functions and sincere voting. It is straightforward to order these
cut-points as well, which allows us to partition the real line into categories
suitable for analyzing legislator’s votes through the sequence via ordered
probit.

Figure 2 depicts the possibilities in this instance. The two cut-points that
depend on Q are depicted with dotted lines, while the known cut-point from
the first vote is shown with a solid line. The reversion point Q is somewhere
to the left of the graphed area, constant over the three votes, but unknown a
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priori. The four sequences of votes are shown at the bottom of the figure, with
the leftmost sequence {*Yea”, “Nay”, “Nay”} corresponding to the lowest
category in the ordered probit analysis. Bartels reports that of the 108
legislators in his sample (those legislators whose districts were included in
the sampling frame for the 1980 National Election Study), none exhibited
a pattern of votes inconsistent with an assumption of fixed preferences,
symmetric, single-peaked utility functions, and sincere voting. In other
words, the four patterns of voting listed at the bottom of Figure 2 are the
only logical possibilities under these assumptions and were the only patterns
observed in the data.

3.3 Re-calibrating estimates from the ordered probit model

The dependentvariable inthe ordered probit takes on the values 0 through
3, corresponding to the four categories at the bottom of Figure 2. Following
standard practice, the first probit threshold is set to 0 for identification
purposes, and o to 1 (see Table A2, at p470 of the Bartels article). Bartels
obtains the following estimates of the other thresholds, against which | list
the corresponding values in terms of known dollar amounts, and/or the
reversion level Q:

Threshold  Probit $bn
Ho 0 98.72 + Q/2
i 183 99.85+Q/2
(L2 1148  196.61

Converting the thresholds (and hence, all the probit parameters estimates
as well) to dollar amounts is accomplished using the method we employed for
the Krehbiel and Rivers case; i.e., a linear transformation will re-calibrate the
probit estimates to the dollar scale. We need to know a slope and intercept
parameters for this linear transformation, plus also solve for the unknown
reversion amount Q. We can solve for all these parameters exactly, since the
above information can be represented as a system of three equations in three
unknowns,

98.72 = mpo+-5Q+c,
99.85 = mji; +-.5Q+c,
196.61 = mji, +0Q +¢,
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where mis the slope and c is the intercept of the linear transformation linking
the probit scale with the dollar (billions) scale. Solving for the unknowns Q,
m and c is made easier by re-writing the system in matrix terms,

1 -5 uo c 9872
1 -5 [y Q|=]| 9985 |,
10 (| |m 196-61

or substituting for po, 1, and i,

1 -5 0 c 98-72
1 -5 183 Q| ~= 99-85 |,
1 0 1-148 m 196-61

and applying Cramer’s Rule to solve for the vector of unknown parameters.
(Cramer’s Rule states that the solution for a system of equations of the form
Ax = b, with x unknown, is simply X = Alb, provided the matrix of A exists,
and indeed, the inverse of a matrix is often defined this way, i.e., as the
solution to a system of linear equations; see Chiang 1984, 103--12).

In this case this yields the solution vector (¢, Q, M) = (189.52, 181.60,
6.17). Accordingly, all the predicted values from the probit model can be
interpreted in billions of dollars by multiplying by 6.17 and adding 189.52.
Bartels in fact only reports the results of his analysis in terms of dollars; the
results in the “raw’ metric of the probit are relegated to the Appendix of the
article. Below I reproduce Table 1 of his article, showing the effects of the
independentvariablesinterms of billions of dollars of defense appropriations.

Note that when transforming the standard errors from the probit scale to
the $bn scale we only multiply; this is because the standard errors measure
spread about a fixed point and in this sense are “dispersion’” parameters,
not “location” parameters like a mean or the intercept or the threshold
parameters p. When re-standardizing the location parameters we first re-
scale them by multiplying by m, and then re-locate them on the new metric
with the intercept term ¢. Since standard errors measure spread (and are
in this sense insensitive to location) it is only necessary to re-scale them
via multiplication by m. Likewise for slope parameters, which need only be
“scaled up” or “scaled down” by rm after the location shifts are applied to
the thresholds and intercept parameters. Note also that it is the standard
errors of the parameter estimates that are re-scaled, not the variances; this
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Table 2: Bartels (1991) Table 1: Sources of Support for Pentagon Appropria-
tions.

Estimated Effects

Variable Units ($billions)
Intercept - 183-96
(13-40)
Constituency NES 7-point scale 12.87
opinion (5-82)
Constituency x NES scale 0112
competitiveness x loser’s % vote (-0497)
Tax burden $1,000s per capita -4-14
(3:72)
Pentagon outlays $1,000s per capita 7-70
(3-68)
Partisanship Republican =1 3.87
Democrat=0 (1-79)
Presidential vote difference in 100,000s 4-69

influence (3-45)
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is because the ordered probit model is defined in terms of a latent “z’ score
--- a location measure divided its standard deviation --- the usual assumption
being that the errors on the probit scale are iid standard Normal deviates
(mean 0, standard deviation 1).

Note also that the Bartels case is complicated by the presence of the
unknown parameter Q. In general, re-scaling ordered probit parameters is
somewhat simpler, involving two parameters in two unknowns; the intercept
and slope parameters of the linear equation mapping from the probit scale to
the substantively-interesting scale. Two pieces of information are required to
recover these two parameters; i.e., we need to be able to set two (and only
two) thresholds to values on the substantively-interesting match and then
recover the slope and intercept parameters.

