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Regression analysis1

• By the time you are bothering to collect some data to examine, in any form (be it a large-
N survey of citizen opinions, a medium N sample of countries, or case study or historical
narrative of some sort), you almost certainly have some suspicions or conjectures that
one thing (an X) is likely to be related to another (a dependent variable, a Y ).

• In the best case, you may have theory that implies a specific sort of functional relation-
ship between two variables of interest.

– e.g.: In macroeconomics, theory suggests that aggregate national consumption
should be a linear function of aggregate national income (i.e., Ct = a + bYt where
Ct is aggregation consumption in period t and Yt is GDP).

– e.g.: In political science, theoretical work by Gary Cox predicts that the number
of viable candidates in election in a district that has M seats in the legislature will
be M + 1. (“Viable” means getting a non-trivial number of votes).

• But far more typically in social science, if you have a theory or conjecture at all it takes
the generic form “more of this (X) should be associated with more (or less) of that
(Y ).”

– e.g.: PR systems (like Germany) should be associated with larger numbers of po-
litical parties than plurality rule systems (like the U.S.). (Duverger)

– Greater ethnic heterogeneity should be associated with lower rates of economic
growth (Easterly and Levine).

– Democracies should be less likely to back down in militarized international disputes
than nondemocracies (Fearon, Schultz).

– Small U.S. states should receive greater per capita federal transfers because they
effectively overrepresented in the Senate (AER article, can’t recall authors)

– The performance of regional governments in Italy should vary positively with mea-
sures of the vitality of civil society by region (Putnam).

– Protestants should be more prone to suicide than Catholics, etc etc. (Durkheim).

– Life expectancy should increase with per capita income.

– and so on ...

1Notes by James D. Fearon, Dept. of Political Science, Stanford University, November 2001.
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• We have now seen some very simple ways to test hypotheses and conjectures of this
sort.

– IF you can represent your independent variable in the form of two categories, then
we can perform a difference of means test to see if we can reject the null hypothesis
that there is no significant difference across values of the independent variable.

– OR, if the independent variable comes in the form or can be presented in the form
of two or more categories, then we could use a χ2 test to see if we can reject the
null hypothesis that X and Y are stochastically independent.

– This will work reasonably well for a case like: H1 = Protestants commit suicide at a
significantly higher rate than Catholics, since we can compare the mean suicide rate
for Protestants in a sample versus that of Catholics (i.e., categorical independent
variables).

• But what about a case like: H1 = growth rate of per capita income should decrease
with ethnic heterogeneity in a country? (Easterly and Levine)

– use lifeexp, graph grw6080 ethfrac.

– We could divide the sample into two groups, with high and low ethnic fractional-
ization, and then test to see if average growth rates are significantly different across
the two.

– But this seems a bit arbitrary, and also (even intuitively) doesn’t seem to take
advantage of all the information we have.

– Eyeballing the scatterplot, it looks like there is something of a (somewhat) steady
downward trend in 1960-80 growth rate as ethnic fractionalization increases. But
two important questions arise:

1. How can or should we characterize this (possible) downward trend?

2. How can we decide whether a downward trend of this magnitude constitutes
relatively strong or relatively weak evidence in favor of the initial hypothesis or
conjecture?

– Regression analysis is very helpful for answering these questions, though it is not a
magic bullet and must be used with great self-awareness.

– Notice, by the way, that these two questions parallel those we have been asking in
the last few weeks:

1. “What is a good estimate of the population mean µ?” parallels the question
about how to characterize the downward trend, and

2. “How much uncertainty is there around our estimate (σ2/n)?” parallels the sec-
ond question of whether the observed downward trend is significantly different
from no trend.
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• Here is how bivariate regression would typically be deployed to answer these questions
in this case.

• Our theory or conjecture says that ethnic fractionalization influences the economic
growth rate.

• In Easterly and Levine, the idea is that ethnice diversity causes problems of political co-
ordination and fighting over the distributional consequences of macroeconomic policies;
I think the argument is bogus, but whatever.

• But Easternly and Levine’s, or any other plausible theory, doesn’t imagine that ethnic
fractionalization is the ONLY determinant of growth rates – there are certainly other,
and probably much more important factors.

