Fall 2001

Descriptive Statistics: summarizing data ${ }^{1}$

Let $Y=\left(y_{1}, y_{2}, y_{3}, \ldots, y_{i}, \ldots, y_{n-1}, y_{n}\right)$ be a vector (i.e., list) of values of a variable.

Examples ...
Defn: A statistic is a function that assigns a number to a set of values of a variable Y.

Examples: the average of a list of numbers is a statistic; so is the maximum of the list.

Defn: A sample is a subset of the population for which the researcher has data. A population is either

1. the set of concrete individuals or units of analysis about which the researcher would like to generalize, or
2. a process that produces values of a variable of interest to the researcher. (This is really a "random variable," but "population" is commonly used in this sense, at least conceptually, in social science.)

Examples: public opinion surveys vs. coin-flipping. Dyad-years? congressional elections? cities and crime, etc.

Illustrate with sample command in Stata.
Defn: Descriptive statistics are techniques for summarizing and describing characteristics of a sample. Inferential statistics are procedures for drawing

[^0]inferences about the characteristics of a population (or a social, political, or economic process) from a sample.

If you have only a few observations, then you can (and should) just show your reader all of the data. If you have more than a few observations, you will need to summarize it. This can done with numerical summaries (statistics) or graphical summaries.

1. Graphical methods of summarizing information about a variable:
(a) one-way and two-way scatterplots.
(b) histograms, relative frequency and frequency. The idea of a "distribution" of values. Manipulating bins in Stata.
(c) stem and leaf diagrams.
(d) Cumulative distribution.
2. Statistics (numerical summaries of variables)

We summarize the distribution of a variable with numbers representing the following (successive) aspects:

- Where is it centered?
- How dispersed or spread out is it?
- Is it skewed more to one side or the other?
- Are the "tails" "fat" or "this"? (This is called "kurtosis.")

Some of the most important statistics that address these successive questions are called moments of the distribution of a variable.
(a) Measures of central tendency
i. the mean of a variable is just the average of its values. The mean is the first (centered) moment or a distribution of a variable. The sample mean is typically written

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i},
$$

where n is the size of the sample. The population mean is typically written

$$
\mu=\frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

where N is the size of the population.
ii. Rules for $\sum: Z=a X+b Y+c$ implies $\bar{z}=a \bar{x}+b \bar{y}+c$. But $Z=X Y$ does not imply $\bar{z}=\bar{x} \bar{y}$.
(b) the median is the value such that half of the other observations are greater and half less (if n even, then median is halfway between the "middle" two observations). Compare $X=(1,2,3,4)$ and $X^{\prime}=(1,2,3,4,5)$. And why does median equal mean in these cases?

- Which is "better," mean or median?
- sensitivity to individual values.
- the issue of outliers. Examples, msmt errors.
- the moral of outliers.
- The meaning of the difference between mean and median.
- Why use one rather than other?
- Often good to use both ...
- Mean has some nice "statistical properties" ...
- What if your variable is a property, present or absent? What is mean then? What is the median?
- Show: (1) The mean minimizes the mean squared error $\frac{1}{n} \sum\left(x_{i}-\right.$ $a)^{2}$. Connection to regression. (2) The median minimizes the mean absolute error $\frac{1}{n} \sum\left|x_{i}-a\right|$.
(c) the mode is the most common value of a variable, or, with continuous data, the class with most observations (in a histogram, e.g.).
(d) $\alpha \%$ trimmed means ...

3. Measures of dispersion
(a) the range is $\max (X)-\min (X)$. The interquartile range is the difference between the 75 th and 25 th percentiles.

- The z th percentile of a variable X is the value x_{i} such that $z \%$ of the values of X are smaller than x_{i}.
- check range after inputing data ...
- example of why not so helpful often ...
(b) the variance is the average of the squared differences between each x_{i} and the mean of X. This is the second moment of a distribution. For the population we typically write

$$
\operatorname{var}(X)=\sigma^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2},
$$

while for a sample ("sample variance"),

$$
s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} .
$$

- $n-1$ because otherwise s^{2} would be systematically too low and estimate of σ^{2}; will show why later
- Show:
i.

$$
\sigma^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}=\left(\frac{1}{N} \sum_{i=1}^{N} x_{i}^{2}\right)-\mu^{2} .
$$

ii. $\operatorname{var}(X+c)=\operatorname{var}(X)$.
iii. $\operatorname{var}(a X)=a^{2} \operatorname{var}(X)$.

- units, problems interpreting variance
(c) the standard deviation of X is the square root of $\operatorname{var}(X)$.

$$
\sigma=\sqrt{\frac{1}{N} \sum\left(x_{i}-\mu\right)^{2}}
$$

$$
s=\sqrt{\frac{1}{n-1} \sum\left(x_{i}-\bar{x}\right)^{2}}
$$

- How interpret?

