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Regression analysis, part III1

• There is one more general theoretical result concerning the OLS estimators that I would
be remiss not to tell you about. It is usually called the Gauss-Markov Theorem, which
establishes that the OLS estimators are “BLUE” – the Best Linear Unbiased Estimates.

Thm : Suppose the process that generates data (yi, xi) is yi = α+βxi+ εi, where εi satifies
the assumptions given above. Define a linear estimator for α or β as an estimator that can
be expressed as a linear combination of the yi’s. Then among the class of linear and unbiased
estimators for α and β, the OLS estimators a and b have the smallest variance (i.e., are most
precise, and make the most efficient use of the data).

• To see that the OLS estimators are “linear” in this sense, remember that the equation
for b is

b =
cov(X, Y )

var(X)
=

∑
(xi − x̄)(yi − ȳ)∑
(xi − x̄)2

Using ci for the parts of this involving the xi’s, this can be written as

b =
∑
ci(yi − ȳ),

so it is clear that the least squares estimator for β is a linear function of the yi’s.

• What the theorem says it that among all possible estimators that are unbiased and that
can be expressed as linear functions of the yi values, you cannot do better than the OLS
estimators regarding their precision (i.e., you can get any other estimator with smaller
standard errors around the estimates).

• This is an argument in favor of this approach. You might ask, however, what other
possibilities are there? What other estimators for α and β might you try? In principle
there are lots. e.g.:
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1. Consider taking the data point for the smallest xi and the data point for the largest
xi, and drawing a line through them (illustrate). The slope of this line will be an
unbiased estimate of β (not bigger or smaller than β on average across replications
where we draw new εis). And it can be expressed as a linear function of yi values.
The Gauss-Markov theorem asserts that the OLS estimates will be better in the
sense of being more precise. (It is not hard here to get an intuition for why, given
that this approach clearly doesn’t use much of the data.)

2. A more plausible rival to the OLS approach would to choose a and b to minimize
not the squared difference between residual and the line ŷi = a+ bxi, but rather the
simple distance. I.e., choose a and b to minimize

n∑

i=1

|yi − a− bxi|.

Again it is possible to show that this is a linear, unbiased estimator, so the GM
theorem implies that it will not be as good as the OLS estimates of a and b re pre-
cision (actually, the theorem just says you can’t do better than the OLS estimates
on this score).

• This last case – the approach of “least absolute deviations” as it is sometimes called –
is worth dwelling on for another minute because it helps make another point about the
OLS approach: sensitivity to outliers.

– Think way back to the 3rd week of the course, when we were talking about de-
scriptive statistics, and in particular about measures for the central tendency of a
distribution of a variable. We considered two main contenders, both of which have
merits, the mean and the median.

– What was the main liability of the mean relative to the median?

– In defending the mean as a measure of central tendency, I said that, well, it has
nice “statistical properties.” You have now seen the most important of these: the
sample mean is a sum of random variables, and so has an approximately normal
distribution and so allows ready estimates of variance, for example.

– But the sensitivity to outliers is a liability, and it carries over into the OLS approach
to estimating structural parameters of a model. To see how, recall that in week 3
I showed (briefly) that for any variable Y , the number a that minimizes

n∑

i=1

(yi − a)
2

is in fact the mean of Y , µ.

– That is, the mean minimizes the sum of squared deviations from a variable.
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– But if you look again, this is exactly what we are doing with OLS, except that we
are now minimizing the sum of squared differences of Y with a linear function of
another variable X.

– So OLS is going to be sensitive to outliers, since in effect OLS weights squared
distance from the proposed regression line, not the absolute distance.

– Not surprisingly, the method of minimizing the sum of the absolute difference of
the residuals produces estimators that are more robust to outliers – that is, the
presence of a mismeasured or “wacky” observations (perhaps an observation that
follows some idiosyncratic process) may screw up OLS estimates more than they
would the estimators based on absolute distance.

– What is the practical lesson here?

When using OLS, and especially when the n is relatively small (say less than 150, in
my experience), you need to check for highly influential outliers that may be driving
the results you get.

– How do you do this? Scatterplots are valuable, or you can use Stata to generate
a variable that stores the residuals, and then list the most extreme ones. (do
example with reg grw6080 ethfrac, predict e, resid, list country grw6080
e, sum e ,d. Try regress dropping Oman: reg grw6080 ethfrac if country =
“OMAN”).

• Checking for outliers and influential cases is just one of several important reasons, in
practice, to study the residuals from a regression analysis. Here are a couple of other
things you can and should do after running the regression. To start, as we did above,
use Stata to generate the (estimated) residuals: predict e, resid will store them in a
new variable called e.