4 Interpretation

Ordered probit is just a generalization of the binary response model,
slightly complicated by the threshold parameters and the identification
restrictions necessary to recover estimates of them and the structural param-
eters simultaneously. Accordingly there is little to add beyond what we saw
for the binary model.

Estimation is by maximum likelihood and the estimates have all the usual
properties that MLEs have. Summary statistics are also available as for the
binary model; likelihood ratio tests are also a convenient way of testing
combinations of parameters and alternative specifications etc. The two-by-
two table of “hits and misses” in the binary case generalizes to a m by m
table in the ordered probit case.

Plotting out marginal effects of the independent variables results inm -1
lines showing the cumulative estimated probability of being in the m (ordered)
categories. An example using the Bartels case is shown in Figure 3. Four
panels are shown in this figure; each showing the effects of the moving over
the observed range in constituency opinion (from the lowest constituency
preference, -1.25, to the highest constituency preference, 2.25) on the latent
probit variable, a probability metric, and in terms of the legislators ideal
points ($bn). All other independent variables are constant held at their
sample means (this may or may not be an appropriate assumption for the
otherindependentvariables, butis about the best | can do without the original
data; all these simulations are based summary statistics and the parameter
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Figure 3: Simulated effects of change in constituency opinion.
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estimates in the article).

The first panel shows the familiar linear relationship between a predictor
and the latent probit variable. The second panel’s parallel lines are the
effects of increasing relative to the three thresholds; each line is just
1) -x§f3,l' = 0,1,2. Recall that the probability of being in the jth category
is estimated as ®(-) of this quantity, less the probability of being in the
immediately lower category. Stacking these quantities, as in the third panel
of Figure 3 results in the three curved lines. The area below the lowest curved
line is just the probability of being in category “0”” in Bartels’ analysis, the
category of legislators whose voting patterns revealed relatively low levels of
preferred defense appropriations. Notice how this probability falls away as
constituency opinion increases, to be replaced by a greater probability that a
legislator belongs to one of the higher categories.

The last panel shows the effects of increasing constituency opinion on
legislators’ ideal points, in terms of dollars. Since the dollar metric is a
linear transformation of the probit metric, and the effects of the independent
variables are linear on the probit metric, it is no surprise that the effects of
the independent variables expressed on the ideal-point metric are linear also.
The dotted horizontal lines show the thresholds between the categories used
in the ordered probit.

Typically one is interested in plots as in panels (3) and (4). These are the
types of comparative statics presented in practice; | provide the other plots
for completeness. The Splus code | used appears below.

# simulate some predicted vals from Larry’s 1991 piece

# means of data

x0_c(1,1.205,33.499,2.012, .454, .444,-.269)

names (x) _c("Intercept","Cnstncy Opn","ConstxComp","Tax Burden",
"Pentagon outlays","Partisanship","Pres Influence")

# partisanship = O Dem, 1 Repub in case want to play with that
# other vars defnd in apsr piece

# parameter estimates (probit)
b_c(-.91,2.095,.00183,-.673,1.253, .63, .764)

# threshold estimates
mu_c(0,.183,1.148)
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# function for transforming to dollar metric
bart_function(x){6.145%x + 189.555}

# simulate change in const opinion
x_x0

xsim_seq(-1.25,2.25,.1)

yhat .out_NULL

muyhat.out_NULL

pyhat.out_NULL

money.out_NULL

for (i in 1:length(xsim))

{x[2] _xsim[i]
x[3]_x0[3]*xsim[i]
yhat_x%*%b
muyhat_mu-yhat
pyhat_pnorm(muyhat)
money_bart (yhat)
yhat.out_c(yhat.out,yhat)
muyhat .out_rbind (muyhat.out ,muyhat)
pyhat.out_rbind(pyhat.out,pyhat)
money.out_c (money.out ,money)
}

# graphing options
par (mfcol=c(2,2) ,mar=c(2,4,0.5,2))

plot(xsim,yhat.out,type="1",

ylab="Predicted Value, Probit Scale",cex=.85)
abline (h=mu,lty=2)

yrange_par () $usr

yrange_.95*yrange [4]+.05*yrange [3]
text(-1.15,mu[1]-.2,"CQ303",cex=.5)
text(-1.15,mu[2]+.2,"CQ345" ,cex=.5)
text(-1.15,mu[3]+.2,"CQR302",cex=.5)

text (1.75,yrange,"(1)")

plot(xsim,pyhat.out[,1],type="1",
ylab="Probability Scale",cex=.85)
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yrange_par () $usr
yrange_.95*yrange [4]+.05*yrange [3]
lines(xsim,pyhat.out[,2])
lines(xsim,pyhat.out[,3])
text(1.75,yrange,"(3)")

plot(xsim,muyhat.out[,1],type="1",
ylab="Probit Scale",cex=.85)

yrange_par () $usr

yrange_.95*yrange [4]+.05*yrange [3]

lines(xsim,muyhat.out[,2])

lines(xsim,muyhat.out[,3])

text(1.75,yrange,"(2)")

plot(xsim,money.out,type="1",
ylab="Ideal Points, $bn",cex=.85)
abline (h=bart (mu),lty=2)
yrange_par () $usr
yrange_.95*yrange [4]+.05*yrange [3]
text(-1.15,188,"CQ303",cex=.5)
text(-1.15,192,"CQ345",,cex=.5)
text(-1.15,198,"CQR302",cex=.5)
text(1.75,yrange,"(4)")
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