
Lab	 #3

Physics	 91SI	 	 Spring	 2013

Objective: This lab will introduce you to the basics of the Python programming language, using
short programs that you will run from the command line and in the interpreter. Today we’ll
explore both of the major applications of scientific computing: computer modeling and data
analysis.

Parts 1 and 3 help you write programs to calculate and display approximations to two
common mathematical constants, ϕ(the Golden Ratio) and pi. These programs serve as an
introduction to the techniques used in computer modeling.

In part 2, you will explore the data analysis side of computing. You will also practice
using Python’s interactive mode, as well as producing plots of your results.

In part 4, you will submit your code for the day.

As usual, log in to corn.stanford.edu, with X-forwarding enabled (ssh	 -‐X). We’ve prepared
some starter code for this lab, which has the required “skeleton” of a Python program and
implements a couple of the trickier functions. In parts 1–3, you’ll open the starter files and write
the code for the functions that have been left blank. To get started, go to your physics91si
directory and clone the starter repository:

hg	 clone	 /afs/ir.stanford.edu/class/physics91si/src/lab3	 lab3

Remember to hg	 commit often to save your changes!

Part	 1:	 The	 Fibonacci	 Sequence	 and	 Calculating	 the	 Golden	 Ratio

The Fibonacci sequence is defined by fn!1 = fn + fn-‐1, giving the sequence:

	 0	 1	 1	 2	 3	 5	 8	 13	 21	 34	 55	 89	 144	 233	 377	 ...
The ratio of successive elements converges to ϕ = (1 + 5)/2 ≈ 1.61803, the famous “golden
ratio.”

Your program will take one command-line argument n, a positive integer representing the
number of elements to compute; the starter code has already been written to handle this. Your
program should compute the first n elements of the Fibonacci sequence and print them to the
terminal, one per line. Afterwards, your program should print out the ratio of the last two
elements fn/fn-‐1 ≈ ϕ.

Go ahead and open the starter code in fib.py. In it, write code in the the main() function to
accomplish the above tasks. Test your program by choosing a number and running it like a
UNIX command from the command line, either:

python	 fib.py	 <number>	 	 	 or ./fib.py	 <number>

Part	 2:	 Modules:	 Data	 Analysis	 and	 Plotting

From within your lab3 directory, run python and type import	 analysis. Now you can now
access the functions in analysis.py by typing e.g. analysis.load(). You can type
help(analysis) for a list of available functions. (We have documented our code in such a way
that Python lets you access it through this command.)

If you look at analysis.py, you’ll notice that most of the functions operate on and return “data,”
which is a list of tuples (x, y) that represent data points. (We’ll talk more about these types on
Thursday, but for now you can treat this like an array of length-2 arrays in Java or C++.)
Working in the interpreter, load the data from the file data1.dat and plot it using the functions
in analysis.py.

After plotting, quit the interpreter. Now analyze the data by completing these tasks:

1. Open analysis.py in a text editor and notice that the max_y_index() function is left
blank. In it, write code to iterate over data and return the index of the maximum y value
(this is more useful than the built-in max(), which just gives us the value).

2. Note that the find_peak() function is also blank. In it, write code to take data and two
floats, xmin and xmax, and return the index of the maximum y value on that interval.
Your function should work even if xmin and xmax don’t match the data points exactly.

3. With these functions written, use the included plot() and label() functions to make
annotated plots of the points in data1.dat and data2.dat. You can save each by
clicking the save icon that appears in the plot window. Save each plot as a .png image,
and use hg	 add and hg	 commit to add them to your repository.

Part	 3:	 Calculating	 Pi

Now for something a little more interesting. We calculated ϕ- now we’ll calculate π using what’s
known as a “Monte Carlo” method. Instead of calculating π analytically from the limit of a series
or an integral, a Monte Carlo method finds a fast approximation using random numbers and, in
this case, the area of a circle. Here’s one way to do it:

1. Take a large number of points (x,y), where x, y ϵ [0,1].
2. Count the number of points that fall inside the unit circle in this quadrant, i.e. the points

where x2 + y2 ≤ 1.
3. Divide this by the total number of points to approximate the area of this segment =π/4.

Open pi-‐monte.py. In it, write a python program that takes, as before, the number of points to
use and prints out an approximation to π. To generate a random number between 0 and 1, use
x	 =	 np.random.random() - we’ll talk more about this numpy package in Week 4. When you are
confident in your implementation, try running with a large N, and see how close you can get!

Part	 4:	 Submitting	 your	 code

As always, you’ll be using Mercurial to submit code. We’ve already set up submission
repositories for each lab in the course directory. All you need to do now is “push” your work to
this repository. cd to the lab directory (you need to be inside it) and commit any changes. Then
use the following command:

hg	 push	 /afs/ir.stanford.edu/class/physics91si/submissions/yoursuid/lab3
or

hg	 push	 $SICDIR/submissions/yoursuid/lab3	 (if you set the environment variable in lab 2)

