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Regression analysis, part II1

1 The OLS estimates a and b as random variables

• The last step in showing that if the key assumption holds, the OLS estimate b will be
a good estimate of β is usually done a bit differently.

• Now we will work through this more usual approach, which is to think about the
estimator b as a random variable, just as we thought of the sample mean x̄ as a random
variable.

• How do we do this in this case? A random variable, remember, is a number that sum-
marizes some result of a chance procedure (Friedman). What is the chance procedure
that generates b?

• There is a typical story that statisticians and econometricians tell at this point, that
goes like this. They say, Imagine it’s like this:

– Imagine this is like an experiment where we can assign specific xi values at random
to different cases (here, countries, but in say a medical experiment, dosage levels
to different people). We do this.

– Then various other causes (which are now necessarily random with respect to xi)
work their effects (“are drawn”), the εi’s, and added to α + βxi for each case. So
we observe yi = α + βxi + εi and xi for each case, but not the parameters or the
error terms.

– We use the data to generate the OLS estimates a and b.

– Imagine (they say) you could do this over and over again, assigning the same xi
levels to the same cases each time, and then drawing anew from the “box of tickets”
that gives us the random other causes, the εi’s. Because of the sampling variabil-
ity from the box of tickets, each time we will get slightly or somewhat different
estimates for the α and β.

– For each one of these hypothetical repetitions of the experiment, we have a new set
of estimates for a and b. Thus you can imagine building up a sampling distribution
for a and b, just as we did for the sample mean x̄ earlier on.
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– This is the mental experiment used to explain how to think about a and b as random
variables.

– The key move is thinking about the other causes, the εi’s, as in effect like numbers
drawn from a box of tickets. We only observe the results of the one set of draws –
the yi’s, which are produced by yi = α+β+ εi – but we imagine that we could have
observed different yi’s in a hypothetical replication, where the other causes came
out a differently.

• Illustrate with Stata:
1. set obs 50

2. gen x = invnorm(uniform())

3. gen e1 = invnorm(uniform())

4. gen y1 = 2 + 3*x + e1

5. reg y1 x

6. gen e2 = invnorm(uniform())

7. gen y2 = 2 + 3*x + e2

8. reg y2 x

• There are some cases – mainly experimental designs – where this story of repeatedly
“drawing” εi’s for fixed xi values is not so hypothetical. e.g.: assigning different levels
of fertilizers to different acres of land to estimate the yield curve for the fertilizer. You
really can imagine doing this repeatedly and getting different results due to random
variability in the other causes of crop yields across the plots each time.

• But with observational data, the story is more hypothetical, in two main respects: (1)
we didn’t actually randomly assign xi values to each case; and (2) we are imagining
counterfactual worlds where we perform this procedure over and over, and “draw”
different values on the other causes each time.

2 b is an unbiased estimate of β: E(b) = β

• Under the story that imagines the data we see to have been generated as if the other
causes εi are random variables that were drawn from a distribution, we can treat the
estimated parameter b as a random variable. This means that we can take its expecta-
tion:

E(b) = E

(

β +

∑

(xi − x̄)εi
∑

(xi − x̄)2
)
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= β + E

(∑

(xi − x̄)εi
∑

(xi − x̄)2
)

= β + E

(

n
∑

i=1

(xi − x̄)
∑

(xi − x̄)2
εi

)

(1)

We can take the expectation “through” β why? Note I also brought the variance term
inside the sum in the numerator for later convenience.

• Recall that in the mental experiment described above, we imagined that we (or Nature)
assigned given, fixed values of xi to each case, and then in subsequent experiments
we could draw εi values given these xi values. (i.e., we imagine that the particular
εi values that were realized and helped produce growth rates for these countries from
1960 to 1980 could have turned out differently, they were “drawn” from a distribution
of possible worlds – see KKV).

• This is typically described as the assumption of fixed X, or the assumption that X is
fixed in repeated sampling, which basically means that we are treating the independent
variable X as nonstochastic (not a random variable).