• Our theory/hypothesis thus imagines that a country’s growth rate over a period of time
depends on its degree of ethnic fractionalization and on these other things, let’s call
them εi for country i:

yi = f(xi, εi),

where f(·) is some function, yi = country i’s growth rate, xi = its degree of ethnic
fractionalization, and εi represents all the other causes of its economic growth rate.

• But what should the function f(·) look like? Most likely our theory is no help here – it
probably gives us no precise guidance on the functional form of the relationship. (There
are rare exceptions in political science, many more in economics.)

• Here is where most researchers are likely to “cheat,” in effect, and look at the scatter
plot to see what it looks like. It looks like something linear wouldn’t be too bad. So
how about

yi = α + βxi + εi.

• This says that a country’s growth rate from 1960-80 is a linear function of ethnic
fractionalization, plus the total impact of all other causes. (Note that β can be negative,
indicating negative slope, as can α, indicating a negative intercept, in general. Review
slope/intercept ... If increase ethnic fractionalization by .10, would imply that country
growth rate increases by β(.10).)

• Draw line through graph ...

• We would like to estimate values for α and β, in order to see if ethnic fractionalization in
fact has a causal impact on economic growth. (If we estimate β = 0 and have reason to
believe this a good estimate, then we would be concluding that the scatterplot indicating
some suggestion of a negative relationship was misleading.)
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• But here we run in a major problem: We observe the growth rates (the yi values) and
the countries’ ethnic fractionalization levels (the xi’s), but we do not observe the impact
of the other causes for each country, the εi’s.

• Mathematically speaking, we have n equations – one for each observation (list) – but
n+ 2 unknowns, an εi for each country, plus α and β. (Draw ... )

• This means that we have no hope of pinning down estimates for α and β unless we
make further assumptions.

• In fact, IF we are willing to make one crucial assumption about the relationship between
the xi’s and the other causes, the εi’s, then we can come up with estimates for α and
β. But of course whether these estimates are valid/good estimates depends entirely on
whether this assumption is a good one.

• The assumption: That the other causes of country growth rates do not vary systemati-
cally with ethnic fractionalization.

– That is, we need to assume that it is not the case that

1. the εi’s, the other causes of growth rates tend to be bigger when when ethnic
fractionalization is large, or

2. the εi’s tend to be smaller when ethnic fractionalization is larger.

– Draw both cases on board ...

– Mathematically, a sufficient condition for this assumption is simply that the average
or expected value of the other causes is zero for any given value of xi. Formally,

E(εi) = 0.

Draw a vertical “band” and show how this assumption would rule out (1) and (2)
above.

• To repeat, IF we are willing to make this assumption – i.e., if we can defend it as
plausible, arguing that likely candidates for omitted “other causes” are unlikely to be
systematically related to our independent variable xi – then we have a way of generating
estimates for α and β that have some nice properties.

• Recall: The best and really only way to guarantee that the other causes are not sys-
tematically related to the independent variable would be to randomly assign xi values
to different cases. The problem is that for most interesting social science questions, we
can’t do this first best approach (randomization), so we are forced to do our best in
“controlling for” possible confounds.
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• The estimators for α and β, call them a and b, are the famous least squares estimators
that solve the following problem:

Choose a and b to minimize SSR =
n∑

i=1

(yi − a− bxi)
2.

(SSR stands for “sum of squared residuals”).

• Explain in terms of scatterplot – a and b give the equation for the line

ŷi = a+ bxi

that minimizes the sum of the squared vertical difference between the line and each yi.
These differences, êi = yi−a−bxi are estimates of the residuals εi under the assumption
that they are not systematically related to the xi’s.

• ŷi is the predicted value for country i’s growth rate, 1960-80, based on these estimates.

