## Randomized Block Coordinate and Stochastic (Sub-)Gradient Methods

Yinyu Ye Stanford University, MS&E and ICME

http://www.stanford.edu/~yyye

(Chapter 8)

## Block Coordinate Descent Method for Unconstrained Optimization I

$$\min_{\mathbf{x}\in R^N} \quad f(\mathbf{x}) = f((\mathbf{x}_1; \mathbf{x}_2, ...; \mathbf{x}_n)), \quad \text{where } \mathbf{x} = (\mathbf{x}_1; \mathbf{x}_2; ...; \mathbf{x}_n).$$

For presentation simplicity, we let each  $x_j$  be a scalar variable so that N = n.

Let  $f(\mathbf{x})$  be differentiable every where and satisfy the (first-order)  $\beta$ -Coordinate Lipschitz condition, that is, for any two vectors  $\mathbf{x}$  and  $\mathbf{d}$ 

$$\|\nabla_j f(\mathbf{x} + \mathbf{e}_j \cdot \ast \mathbf{d}) - \nabla_j f(\mathbf{x})\| \le \beta_j \|\mathbf{e}_j \cdot \ast \mathbf{d}\|$$
(1)

where  $e_j$  is the unit vector that  $e_j = 1$  and zero everywhere else, and .\* is the component-wise product. Cyclic Block Coordinate Descent (CBCD) Method (Gauss-Seidel):

$$\mathbf{x}_{1} \longleftarrow \arg\min_{\mathbf{x}_{1}} f(\mathbf{x}_{1}, \dots, \mathbf{x}_{n}),$$
$$\vdots$$
$$\mathbf{x}_{n} \longleftarrow \arg\min_{\mathbf{x}_{n}} f(\mathbf{x}_{1}, \dots, \mathbf{x}_{n}).$$

Aitken Double Sweep Method:

$$\mathbf{x}_{1} \longleftarrow \arg\min_{\mathbf{x}_{1}} f(\mathbf{x}_{1}, \dots, \mathbf{x}_{n}),$$

$$\vdots$$

$$\mathbf{x}_{n} \longleftarrow \arg\min_{\mathbf{x}_{n}} f(\mathbf{x}_{1}, \dots, \mathbf{x}_{n}),$$

$$\mathbf{x}_{n-1} \longleftarrow \arg\min_{\mathbf{x}_{n-1}} f(\mathbf{x}_{1}, \dots, \mathbf{x}_{n}),$$

$$\vdots$$

$$\mathbf{x}_{2} \longleftarrow \arg\min_{\mathbf{x}_{2}} f(\mathbf{x}_{1}, \dots, \mathbf{x}_{n}).$$

Gauss-Southwell Method:

• Compute the gradient vector  $\nabla f(\mathbf{x})$  and let  $i^* = \arg \max\{|\nabla f(\mathbf{x})_j|\}$ .

$$\mathbf{x}_{i^*} \longleftarrow \operatorname{arg\,min}_{\mathbf{x}_i} f(\mathbf{x}_1, \dots, \mathbf{x}_n).$$

**Block Coordinate Descent Method for Unconstrained Optimization II** 

Randomly-Permuted Cyclic Block Coordinate Descent (RCBCD) Method:

• Draw a random permutation  $\sigma = \{\sigma(1), \ldots, \sigma(n)\}$  of  $\{1, \ldots, n\}$ ;

$$\mathbf{x}_{\sigma(1)} \longleftarrow \arg\min_{\mathbf{x}_{\sigma(1)}} f(\mathbf{x}_1, \dots, \mathbf{x}_n),$$
$$\vdots$$
$$\mathbf{x}_{\sigma(n)} \longleftarrow \arg\min_{\mathbf{x}_{\sigma(n)}} f(\mathbf{x}_1, \dots, \mathbf{x}_n).$$

Randomized Block Coordinate Descent (RBCD) Method:

• Randomly choose  $i^* \in \{1, 2, ..., n\}$ .

$$\mathbf{x}_{i^*} \longleftarrow \operatorname{arg\,min}_{\mathbf{x}_{i^*}} f(\mathbf{x}_1, \dots, \mathbf{x}_n).$$

## **Convergence of the BCD Methods**

The following theorem gives some conditions under which the deterministic BCD method will generate a sequence of iterates that converge.

**Theorem 1** Let  $f: \mathbb{R}^n \to \mathbb{R}$  be given. For some given point  $x^0 \in \mathbb{R}^n$ , let the level set

 $X^0 = \{ \mathbf{x} \in R^n : f(\mathbf{x}) \le f(\mathbf{x}^0) \}$ 

be bounded. Assume further that f is continuously differentiable on the convex hull of  $X^0$ . Let  $\{\mathbf{x}^k\}$  be the sequence of points generated by the Cyclic Block Coordinate Descent Method initiated at  $\mathbf{x}^0$ . Then every accumulation point of  $\{\mathbf{x}^k\}$  is a stationary point of f.