• This may seem arbitrary to you, except in a case where X really is fixed by experimental
control, but it turns out that this is pretty much an assumption for convenience in
working through the math. We can allow X to be stochastic (i.e., imagine that we
might draw different values, from a distribution, if we could do the experiment over and
over), and almost nothing would change.

• Given the assumption of fixed X, the xi values in equation (1) above are constants. So
the sum in (1) is a sum of constants times the εi’s. To see this, let

ci ≡
xi − x̄

∑n

j=1(xj − x̄)2
=
xi − x̄
nvar(X)

.

With the xi values treated as fixed in repeated sampling, this is just a fixed number, a
constant, for each case i.

• So we can rewrite (4) as

E(b) = β + E(

n
∑

i=1

ciεi) = β + E(c1ε1 + c2ε2 + . . .+ cnεn)

Clear?

• Expectations can “pass through” a constant to the random variable εi, so we have

E(b) = β +

n
∑

i=1

ciE(εi)
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• SO, as I said at the outset, if we are willing to make and defend the assumption that
E(εi) = 0 for every i, we can conclude that

E(b) = β

Very Important Result: If the true model generating the yi’s is yi = α + β + εi, and the
other causes εi can be treated as random variables with zero mean (E(εi) = 0), then the least
squares estimator b is an unbiased estimate of β.

• That is, if these assumptions hold, then the distribution of the least squares estimator
b will be centered on the true value of the underlying “structural” slope parameter β,
and so in this sense, it will be a “good” estimator for β.

• Incidentally we could also show that a is an unbiased estimator for the intercept term
α.

3 Interpretation and some implications

• Two sets of observations about the meaning of this result:

1. First, notice that to get unbiasedness of our estimator b the ONLY thing we needed
to assume about the distribution of the random other causes was that E(εi) = 0.
Here are some important things we did NOT need to assume.

– We didn’t have to assume anything about the shape of the distributions which
the εi’s are drawn. e.g., Normal, not normal, etc.

– We didn’t need to assume that they were all drawn from the same distribution.
e.g.: It could be that the variance of the other causes εi is larger for some values
of xi than for others, i.e., var(εi|xi) varies systematically with the xi’s in some
way. (This is what we will soon describe as heteroscedasticity.) For instance,
it could be that the variability of growth rates for country’s with high levels
of ethnic fractionalization is smaller than that of countries with low levels of
ethnic fractionalization, and still our estimate of β will be unbiased. (graph
grw6080 ethfrac, draw pictures ...)

– We didn’t need to assume that the random other causes εi were independent
across cases. That is, we didn’t have to assume that cov(εi, εj) = 0 for all i 6= j.
What would violation of this assumption mean substantively in a case like this
one? Perhaps there are factors that affect growth rates for whole regions, so
that the growth rates of all the countries in a particular region are influenced
by a common factor. Then the εi’s for the countries in this region will have
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some commonality that will induce correlation between them. BUT, our result
says that even so, our estimate of the effect of ethnic fractionalization on growth
rates will be unbiased. (This general issue is called autocorrelation, either spatial
as in this example, or serial (or temporal), to be discussed later.)

2. Second, if E(εi) = 0, then α + βxi is the expectation of the dependent variable Y
conditional on xi.

– If we treat the other causes εi as a random variable drawn from some distribu-
tion, then this implies of course that our dependent variable Y is also a random
variable produced by adding realizations of the random variable ε to α + βxi:

yi = α + βxi + εi

– Thus, we can take expectations of both sides, and expectations pass through
the α (a constant) and the βxi (fixed X) parts:

E(yi) = E(α + βxi + εi)

E(yi) = α + βxi + E(εi)

E(yi) = α + βxi

– You will often see this written as:

E(Y |xi) = α + βxi,

which says that the expected value of the dependent variable Y conditional on
knowing (ethnic fractionalization level) xi is just α+ βxi.

– Compare this to the simple, unconditional expectation of Y , where µY is the
mean of the dependent variable Y :

E(Y ) = µY

– If Y is a random variable, then we can think it about, FPP-style, as a constant
µY plus a draw from a box of tickets, the “errors,” that has mean zero:

yi = µY + εi
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– Another way of thinking about what we are doing with regression is just propos-
ing that the mean of the dependent variable depends on, or is conditional on
another variable X in a particular way:

µY = α + βxi,

– Draw picture of Y distributed conditionally on X ...