• So what are a and b? We need a little calculus to derive them. First, take the derivative
of SSR with respect to a, the intercept:

∂SSR

∂a
= ∂

∂a

∑
n

i=1
(yi − a− bxi)

2

= ∂

∂a
[(y1 − a− bx1)

2 + (y2 − a− bx2)
2 + . . .+ (yn − a− bxn)

2]

= −2(y1 − a− bx1)− 2(y2 − a− bx2)− . . .− 2(yn − a− bxn)
2

= −2
∑
n

i=1
yi − a− bxi

= −2(nȳ − na− nbx̄).

• So this is the slope of the sum of squared residuals as we increase a, holding b constant.
To find the minimum with respect to a (note second derivative w/r/to a and cross-
partial w/r/to b are positive, thus probably a minimum), we set this equal to zero and
solve for a:

∂SSR

∂a
= −2(nȳ − na− nbx̄) = 0

a = ȳ − bx̄.

• Rewriting slightly, this says ȳ = a + bx̄, which means what? The regression line goes
through the point of averages for xi and yi. Draw ...
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• Next, we take the derivative of SSR with respect to b, the slope coefficient, which has
not been pinned down yet (neither of course has a, we need two equations to pin down
these two unknowns).

∂SSR

∂b
= ∂

∂b

∑
n

i=1
(yi − a− bxi)

2

=
∑
n

i=1
2(yi − a− bxi)(−xi)

= −2(
∑
n

i=1
xiyi − axi − bx

2

i )

= −2(
∑
xiyi) + 2anx̄ + 2b

∑
x2
i
.

• Setting this equal to zero (to find the minimum with respect to b) and dividing out the
−2 yields

∂SSR

∂b
= (
∑
xiyi)− anx̄− b

∑
x2i = 0

∑
xiyi = a

∑
xi + b

∑
x2
i
.

• So now we have two equations and two unknowns (a and b). These equations are often
called the normal equations.

ȳ = a + bx̄ (1)∑
xiyi = a

∑
xi + b

∑
x2i . (2)

• Notice that these are all quantities that we can compute with our sample data, our list
(y1, x1), (y2, x2), etc.

• Solving for b yields

b =
(
∑
xiyi)− nx̄ȳ

(
∑
x2
i
)− nx̄2

• Does either numerator or denominator look familiar? We showed earlier on (week 3)
that these are ways of writing

b =

∑
(xi − x̄)(yi − ȳ)∑
(xi − x̄)2

b =
cov(xi, yi)

var(xi)
.
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• So, the slope of the regression line equals the ratio of the covariance of X and Y to the
variance of X. This is worth remembering. From this we can substitute back in easily
to get the estimator for the intercept term, a:

a = ȳ − bx̄

a = ȳ −
cov(xi, yi)

var(xi)
x̄.

• These are the ordinary least squares estimators for α and β in the case of simple bivariate
regression (two variables).

• This should be exactly what computer programs like Stata compute: correlate grw6080
ethfrac, covariance (this gives the variance-covariance matrix for these two variables),
di ../.., regress grw6080 ethfrac. Discuss Stata output for regress.

• To plot the regression line in Stata, we first need to generate the predicted values of
growth for each country in the sample given its level of ethnic fractionalization, i.e.,
ŷi = a+ bxi. To do this, type predict yhat, which computes ŷi using the estimates for
a and b and stores this in a new variable called yhat. list country grw6080 yhat ...
Then graph grw6080 yhat ethfrac ,symbol([cn3].) connect(.l).

• Let’s recap:

1. We entered with a theory or just a conjecture, holding that countries with higher
levels of ethnic fractionalization should be expected to have lower growth rates on
average. We proposed the model

yi = α+ βxi + εi,

where yi was country i’s 1960-80 growth rate, xi its (1960) ethnic fractionalization
score, εi the contribution to i’s growth rate of all other causes, and α and β the
“structural parameters” that relate ethnic fractionalization to growth rates.

2. We wanted to come up with estimates for α and β, but faced a fundamental problem:
We don’t observe the impact of the other causes, making it highly problematic to
use the data we have (values on yi and xi for n countries) to sort out the impact of
xi (the α and β) from the impact of the other causes.

3. I claimed that if we were prepared to make (and plausibly defend) one big assump-
tion about the relationship between ethnic fractionalization and the other causes of
growth rates, the xi’s and the (unobserved) εi’s, then we could come up with good
estimates for the structural parameters α and β.