For strictly convex quadratic minimization with Hessian Q, e.g., the linear convergence rate of Gauss-Southwell is

$$\left(1 - \frac{\lambda_{min}(Q)}{\lambda_{max}(Q)(n-1)}\right)^{n-1} \ge 1 - \frac{\lambda_{min}(Q)}{\lambda_{max}(Q)} \ge \left(\frac{\lambda_{max}(Q) - \lambda_{min}(Q)}{\lambda_{max}(Q) + \lambda_{min}(Q)}\right)^2.$$

## Worst-Case Convergnece Comparison of BCDs

There is a convex quadratic minimization problem of dimension n:

min  $\mathbf{x}^T Q \mathbf{x}$ , where for  $\gamma \in (0, 1)$ 

$$Q = \left(\begin{array}{ccccc} 1 & \gamma & \dots & \gamma \\ \gamma & 1 & \dots & \gamma \\ \dots & \dots & \dots & \dots \\ \gamma & \gamma & \dots & 1 \end{array}\right).$$

- CBCD is  $\frac{n}{2\pi^2}$  times slower than SDM;
- CBCD is  $\frac{n^2}{2\pi^2}$  times slower than RBCD (each iteratione consists of *n* random selections);
- CBCD is  $\frac{n(n+1)}{2\pi^2}$  times slower than RCBCD;

Randomization makes a difference.

### **Randomized Block Coordinate Gradient Descent Method**

At the kth Iteration of RBCGD:

• Randomly choose  $i^k \in \{1, 2, ..., n\}$ .

$$\mathbf{x}_{i^{k}}^{k+1} = \mathbf{x}_{i^{k}}^{k} - \frac{1}{\beta_{i^{k}}} \nabla_{i^{k}} f(\mathbf{x}^{k}),$$
$$\mathbf{x}_{i}^{k+1} = \mathbf{x}_{i^{k}}^{k}, \forall i \neq i^{k}.$$

**Theorem 2** (Expected Error Convergence Estimate Theorem) Let the objective function  $f(\mathbf{x})$  be convex and satisfy the (first-order)  $\beta$ -Coordinate Lipschitz condition, and admit a minimizer  $\mathbf{x}^*$ . Then

$$E_{\xi^{k}}[f(\mathbf{x}^{k+1})] - f(\mathbf{x}^{*}) \le \frac{n}{n+k+1} \left(\frac{1}{2} \|\mathbf{x}^{0} - \mathbf{x}^{*}\|_{\beta}^{2} + f(\mathbf{x}^{0}) - f(\mathbf{x}^{*})\right),$$

where random vector  $\xi_{k-1} = (i^0, i^1, ..., i^{k-1})$  and norm-square  $\|\mathbf{x}\|_{\beta}^2 = \sum_j \beta_j x_j^2$ .

Proof: Denote by  $\delta^k = f(\mathbf{x}^k) - f(\mathbf{x}^*)$ ,  $\Delta^k = \mathbf{x}^k - \mathbf{x}^*$ , and  $(r^k)^2 = \|\mathbf{x}^k - \mathbf{x}^*\|_{\beta}^2 = \sum_j \beta_j (x_j^k - x_j^*)^2.$ 

Then, from the RBCGD iteration

$$(r^{k+1})^2 = (r^k)^2 - 2\nabla_{i^k} f(\mathbf{x}^k) (x_{i^k}^k - x_{i^k}^*) + \frac{1}{\beta_{i^k}} (\nabla_{i^k} f(\mathbf{x}^k))^2.$$

It follows from the  $\beta$ -Coordinate Lipschitz condition,

$$f(\mathbf{x}^{k+1}) - f(\mathbf{x}^{k}) \leq \nabla_{i^{k}} f(\mathbf{x}^{k}) (x_{i^{k}}^{k+1} - x_{i^{k}}^{k}) + \frac{1}{2\beta_{i^{k}}} (\nabla_{i^{k}} f(\mathbf{x}^{k}))^{2}$$
$$= \frac{-1}{2\beta_{i^{k}}} (\nabla_{i^{k}} f(\mathbf{x}^{k}))^{2}.$$

Combining the two inequalities, we have

$$(r^{k+1})^2 \le (r^k)^2 - 2\nabla_{i^k} f(\mathbf{x}^k) (x_{i^k}^k - x_{i^k}^*) + 2(f(\mathbf{x}^k) - f(\mathbf{x}^{k+1})).$$