– With our OLS estimators a and b, we are fitting a line that is constructed so
that E(ei) = 0, where ei is the fitted residual for case i, i.e., ei = yi − a− bxi.
– It is easy to show that with OLS, by construction

∑

ei = 0:

ei = yi − a− bxi, so, taking sums of each side
∑

ei =
∑

yi −
∑

a−
∑

bxi
∑

ei = nȳ − na− nbx̄
1

n

∑

ei = ȳ − a− bx̄
1

n

∑

ei = 0.

The last step follows from what saw in deriving the OLS estimators, that the
OLS line always goes through the point of means ȳ = a + bx̄.

– So the regression line yi = a + bxi is fitted so that it is going through the
(predicted) average value of Y for a given xi.

– This is a nice way to think about it when we are interpreting the results of a
regression like (in Stata) reg grw6080 ethfrac. It produces the estimated line

ŷi = a + bxi

ŷi = 3.41− 1.96xi

– What does this mean? It can be interpreted as follows: On average, a country
with an ethnic fractionalization score of xi had a 1960-80 annual growth rate
of per cap income of 3.41− 1.96xi. I.e., this is the mean of a country’s growth
rate conditional on having a level of ethnic fractionalization xi. (Note: It is just
an unfortunate accident that the estimated coefficient value is 1.96, the same as
the distance to either side of µ that gets 95% of the area under a normal curve.
Don’t be confused by this ...)
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– In other words: If you compare two countries, one of which has an ethnic
fractionalization level .1 higher than the other, the more fractionalized country’s
growth rate will on average be about .1(1.96) = .196 ≈ .2 percentage points
lower.

– This last formulation isn’t as substantively easy to assess as we would like. Here
is a better way that is a typical practice when one of your variables is measured
on a scale that is not incredibly intuitive (like ethfrac). Use sum ethfrac
,d to get the 10th and 50th and 90th percentiles for ethfrac: these are .036,
.4, and .77 respectively. Thus the predicted (average) rate of 1960-80 income
growth at these percentiles is

Pctile of ethfrac Expected growth rate (ŷ)

10th 3.41 - 1.96*.036 = 3.34

50th 3.41 - 1.96*.4 = 2.63

90th 3.41 - 1.96*.77 = 1.90

– So we can say that a country at the 90th percentile in terms of ethnic fraction-
alization had, on average an annual growth rate about seven tenths of one per
cent lower than a the median country in terms of ethnic diversity. (Over time
this would actually a quite substantively significant difference, if estimate were
valid.)

– The main points here are:

(a) OLS fits a line to data that gives you a “prediction” of the average value of
Y given knowledge of xi. As FPP say, the regression line is a “smoothed”
graph of averages (i.e., if you divided the x variable into categories and
plotted a line through the average Y for each group ... Draw ...) Under
this interpretation, the estimated residuals ei = yi − a − bxi are prediction
errors, and we would NOT say things like “if you made Botswana twice more
ethnically heterogenous in 1960, the expectation of it 1960-80 growth rate
would have been (this much lower).”

(b) IF we are willing to assume that there is a process that produced the data we
observed that is “as if” by experiment, with the unobserved εi’s representing
random other causes, and IF we can assume that E(εi) = 0, then OLS
estimates parameters for a causal model that says that the mean of the
dependent variable is a linear function of the independent variable.
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4 Estimating the uncertainty attached to b

• OK, back to our analysis of the relationship of our estimate, b, to the unobserved true
value, the structural parameter β.

– Recall that we showed that first that if the xi’s and the other causes εi’s are uncor-
related, we could expect to b to be a good estimate for β.

– If we treat the other causes εi as realizations of a random variable (i.e., a random
process), then we could say more specifically that the assumption E(εi) = 0 for
each i (which is sufficient for zero correlation) implies that E(b) = β.

