Lab #9
Physics 91SI Spring 2014

Objective: This lab is designed to give you practice writing simple regular expressions and
using them in Python scripts.

As usual, log on to corn and clone over the starter repository:
hg clone /afs/ir.stanford.edu/class/physics91si/src/lab9 lab9

Remember to hg commit often to save your changes, and submit your code at the end of the
lab.

Part 1: Regex Exercises

Use website: http://www.regexr.com/ for testing Regex. Start by entering some text in the “Text”
tab. You can then write a regex in the top window, and the matches will appear highlighted.

To warm up, write regexes to match the following patterns:

An email address, i.e. someone@somewhere.com

A URL (http://www.website.com/page or similar)

A name listed as lastname, firstname with the first letter of each capitalized
A phone number, in the format of your choice

A data in MM/DD/YY format (be careful about what values are permitted!)

You don’t have to do all of these, but do enough so that you feel comfortable with regex syntax.
For each example above, write down its corresponding regex in the file partl.txt, with each
regex preceded by a 1-line description of what it does - you’ll submit this file with the rest of the
lab.

Part 2: Working with Groups

The files people.txt and people-long.txt contain lists of names, email addresses, and
phone numbers in a consistent format; open one in a text editor to see what you’re dealing with.
Your task is to write a regular expression that allows you to selectively extract fields of interest
while ignoring any extraneous information (like white spaces, formatting, etc.).

To do this, you'll want to create groups inside your regex using the (pattern) notation.
Alternatively, you can name your groups with the syntax (?P<name>pattern), which will assign
each matched pattern a name. You can then extract the groups as a Python dictionary using
m.groupdict().


http://www.google.com/url?q=http%3A%2F%2Fwww.regexr.com%2F&sa=D&sntz=1&usg=AFQjCNHZq9dZdfLRvTw7EvxUb1V-j8Z1Lg
mailto:someone@somewhere.com
http://www.google.com/url?q=http%3A%2F%2Fwww.website.com%2Fpage&sa=D&sntz=1&usg=AFQjCNF3T1UXrJ8dRokcQK9DQWPKhmmRIw

Use http://www.regexr.com/ to prototype your regex, using a few sample lines from people.txt to
test. Then, modify the starter code in contacts.py to extract the full name and email address of
each person and print them in the following format:

John Doe: username@domain.com

Once you have this working, augment your code so that it prints them in alphabetical order (by
first name). Hint: if you have a list of tuples, the built in sorted() and List.sort() functions
will sort by the first element.

Part 3: Parsing a Dictionary

Do you remember writing 1language. py in lab 4 and how annoying it was to check if a word was
valid? Your task now is to rewrite load_model() using regular expressions to find valid words.
You'll need the same code to add them to the dictionary, but you can use re.findall() or
re.finditer() to more easily scan the file and remove punctuation.

To grab your copy of language.py and bring it over to lab 9, you'll need to first submit lab 4 (don’t
worry if you haven't finished it). Then go back to the lab 9 directory and run python init.py to
automatically copy over language.py from your submission and add it to the repo. (init.py is a
Python script that runs some shell commands - take a look at it if you’re interested)

Once you've rewritten load_model(), go ahead and add some more regex goodness to your
program. Some ideas:
e Search the dictionary for hyphenated words
e Build a dictionary of hamlet.txt and compile a list of the characters (they’re in all caps)
e Compile a dictionary of only those words found at the beginning of a sentence, or
preceding a semicolon, or other contextual filter

Also, if you're feeling gutsy, there’s a way to make load_model() even more elegant. The
Python standard library provides a Counter class designed for counting occurrences - exactly
what you’re doing with the language model. Look up the documentation, and access the class by
adding from collections import Counter to the top of your .py file. Note that it takes a list -
exactly what you get from re.findall()!


http://www.google.com/url?q=http%3A%2F%2Fwww.regexr.com%2F&sa=D&sntz=1&usg=AFQjCNHZq9dZdfLRvTw7EvxUb1V-j8Z1Lg