Dividing both sides by 2 and taking expectation with respect to  $i^k$  yields

$$E_{i^{k}}\left[\frac{1}{2}(r^{k+1})^{2}\right] \leq \frac{1}{2}(r^{k})^{2} - \frac{1}{n}\nabla f(\mathbf{x}^{k})^{T}(\mathbf{x}^{k} - \mathbf{x}^{*}) + f(\mathbf{x}^{k}) - E_{i^{k}}[f(\mathbf{x}^{k+1})],$$

which together with convexity assumption  $\nabla f(\mathbf{x}^k)^T(\mathbf{x}^* - \mathbf{x}^k) \leq f(\mathbf{x}^*) - f(\mathbf{x}^k)$  gives

$$E_{i^{k}}\left[\frac{1}{2}(r^{k+1})^{2}\right] \leq \frac{1}{2}(r^{k})^{2} + \frac{1}{n}f(\mathbf{x}^{*}) + \frac{n-1}{n}f(\mathbf{x}^{k}) - E_{i^{k}}[f(\mathbf{x}^{k+1})],$$

Rearranging gives, for each  $k \ge 0$ ,

$$E_{i^k}[\frac{1}{2}(r^{k+1})^2 + \delta^{k+1}] \le \left(\frac{1}{2}(r^k)^2 + \delta^k\right) - \frac{1}{n}\delta^k.$$

Taking expectation with respect to  $\xi^{k-1}$  on both sides

$$E_{\xi^{k}}[\frac{1}{2}(r^{k+1})^{2} + \delta^{k+1}] \leq E_{\xi^{k-1}}[\frac{1}{2}(r^{k})^{2} + \delta^{k}] - \frac{1}{n}E_{\xi^{k-1}}[\delta^{k}]$$
$$= E_{\xi^{k}}[\frac{1}{2}(r^{k})^{2} + \delta^{k}] - \frac{1}{n}E_{\xi^{k}}[\delta^{k}].$$

Recursively applying the inequalities from and noting that  $E_{\xi^k}[f(\mathbf{x}^{k+1})]$  is monotonically decreasing

$$E_{\xi^{k}}[\delta^{k+1}] \leq E_{\xi^{k}}[\frac{1}{2}(r^{k+1})^{2} + \delta^{k+1}]$$
  
$$\leq (\frac{1}{2}(r^{0})^{2} + \delta^{0}) - \frac{1}{n}\sum_{j=0}^{k} E_{\xi^{k}}[\delta^{j}]$$
  
$$\leq (\frac{1}{2}(r^{0})^{2} + \delta^{0}) - \frac{k+1}{n}E_{\xi^{k}}[\delta^{k+1}]$$

which leads to the desired result.

(2)

### **Stochastic-Gradient-Method for Minimizing a Large-Sum of Functions**

In many applications, the objective value is partially determined by decision makers and partially determined by "Nature".

$$\begin{array}{ll} (OPT) & \min_{\mathbf{x}} & f(\mathbf{x}, \omega) \\ & \text{s.t.} & \mathbf{c}(\mathbf{x}, \omega) \in K \subset R^m, \end{array}$$

where  $\omega$  represents uncertain data and  $\mathbf{x} \in \mathbb{R}^n$  is the decision vector, and K is a constraint set.

For deterministic optimization, we assume  $\xi$  is known and fixed. In reality, we may have

- the (exact) probability distribution  $\xi$  of data  $\omega$ .
- the sample distribution and/or few moments of data  $\omega$ .
- knowledge of  $\omega$  belonging to a given uncertain set U.

In the following we consider the unconstrained case.

 $\min_{\mathbf{x}} \quad F(\mathbf{x}) := \mathsf{E}_{\xi}[f(\mathbf{x}, \omega)].$ 

Large-Sum of Functions – Sample Average Approximation (SAA):

min<sub>**x**</sub> 
$$F_M(\mathbf{x}) := \frac{1}{M} \sum_{i=1}^M f(\mathbf{x}, \omega^i).$$

Two Approaches:

• Sample-First and Iterate-Second, in particular, SAA: collect enough examples then search a solution of an approximated deterministic optimization problem. The computation of the gradient vector:

$$abla F_M(\mathbf{x}) = rac{1}{M} \sum_{i=1}^M 
abla f(\mathbf{x}, \omega^i) \quad \text{and} \quad \mathbf{x}^{k+1} = \mathbf{x}^k - \alpha^k 
abla F_M(\mathbf{x}^k).$$

• Sample and Iterate Concurrently – SGD: collect a sample set  $S^k$  of few samples of  $\omega$  at iteration k:

$$\hat{\mathbf{g}}^k = \frac{1}{|S^k|} \sum_{i \in S^k} \nabla f(\mathbf{x}^k, \omega^i) \text{ and } \mathbf{x}^{k+1} = \mathbf{x}^k - \alpha^k \hat{\mathbf{g}}^k.$$

Key Questions: how many samples are sufficient for an  $\epsilon$  approximate solution to the original stochastic optimization problem. This is the information/sample complexity issue in optimization.