Chebyshev's Theorem: For any variable X, at least $1-1 / k^{2}$ of the values lie within k s.d.'s of the mean (where k is a number greater than or equal to 1).
This is not a very tight bound. If histogram of X approximately follows a bell-shaped Normal curve,

$$
y=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$

then about 68% of the observations will lie with 1 s.d. of mean, and about 95% within 2 s.d.s.

- Graph presidential approval: graph approve ,bin(2) normal.
- idea of standard units: $z_{i}=\frac{x_{i}-\mu}{\sigma}$ is the number of standard deviations that x_{i} is from the mean.
- The range R should be approximately $4 s$, and thus $s=R / 4$ is a crude estimate of sample s.d. (Show why)

4. Measures of skewness

- Loosely, a distribution/variable is said to be right skewed if it has a long right tail, and left skewed if it has a long left tail.
- Defn: The $k t h$ central moment of a distribution X is

$$
\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\mu\right)^{k}
$$

Note that the $\operatorname{var}(X)$ is the second central moment.

- The third central moment indicates skewness: Positive values indicate right skew, and negative values left skew (why?)
- To get a statistic in "standardized" units one typically divides the third central moment by σ^{3}.
- comments on higher moments, kurtosis ...

5. Box plots - another graphical tool

- Steps to construct:
(a) Draw horizontal lines at the median and the 25 th and 75 th percentiles (values of the variable ranged on the y axis). Connect to make a box.
(b) Draw vertical lines up to value of most extreme data point that is within 1.5 times the interquartile range of the upper quartile. Likewise a line from the lower quartile.
(c) Mark points beyond these with asterixes (possible outliers).
- Indicates central tendency, dispersion, skewness, and possible outliers.
- illustrate with presidential approval

6. Measures of association between two variables
(a) The covariance of two variables X and Y is the average of the products of the deviations of each variable from its mean. Formally,

$$
\operatorname{cov}(X, Y)=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) .
$$

- Note that $\operatorname{cov}(X, Y)$ will tend to be positive when there are many cases i such that either both x_{i} and y_{i} are greater than their means, or both are less than their means. By contrast, X and Y will tend to "covary negatively" when $x_{i}>\bar{x} \rightarrow y_{i}<\bar{y}$ and vice versa. Show with graphs.
- units $\operatorname{cov}(X, Y)$ are the product of units of X and Y, and the number is not very information or descriptive by itself, except for the sign. Thus people typically use a standardized version of covariance ...
(b) the correlation coefficient of two variables X and Y is the covariance of X and Y when these are expressed in standard units. Thus, if $X^{\prime}=$
$\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right)$ and $Y^{\prime}=\left(y_{1}^{\prime}, y_{2}^{\prime}, \ldots, y_{n}^{\prime}\right)$ denote X and Y expressed in standard units,

$$
\rho(X, Y)=\operatorname{cov}\left(X^{\prime}, Y^{\prime}\right)
$$

This implies

$$
\begin{aligned}
\rho(X, Y)=\operatorname{cov}\left(X^{\prime}, Y^{\prime}\right) & =\frac{1}{n} \sum x_{i}^{\prime} y_{i}^{\prime} \\
& =\frac{1}{n} \sum\left(\frac{x_{i}-\bar{x}}{\sigma_{x}}\right)\left(\frac{y_{i}-\bar{y}}{\sigma_{y}}\right) \\
& =\frac{\operatorname{cov}(X, Y)}{\sigma_{x} \sigma_{y}} \\
& =\frac{\frac{1}{n} \sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\frac{1}{n} \sum\left(x_{i}-\bar{x}\right)^{2}} \sqrt{\frac{1}{n} \sum\left(y_{i}-\bar{y}\right)^{2}}} \\
& =\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum\left(x_{i}-\bar{x}\right)^{2}} \sqrt{\sum\left(y_{i}-\bar{y}\right)^{2}}}
\end{aligned}
$$

About the correlation coefficient:

- $\rho(X, Y)$ is a pure number (no units - show) and $-1 \leq \rho(X, Y) \leq 1$.
- $\rho(X, Y)=\rho(Y, X)=\rho(a X+c, Y)$. (explain in words, noting that $s d(X)=s d(a X+c))$
- ρ measures how tightly clustered the points in a scatterplot are around an upward or downward sloping line. (note discontinuity at flat or vertical line.) ρ is NOT a reliable measure of slope. Rather, it is a measure of how reliably one can predict Y if you know X, and vice versa.
- Important: Suppose there is a causal relationship between a dependent variable Y and an independent variable X, of the form $y_{i}=a+b x_{i}+$ random error ${ }_{i}$. The correlation between X and Y can differ markedly in different samples, depending on the standard deviations of X and Y in a given sample. Three illustrations:
i. correlation between lifeexp and $\ln 2 \mathrm{gdp}$ after dropping gdp values one sd from the mean,
ii. Predicting graduate school performance from GREs of grad students,
iii. Achen's example.

[^0]: ${ }^{1}$ Notes by James D. Fearon, Dept. of Political Science, Stanford University, October 2001.