1. Graph them with a histogram: graph e ,bin(12) for instance. How do they look?
Fairly Normal. Is it important that they have a Normal-like distribution? (think
back to results above) Not essential, but nice. Also, if our “story” holds that there
are lots of other uncorrelated “other causes” of country growth rates, rather than
one or two big ones, then we should expect the residuals to look Normal due to
the central limit theorem. If they looked highly not-Normal, then we would have
to wonder why, and we would want to investigate what sort of cases were driving
the skewness, e.g.

2. Graph the residuals against the independent variable, the xis. graph e ethfrac
,s([cn3]) yline(0).

– What are we looking at? Can someone explain in words?

3. What can/should we do with this? First off, remember that we made two additional
assumptions in deriving estimates for the standard errors of our estimates for the
model’s parameters, a and b. We assumed (1) that the random “other causes” had
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the same variance across different values of X (homoscedasticity); and (2) that the
covariance of the other causes case-by-case was zero (no serial or autocorrelation).

4. We can evaluate the plausibility of these assumptions by looking at the plot of
residuals against X.

5. If homoscedasticity was not a good assumption, we would see a pattern of some
sort in the variance of the errors as X changes (note it could be a wavy pattern).
No very striking problem here.

6. If autocorrelation were a problem, we might see a pattern of errors “following” each
other from case to case.

– This is purely cross-sectional data (has no time component), so there can be no
problem of serial correlation (will show example of this in a minute).

– But there can be other forms of correlation between the residuals, such as spatial
autocorrelation. E.g., let’s sort the data by region sort region, and then create
a variable that represents this ordering of the data, gen caseno = n, so we
can plot the residuals in this order: graph e ethfrac, s([cn3]) yli(0). Here
there seems to be some pattern; discuss. Indicates also omitted variables ...

– Let’s look at a more conventional case of autocorrelation, with some time se-
ries data: Presidential approval ratings, inflation, and unemployment. use
approval, graph approve caseno, reg approve infl3, discuss, predict e
,resid, graph e caseno ,s(.). What do you notice? What is the substantive
interpretation? So the OLS estimates will be unbiased (conditional on the other
assumptions, like E(εi) = 0), but the standard errors will be wrong (too small
here). (Some of the correlation in the errors here is due to the fact that different
presidents had consistently different average approval levels. With multiple re-
gression we can control for this effect, by adding “dummy variables” that mark
each different president. Stata lets you take a categorical variable like pres and
covert it very simply into a set of dummy variables for a regression as follows:
xi: reg approve infl3 i.pres. Interpret ...

– One approach in a case like this is to change question slightly, to ask about the
effect of a change in the inflation rate on the change in the president’s approval
rating. I generated these change variables, chapprov and chinfl. consider reg
chapprov chinfl. ...

• Ok, so these are basic diagnostics you should always do after an OLS regression: (1)
check for outlying, highly influential cases; (2) check the distribution of the estimated
errors; (3) check for violation of homoscedasticity; and (4) check for autocorrelation
(especially in time-series data). Questions?

• Two important notes:
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1. By looking at the residuals, we can evaluate whether the regression assumptions
about homoscedasticity and autocorrelation are warranted. However, our “warrant”
in turn depends on the validity of the core assumption that E(εi) = 0.

2. With observational (nonexperimental) data, the assumption that the other causes
are uncorrelated with the independent variable, that E(εi) = 0, cannot be tested
with the data points (yi, xi). The only thing we can do here is to speculate and think
about possible confounds. If we can develop measures for these, we can go further,
using multiple regression to control for their effects to see if doing so alters our
estimate of the effect of the independent variable that we were hypothesizing about
in the first place. This process of thinking through and testing possible confounds is
one of the central activities social science research, whether it is explicitly statistical
or not.

– e.g.: Reconsider the hypothesis that ethnic fractionalization causes lower eco-
nomic growth rates. In the bivariate analysis reg grw6080 ethfrac we found
some support for this hypothesis. However, we also noted a possible source of
confounding factors: subSaharan African states tended to have very low growth
rates in this period, and they also are measured as the most ethnically fraction-
alized in the sample (show table region ,c(mean ethfrac median ethfrac
n ethfrac)).

– So this raises the question, What if it is not ethnic fractionalization that causes
poor economic performance, but some other factor that particularly influenced
subSaharan states?

– With multiple regression (which you will explore in 200B), we can begin to
assess this possibility by adding a dummy variable to the regression equation
that takes a value of ‘1’ for the SSA countries and is ‘0’ otherwise. reg grw6080
ethfrac ssafrica

– Interpret ... Some of the relatively homogenous SSA states nonetheless had
very poor economic performance, casting some doubt on the initial hypothesis.
We can’t discard it, but we have moved to a new level of investigation ...

– An alternative approach, which you have seen everything you need to under-
stand and implement, would be simply to run the bivariate regressions by region.
e.g.: reg grw6080 ethfrac if ssa == 1 andreg grw6080 ethfrac if asia
== 1. Interpret ... not looking good for the hypothesis ...

5


