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Physics	  91SI	  	  Spring	  2013 
 
Objective: This lab will introduce you to the basics of the Python programming language, using 
short programs that you will run from the command line and in the interpreter. Today we’ll 
explore both of the major applications of scientific computing: computer modeling and data 
analysis. 

Parts 1 and 3 help you write programs to calculate and display approximations to two 
common mathematical constants, ϕ(the Golden Ratio) and pi. These programs serve as an 
introduction to the techniques used in computer modeling. 

In part 2, you will explore the data analysis side of computing. You will also practice 
using Python’s interactive mode, as well as producing plots of your results. 

In part 4, you will submit your code for the day. 
 
As usual, log in to corn.stanford.edu, with X-forwarding enabled (ssh	  -‐X). We’ve prepared 
some starter code for this lab, which has the required “skeleton” of a Python program and 
implements a couple of the trickier functions. In parts 1–3, you’ll open the starter files and write 
the code for the functions that have been left blank. To get started, go to your physics91si 
directory and clone the starter repository:  
 

hg	  clone	  /afs/ir.stanford.edu/class/physics91si/src/lab3	  lab3 
 
Remember to hg	  commit often to save your changes! 
 
Part	  1:	  The	  Fibonacci	  Sequence	  and	  Calculating	  the	  Golden	  Ratio 
 
The Fibonacci sequence is defined by fn!1 = fn + fn-‐1, giving the sequence: 

	  0	  1	  1	  2	  3	  5	  8	  13	  21	  34	  55	  89	  144	  233	  377	  ... 
The ratio of successive elements converges to ϕ = (1 + 5)/2 ≈ 1.61803, the famous “golden 
ratio.” 
 
Your program will take one command-line argument n, a positive integer representing the 
number of elements to compute; the starter code has already been written to handle this. Your 
program should compute the first n elements of the Fibonacci sequence and print them to the 
terminal, one per line. Afterwards, your program should print out the ratio of the last two 
elements fn/fn-‐1 ≈ ϕ. 
 
Go ahead and open the starter code in fib.py. In it, write code in the the main() function to 
accomplish the above tasks. Test your program by choosing a number and running it like a 
UNIX command from the command line, either: 

python	  fib.py	  <number>	  	  	  or    ./fib.py	  <number> 
 



Part	  2:	  Modules:	  Data	  Analysis	  and	  Plotting 
 
From within your lab3 directory, run python and type import	  analysis. Now you can now 
access the functions in analysis.py by typing e.g. analysis.load(). You can type 
help(analysis) for a list of available functions. (We have documented our code in such a way 
that Python lets you access it through this command.) 
 
If you look at analysis.py, you’ll notice that most of the functions operate on and return “data,” 
which is a list of tuples (x, y) that represent data points. (We’ll talk more about these types on 
Thursday, but for now you can treat this like an array of length-2 arrays in Java or C++.) 
Working in the interpreter, load the data from the file data1.dat and plot it using the functions 
in analysis.py. 
 
After plotting, quit the interpreter. Now analyze the data by completing these tasks: 

1. Open analysis.py in a text editor and notice that the max_y_index() function is left 
blank. In it, write code to iterate over data and return the index of the maximum y value 
(this is more useful than the built-in max(), which just gives us the value).  

2. Note that the find_peak() function is also blank. In it, write code to take data and two 
floats, xmin and xmax, and return the index of the maximum y value on that interval. 
Your function should work even if xmin and xmax don’t match the data points exactly. 

3. With these functions written, use the included plot() and label() functions to make 
annotated plots of the points in data1.dat and data2.dat. You can save each by 
clicking the save icon that appears in the plot window. Save each plot as a .png image, 
and use hg	  add and hg	  commit to add them to your repository. 

 
Part	  3:	  Calculating	  Pi 
 
Now for something a little more interesting. We calculated ϕ- now we’ll calculate π using what’s 
known as a “Monte Carlo” method. Instead of calculating π analytically from the limit of a series 
or an integral, a Monte Carlo method finds a fast approximation using random numbers and, in 
this case, the area of a circle. Here’s one way to do it: 

1. Take a large number of points (x,y), where x, y ϵ [0,1]. 
2. Count the number of points that fall inside the unit circle in this quadrant, i.e. the points 

where x2 + y2 ≤ 1. 
3. Divide this by the total number of points to approximate the area of this segment =π/4. 

 
Open pi-‐monte.py. In it, write a python program that takes, as before, the number of points to 
use and prints out an approximation to π. To generate a random number between 0 and 1, use 
x	  =	  np.random.random() - we’ll talk more about this numpy package in Week 4. When you are 
confident in your implementation, try running with a large N, and see how close you can get! 
 
Part	  4:	  Submitting	  your	  code 



 
As always, you’ll be using Mercurial to submit code. We’ve already set up submission 
repositories for each lab in the course directory. All you need to do now is “push” your work to 
this repository. cd to the lab directory (you need to be inside it) and commit any changes. Then 
use the following command: 
 

hg	  push	  /afs/ir.stanford.edu/class/physics91si/submissions/yoursuid/lab3 
or 

hg	  push	  $SICDIR/submissions/yoursuid/lab3	  (if you set the environment variable in lab 2) 