• Under this last approach, where b is treated as a random variable (of which we see
one realization, our estimate from the data we have), we can go further, to analyze the
variance and standard deviation of our estimate.

• Why would this be a good thing? For just the same reason that we wanted an estimate
of the variability of the sample mean x̄ – to be able to gain a sense of whether we have
a “good” estimate in the sense of a relatively precise estimate.

• In particular, an estimate of the variance (and s.d.) of b will allow us to test hypotheses
such as: H1 : β < 0, vs. H0 : β = 0. (In words), Can we reject the null hypothesis
that the unobserved structural parameter β relating ethnic fractionalization to country
growth rates is actually zero rather than negative?

• Recall that, from algebra, we got that

b = β +

n
∑

i=1

(xi − x̄)
∑

(xi − x̄)2
εi.

• Treating the other causes εi as draws of a random variable, we can also treat the OLS
estimator b as a random variable also. Above, we took its expectation and found that
the assumption that E(εi) = 0 implied that E(b) = β.

• Now we want to ask about the variance of b. Since it is (being treated as) a random
variable, we can take the variance

var(b) = var

(

β +

n
∑

i=1

(xi − x̄)
∑

(xi − x̄)2
εi

)

.

• β is a constant, so remembering that var(c+X) = var(X) we have
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var(b) = var

(

n
∑

i=1

(xi − x̄)
∑

(xi − x̄)2
εi

)

.

• Remember that for notational ease and clarity we let

ci ≡
xi − x̄

∑n

j=1(xj − x̄)2
=
xi − x̄
nvar(X)

.

so that

var(b) = var

(

n
∑

i=1

ciεi

)

= var(c1ε1 + c2ε2 + . . .+ cnεn).

• Now, again using the assumption that the xi values are “fixed in repeated sampling”
(i.e., fixed numbers rather than random variables that take new values with each hy-
pothetical replication), this is just the variance of a sum of random variables. What is
the variance of a sum of random variables?

• IF the random variables are independent, then it is just sum of their variances (recall,
var(X + Y ) = var(X) + var(Y ) provided that X and Y are like independent draws
from the box).

• So, we have our next important assumption: Suppose that E(εiεj) = 0 for all i 6= j.
That is, assume that knowing the value of any one error term would not help you predict
the values of any of the others. (This would be violated in the regional-influences-on-
country-economic-growth case, and (typically) in time series analysis where it is natural
to assume that “other causes” in period t may still be acting in period t+ 1.) In more
typical other words:

Assume that the other causes εi are independent random variables (i.e., like indepen-
dent draws from a box of tickets, so that knowing one draw doesn’t help you predict any
other).

• If we are willing to (and can defend) this assumption as reasonable (doesn’t have to be
perfect), then the last expression can be rewritten

var(b) =
n
∑

i=1

c2i var(εi) = c
2
1var(ε1) + c

2
2var(ε2) + . . .+ c

2
nvar(εn).
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• Time for the next assumption:
Assume that the other causes εi all have the same variance, in particular, that

var(εi) = σ
2 for all i.

• What does this say? In (somewhat obscure) words, this assumption is the assumption
that the errors or other causes are homoscedastic. “scedastic” means “scatter” in Greek,
so this is the assumption that the errors have the same scatter or spread (i.e., variance).
It rules out cases where different x values are systematically associated with higher
or lower variance. Draw pictures of possible violations. In FPP terms, this rules out
drawing the error terms from a different box for each xi value, with the variances
different across the boxes.

• If we are willing to grant/defend this assumption (and as we will see, both this assump-
tion and the last are to an extent testable), then the last expression for var(b) above
becomes

var(b) = σ2
n
∑

i=1

c2i = σ
2(c21 + c

2
2 + . . .+ c

2
n).

