
Lab	
  #4 

Physics	
  91SI	
  	
  Spring	
  2014 
 
Objective: This lab will introduce you to Python’s powerful built-in data types, particularly 
strings, lists, and dictionaries, and Python’s built-in functions, which allow common operations 
on these types to be expressed in a single line. 
 In Part 1, you will implement some common statistics functions on a data (i.e. a list of 
numbers). You’ll also get used to sorting lists. 
 Part 2 gives you practice working with dictionaries and strings, as well as string 
formatting. 
 In Part 3, you will write a few Python functions to perform common UNIX operations 
within the UNIX shell (using a pipe, your Python code will take stdin as its input). 
  
 
For this lab and the rest of the quarter, make liberal use of Python’s help(name) function, as 
well as the documentation at http://docs.python.org/library/. 
 
As always, cd to your physics91si folder and clone the starter code for this lab with 

hg	
  clone	
  /afs/ir.stanford.edu/class/physics91si/src/labN	
  labN 
Remember to hg	
  commit	
  often! When you’re done, submit in the usual way: 

hg	
  push	
  /afs/ir.stanford.edu/class/physics91si/submissions/yourname/labN 
 
Part	
  1:	
  Statistics 
 
While the last lab showed you how to write programs in the “conventional” way, using 
procedures familiar from C and Java, now we’re going to implement some similar methods the 
“Pythonic” way. In the stats.py file, you’ll find some starter code and a bunch of empty functions: 

● loadcsv 
● mean 
● stdev 
● median 
● mode 

Your first task is to implement the loadcsv() function, which loads a “comma-separated-value” 
(.csv) file and returns a list of numbers. A csv file is just a text file with fields separated by 
commas and line breaks, and is a common format for instrument output and basic spreadsheet 
data - look at sample.csv to get an idea of what you’re dealing with. In this case, the datafiles 
also have some comments, which are lines that start with the # character (just like in Python), 
and your function should print these out as it reads the file. 
 
With that working, now implement the mean, stdev, median, and mode methods - see the 
docstrings (in """triple	
  quotes""") for implementation details. While you can do each of 
these the “brute force” way, it’s much more efficient to use Python’s builtins, particularly len(), 



sum(), and sorted(): use help(function) in the interpreter or check 
http://docs.python.org/library/functions.html for documentation. With these, you can write mean 
and median in a single line!  
Mode is a bit harder — you might want to come back to this after working on Part 2 (if you do 
this, be sure to commit!). 
 
With all these functions written, use the included main method to print out stats on each .csv file 
(sample.csv and shots.csv). While testing, you can comment out lines that you haven’t yet 
implemented. Also, if you want to explore the data visually, uncomment the histogram(data) 
line. 
 
Bonus: If you have time, implement the find_files() function based on the docstring in the 
starter code. You’ll need to use the function os.listdir - read about it in the documentation. 
Then extend your main method so that it reads all the .csv files in the current directory and 
performs your analysis on each. 
 
 
Part	
  2:	
  Language 
 
The file language.py contains the skeleton of a program for exploring language models, in the 
same vein as the CS107 spellcheck assignment. You’ll need to implement the following 
functionality: 

● load_model 
● spellcheck 
● find_palindromes 

 
load_model()	
  should take the name of a text file and parse it, generating a dictionary that 
contains all unique words and the frequency with which they appear. In addition to file reading, 
you’ll need to implement some string processing to convert words to lowercase, remove 
punctuation, and skip words that have non-alphabetic characters in them (i.e. "test123" should 
be ignored, but "Hello!" will be registered as "hello"). Test this on the .txt files in the 
starter repo. 
 
spellcheck() will check a word and print a message depending on whether it is in the 
dictionary you provide. This is little more than an if statement, but we encourage you to play with 
Python’s string formatting (%) operator to make your output pretty. (If you have time, you can try 
to create an editdistance() function (Google “Levenshtein distance”) and use it to check if a 
given word is a misspelling of a different word.) 
 
Finally, find_palindromes() should search the dictionary for all palindromes and print the top 
5, by frequency. A palindrome is a word that is the same backwards - for example, “bob” is a 
palindrome, but “palindrome” is not. Don’t forget Python’s builtins here! sorted() and array 
slicing (i.e. a[:n]) may be useful here. Also note that sorted() works on a list of tuples, sorting 



by the first element. 
 
You’re free to put whatever you like in main(), and run your code as a module (import	
  
language) or from the command line. 
 
You’re done! The last part is optional, but fun - take a look at it if you have time. In the 
meantime, submit your code with the usual hg	
  push. 
 
 
Part	
  3	
  (Challenge):	
  Command-­‐Line	
  Tools 
 
Remember pipes? Well, it turns out that Python makes it very easy to write command-line 
utilities that work just like any other UNIX program. A pipe connects to the stdin of the program 
on the right, and you can access this stream from sys.stdin in Python. Starting with the 
skeleton code in filter.py, write a useful program that parses the output from some other 
UNIX utility and manipulates it in some way. Some ideas, in rough order of difficulty: 

● Use the output of ps	
  -­‐af to find heavy CPU users, and print what program they are 
using 

● Parse the output of who to find people you know (match a user list) 
● Manipulate the output of ls	
  -­‐alR to find a file buried in a subdirectory, and extract the 

relative path 
 
Once your program is set up to read stdin, you can use it as follows: 

 unixcommand	
  -­‐flags	
  |	
  python	
  filter.py 
or 

 python	
  filter.py	
  <	
  inputfile 
 
If you come up with something clever, cp it over to the physics91si/submissions/dropbox 
folder to share it with the class! 
 