4. The assumption was that the unobserved other causes are not systematically related
to independent variable xi, which is implied by the assumption that E(εi) = 0.
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5. We then derived the least squares estimators a and b for α and β. The approach
was to choose a and b to minimize the sum of the squared (estimated) residuals∑
ê2i , where êi = yi − a− bxi.

• What remains to be established is in what sense and under what conditions are the least
squares estimators a and b good estimators for α and β, the parameters presumed/to be
tested for the theory?

• The answers to these questions are in a certain sense very many and very involved –
filling out the answers will fill up much of PS200b, for example. But we will work
through the basics in the simple bivariate regression case here.

• To answer the questions, we need to answer the following question:

What is the relationship between the estimators a and b and the unobserved parameters
α and β that we are trying to estimate?.

• The situation parallels exactly our former problem of having the sample mean x̄ and
asking about its relationship to the unobserved population mean µ.

• To establish the relationship between a and b and α and β, let’s begin by considering
the least squares slope estimate,

b =

∑
(xi − x̄)(yi − ȳ)∑
(xi − x̄)2

.

• According to our theory, yi = α + βxi + εi. We can substitute this in for yi in the
expression for b to write

b =

∑
(xi − x̄)(α+ βxi + εi − ȳ)∑

(xi − x̄)2

=
α
∑
(xi − x̄) + β

∑
xi(xi − x̄) +

∑
(xi − x̄)εi − ȳ

∑
(xi − x̄)∑

(xi − x̄)2

• But
∑
(xi − x̄) = 0 (the sum of deviations from the mean is zero), so

b =
β
∑
xi(xi − x̄) +

∑
(xi − x̄)εi∑

(xi − x̄)2

=
β
∑
xi(xi − x̄)∑
(xi − x̄)2

+

∑
(xi − x̄)εi∑
(xi − x̄)2

.
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• The first term, it turns out, is just β! This is because
∑
xi(xi − x̄) =

∑
(x2
i
− xix̄) =

(
∑
x2
i
)−nx̄2, and you may recall (or you can check in your notes for week 3), that this

last expression is just another way of writing
∑
(xi − x̄)

2. So top and bottom cancel
there, leaving

b = β +

∑
(xi − x̄)εi∑
(xi − x̄)2

(3)

• If you found the algebra hard to follow, don’t worry, but definitely tune back in now.
This equation (3) is an important and instructive result.

• It says that our estimate b for the slope relating ethnic fractionalization xi to income
growth rate yi equals the parameter value we are trying to estimate, β, PLUS the ratio
of the covariance of xi and εi to the variance of xi.

• So, what will be the case if ethnic fractionalization is not systematically related to the
unobserved other causes of a country’s income growth rate? Then cov(xi, εi) would tend
to be close to zero, which would mean that the our estimate b would be very close to
what we are trying to estimate, β.

• Thus the importance of the plausibility (and defensibility) of the assumption that our
independent variable is not systematically related to the other causes of the dependent
variable. If this assumption in not a good one, b will NOT be a good estimator for β,
and we may be sorely mislead by using OLS.

1. What if the truth is that cov(xi, εi) > 0? Then b > β, so we will be lead to
believe that xi has a bigger impact on economic growth yi than it really does if
β is positive, and a smaller (closer to zero) impact if β is negative. e.g., this is
the case of a confounding factor that positively affects economic growth and by
coincidence happens to occur more frequently in countries with higher levels of
ethnic fractionalization, so that using OLS would attribute some of this positive
affect of the other causes to ethnic fractionalization, thus masking the full effect of
ethfrac.

2. If the truth is that cov(xi, εi) < 0, then b < β. We will underestimate the impact
of xi when it is positive, and overestimate its impact when the impact is negative.
explain ...

• And thus we can be justified in using OLS to estimate α and β even if we don’t observe
the other causes. This one assumption, if we can plausibly make it, allows us to estimate
α and β with some accuracy even though we don’t observe the impact of the other causes
(we estimate these as well, with ε̂i = yi − a− bxi).

• Questions?
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