• Now we are down to figuring out what this sum of the c2i ’s is. Remembering that

ci =
xi − x̄
nvar(X)

,

we have

n
∑

i=1

c2i =

(

x1 − x̄
nvar(X)

)2

+

(

x2 − x̄
nvar(X)

)2

+ . . .+

(

xn − x̄
nvar(X)

)2

=
(x1 − x̄)2 + (x2 − x̄)2 + . . .+ (xn − x̄)2

n2var(X)2

=

∑n

i=1(xi − x̄)2
n2var(X)2

=
nvar(X)

n2var(X)

=
1

nvar(X)
.
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• Substituting back in, we get the important result that:

var(b) =
σ2

nvar(X)
=

σ2
∑

(xi − x̄)2
(2)

• If you look at the middle version, part of the expression might strike you as familiar.
We can write it like this

var(b) =
σ2

nvar(X)
=
σ2

n

1

var(X)

What does the σ2/n remind you of? variance of the sample mean. So what will happen
to the precision of your estimate of β as the sample size increases? And what happens
as the variance (spread) of the xi values increases? Why? draw pictures ... (why you
want variability on your independent variable: precision).

• SO, with the help of several more assumptions about the other causes εi along the way,
we have derived an expression for the variance of our estimate b of β. What good is
this? If we take the square root, we have the standard error of b as

se(b) =
σ√
nsd(X)

.

• If we can come up with an estimator for σ, the (unobserved) variance of the (unobserved)
other causes, then we can test hypotheses about the unobserved parameter we are trying
to estimate, β. Suppose we can come up with an estimate for σ2, and let’s call it s2.
(This whole procedure should be feeling somewhat familiar at this point; it is the same
approach we took in analyzing the sample mean x̄ as an estimator for the unobserved
population mean µ.)

• Then, if we wanted to test an alternative against the null hypothesis that β = 0, we
could formulate the test statistic

t =
observed b− expected b|H0 true

se(b)

=
b− 0
s2√
nvar(X)

=
b
s2√
nvar(X)

.
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• With some additional theory about the probability distribution of the OLS estimator b
(which we will supply in a minute), we will be in a position to do this. But first, let’s
come back to the problem of estimating σ2, the variance of the other causes of Y (the
εi’s).

• Recall that the true values, the εi’s, are not observed. But under the crucial assumption
that E(εi) = 0 (the independent variable does not covary with the unobserved other
causes),

ei = yi − (a+ bxi)
is an estimator of εi. (Show a particular example, e.g., Canada ..., in Stata).

(Question to test understanding: Why isn’t ei = εi exactly if ei is defined as above?)

• This naturally leads to the proposal to use something like the following for an estimator
of the variance of the unobserved other causes, σ2:

σ2s =
1

n

n
∑

i=1

(ei − 0)2 =
1

n

n
∑

i=1

e2i .

• What was the problem last time with this same approach? To get an unbiased estimator
of σ2, we have to allow for the two degrees of freedom that are “used up” in estimating
a and b. It turns out that you can show that

s2 =
1

n− 2

n
∑

i=1

e2i =
1

n− 2

n
∑

i=1

(yi − a− bxi)2

is an unbiased estimate for σ2, so this is what we (and everyone else) will use.

• This quantity, s2, is called the residual sum of squares. Stata shows you the square root
of s2 in the regress output, calling it (like FPP) the Root Mean Squared Error.

• Ok, so now we have a proposal for a test statistic for testing hypotheses about the
unobserved slope parameter β that relates ethnic fractionalization to income growth
rates. And we can implement the proposal if we want, since everything that goes into
the formula for the t statistic above is from data we actually have (the yi’s and the
xi’s).

• All that is left is to say what is the probability distribution of the OLS estimator b. This
we can learn by looking back at the expressions we derived for b as a random variable
that is a function of the unobserved other causes εi:

b = β +

n
∑

i=1

(xi − x̄)
∑

(xi − x̄)2
εi
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• Recall that with the “fixed X” assumption, the xi parts of this amount to a constant

ci ≡
xi − x̄

∑n

j=1(xj − x̄)2
=
xi − x̄
nvar(X)

,

so this can be rewritten

b = β +

n
∑

i=1

ciεi

b = β + c1ε1 + c2ε2 + . . .+ cnεn.

