Lab #5
Physics 91SI Spring 2014

Objective: This lab will introduce you to the Python debugger (pdb) and how to go about testing
your code.

As usual, log on to corn and clone over the starter repository:
hg clone /afs/ir.stanford.edu/class/physics91si/src/lab5 lab5s

Remember to hg commit often to save your changes. When you're done, please hg push your
work to the 1ab5 submissions repo.

Part 1: Basic pdb examples

Have a look at the short script debug. py. It contains 4 functions which are supposed to perform
simple operations — look at the source code or use help(function_name) to figure out what
they’re supposed to do. All of these functions are buggy, and your task is to use the
command-line debugger pdb to find these bugs and squish them. You can start pdb by typing:

python -m pdb <script_name>.py [arguments]

You should be able to find all the bugs by stepping through the code and observing variable
names and execution flow. You will need to implement actual function calls to the buggy
functions from main () before you try to run the debugger.

Part 2: Basic Testing Examples

In the starter repository, you should find a script called quadratic.py. In thisis a find_roots()
function that returns the 2 roots of a quadratic equation of the form ax?> + bx + ¢ = 0. It’s
designed to be run from the command line, with a, b, and c given as arguments. For example,
python quadratic.py 1 2 -15
should print both roots of 1x> + 2x — 15 = 0. You can also use import quadratic from the
interpreter to access specific functions. For example:
rootl , root2 = quadratic.find_roots(1, 2, -15)
will perform the same computation as above.

There’s also afile, test_quadratic.py, which imports quadratic as a module and provides
access to its functions (i.e. quadratic.find_roots(a,b,c)). The code describes how to write
a single test, i.e give the a, b, and ¢ of a known quadratic equation and compare the output to
what you know to be the roots of that equation. The example in test_quadratic.py gives (1, 2



,-15) as (a, b, c) and expects to get x = -3 and x = 5 as the roots.

In this file, write several more tests that try to cover all edge cases. For example, test the
find_roots function with quadratic equations with non-integer roots (like 2.5 and 3.3), or with b
or c equal to zero. WARNING: do not attempt to test quadratic equations with a = 0 or imaginary
roots, as the function is not designed for this, and this relates back to the “Don’t go overboard”
principle of accounting for edge cases.

There are 4 types of errors in quadratic.py, run your test script and see what tests fail. Then
go into pdb by typing

python -m pdb test quadratic.py
and step into each call to find_roots() to try to find the errors. One of the errors only exists
when you run quadratic.py as a stand-alone script, where you use command-line input, so try
finding that by running

python -m pdb quadratic.py 1 2 -15
Continually search for the errors, correct them in quadratic.py, re-run your test script, and
repeat, until quadratic.py passes all tests.

Part 3: Testing Your Analysis.py Module

In this part of the lab, we’re going to ask you to test the functions you wrote in analysis.py as
part of Lab #3. We’ve provided a script that will copy over your submitted copy of analysis.py and
add it to the current repository. All you need to do is:

1. If you haven’t already, submit your lab 3 in the usual manner (even if it's not done).

2. Run init.py in the the lab 5 directory (./init.py).

This is an example of when your program is designed to work with a data file, and obviously the
data files you had last week were extremely long (otherwise you probably wouldn’t need a
computer to tell you the index of the max value). So you can’t look through the data files and find
the index of the max y index and then use that to check that your functions return the correct
answer.

What you’ll want to do is write several of your own short data files (in the same format as the old
ones!) and then add your tests to the test script we set up for you (named test_analysis.py),
which imports analysis and then will run the functions you wrote on each of those short data
files and check to make sure the outputs are correct. As an example, we give you one new,
short data file named testdatal.dat.

Write some more short data files of your own, and try to change up the data so as to target any
edge cases you could think of, such as the max y value being on the first or last line of the file.
You can also try giving bad xmin and xmax values to your find_peak function, such as xmin
greater than xmax. What should the function do in these cases?



Write in your tests and then run the test script and fix any errors you find until your code passes
all of your tests.