• Written this way, what can you conclude about the distribution of b? It is the sum of
a sequence of independent random variables, so as n gets large it has an approximately
Normal distribution! (why?) Three results follow immediately:

1. (as we just said) The distribution of the OLS estimators a and b are approximately
Normal as the sample size gets large, regardless of the distribution of the other
determinants of the dependent variable Y (the εi’s).

2. If Y |xi has a Normal distribution (i.e., if the εi’s are drawn from a Normal distri-
bution), then b is exactly Normally distributed. (This follows why?)

3. Our test statistic for the null hypothesis β = 0,

t =
b
s

√

nsd(x)

will have a t distribution with n− 2 degrees of freedom.

• (3) comes from the same logic that produced that conclusion that the test statistic for
a sample mean x̄ follows a t distribution. Remember that the t distribution has fatter
tails than a Normal distribution. You can think of this coming from the fact that we
only have an estimate of σ2, s2, rather than the real thing.

• This gets us to the point where we can test hypotheses about the unobserved structural
parameters α and β.

• (Note: I won’t show it (you actually can if you try), but the variance of the OLS
estimate for the intercept is

var(a) =
σ2

n

(

1 +
x̄2

var(X)

)

.

Likewise, you can show that a is a sum of random variables and so has an approximately
Normal distribution as the sample size gets larger, etc...)
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5 Review and example

• Let’s see how this plays out with our example from Stata: reg grw6080 ethfrac. Note
that Stata estimates for you

1. the coefficients a and b;

2. the standard errors of these coefficients;

3. the t statistics for H0 : β = 0 and H0 : α = 0, which are just the coefficients divided
by the appropriate standard error;

4. the p values for the t statistics under the assumption of a two-tailed test. (What
do you need to do if you are testing a one-tailed hypothesis?)

5. 95% confidence intervals for the estimates a and b.

• This is all very convenient. Where is it coming from? Recall that we showed that the
s.e. of b is σ√

nsd(X)
,

which we estimate with s√
nsd(X)

,

where

s =

√

√

√

√

1

n− 2

n
∑

i=1

e2i =

√

√

√

√

1

n− 2

n
∑

i=1

(yi − a− bxi)2.

• Stata also reports s as the Root Mean Squared Error. (Be sure to read the FPP chap-
ter on the RMSE.) We can check its calculations by generating the predicted errors
ourselves: predict e, resid does it. list country grw6080 e. then egen s2 =
sum(e2)/(136-2) if e(sample), sum s2.

• Knowing s we can also easily check on how Stata calculates the s.e. for b: di ...
• Again, to get the predicted values for each country, predict yhat. Now we can list
country grw6080 yhat ethfrac e.

• The next practical stuff I wan’t to work through is analyzing the estimated residuals,
the ei’s. Recall that we made a couple of assumptions along the way about the true,
unobserved other causes, the εis, and we can check and illustrate these better by looking
at our estimated ei’s.

• But first, let’s review the main results we’ve derived or stated, of which there were really
quite a few:

14



Assumptions: IF we are prepared to assume

1. That values on the dependent variable Y are produced by a process that can be depicted
as

yi = α + βxi + εi,

where

2. the εi’s are random variables with E(εi) = 0, and

3. are independent (i.e., E(εiεj) = 0 for all i 6= j), and
4. have the same variance σ2,

THEN

Results: the OLS estimators a and b for α and β

1. are b = cov(X, Y )/var(X) and a = ȳ − bx̄;

2. have var(b) = σ2

nvar(X)
and var(a) = σ2

n
(1 + x̄2

var(x)
);

3. are unbiased (E(a) = α, E(b) = β);

4. have an exactly Normal distribution when εi ∼ N(0, σ2);
5. have an approximately Normal distribution for large samples, regardless of the distri-
bution of εi;

6. have standard errors that can be estimated using s2 = 1
n−2

∑

(yi − a− bxi)2 for σ2;

7. have test statistics for the nulls H0 : β = 0 and H0 : α = 0, tb = b
√
nsd(X)/s and

ta =
a
s

√

nvar(X)
x̄2+var(X)

that have t distributions with n− 2 degrees of freedom.
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