#### Information Complexity and Sample Size in SAA

• In SAA, the required number of samples, M, should be larger than the dimension of decision vector and should grow polynomially with the increase of dimensionality. In specific, let  $\mathbf{x}^{SAA}$  be the optimal solution from the SAA method. Then to ensure probability

$$P[F(\mathbf{x}^{SAA}) - F(\mathbf{x}^*) \le \epsilon] \ge 1 - \alpha,$$
$$M = O(\frac{1}{\epsilon^2})(n\ln(\frac{1}{\epsilon}) + \ln(\frac{1}{\alpha})).$$

• If  $\mathbf{x}^*$  is sparse or it can be approximated by a sparse solution with cardinality  $p \ll n$ , then by adding a regulative penalty function into the objective

$$\min_{\mathbf{x}} \quad \frac{1}{M} \sum_{i=1}^{M} f(\mathbf{x}, \omega^{i}) + P(\mathbf{x}),$$

the sample size can be reduced to

$$M = O(\frac{1}{\epsilon^2})(\frac{p}{\epsilon}\ln^{1.5}(\frac{n}{\epsilon}) + \ln(\frac{1}{\alpha})); \quad \text{or in convex case: } M = O(\frac{1}{\epsilon^2})(p\ln(\frac{n}{\epsilon}) + \ln(\frac{1}{\alpha})).$$

#### SGD and its Advantages

Apply SGD with one  $\omega^k$  sampled uniformly at iteration k:

$$\hat{\mathbf{g}}^k = \nabla f(\mathbf{x}^k, \omega^k)$$
 and  $\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha^k \hat{\mathbf{g}}^k$ .

• Works with the step size rule:

$$\alpha^k \to 0 \quad \text{and} \quad \left(\sum_{k=0}^{\infty} \alpha^k\right) \to \infty \quad (\text{e.g.}, \, \alpha_k = O(k^{-1})).$$

- A great technology to potentially reduce the computation complexity need fewer samples at the beginning.
- Potentially only select important and sensitive samples learn where to sample.
- Dynamically incorporate new empirical observations to tune-up the probability distribution.

## Variance Reduction in Stochastic Algorithm Design

- The VR technique has been used extensively in the design of fast stochastic methods for solving large–scale optimization problems in machine learning.
- High Level Idea: Reduce the variance of an estimate X by using another estimate Y with known expectation.
- Specifically, consider  $Z_{\alpha} = \alpha(X Y) + \mathsf{E}[Y]$ .
  - $\operatorname{E}[Z_{\alpha}] = \alpha \cdot \operatorname{E}[X] + (1 \alpha) \cdot \operatorname{E}[Y]$

$$-\operatorname{var}(Z_{\alpha}) = \mathsf{E}\left[\left(Z_{\alpha} - \mathsf{E}[Z_{\alpha}]\right)^{2}\right] = \alpha^{2}\left[\operatorname{var}(X) + \operatorname{var}(Y) - 2\operatorname{cov}(X,Y)\right]$$

- When  $\alpha = 1$ , we have  $E[Z_{\alpha}] = E[X]$ , which is useful for establishing concentration bounds.
- When  $\alpha < 1$ ,  $Z_{\alpha}$  will potentially have a smaller variance than X, but we no longer have  $E[Z_{\alpha}] = E[X]$ . (In what follows, we let  $\alpha = 1$ .)
- Overall, variance reduction occur if cov(X, Y) > 0.

#### VR Illustration: Finite–Sum Minimization I

• Consider the following so-called finite-sum minimization problem:

$$\min_{\mathbf{x}} \left\{ F(\mathbf{x}) = \frac{1}{M} \sum_{i=1}^{M} f_i(\mathbf{x}) \right\}.$$
 (3)

Here,  $f_1, \ldots, f_M$  are smooth (convex) loss functions and M is huge so that the computation of  $\nabla F(\cdot)$  is costly.

- Examples
  - Linear regression:  $f_i(\mathbf{x}) = (\mathbf{a}_i^T \mathbf{x} b_i)^2$
  - Logistic regression:  $f_i(\mathbf{x}) = \ln \left(1 + \exp \left(b_i \mathbf{a}_i^T \mathbf{x}\right)\right)$
- Stochastic Gradient Descent (SGD): choose  $i_k$  from  $\{1, ..., M\}$  uniformly at random and let

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha^k \nabla f_{i_k}(\mathbf{x}^k).$$

– We have  $E\left[\nabla f_{i_k}(\mathbf{x}^k)\right] = \nabla F(\mathbf{x}^k)$ , but variance of the estimate can be large.

– To guarantee convergence, we generally need diminishing step sizes (e.g.,  $\alpha_k = O(k^{-1})$ ).

#### VR Illustration: Finite–Sum Minimization II

- Now let  $X = \nabla f_{i_k}(\mathbf{x}^k)$  for estimating  $\nabla F(\mathbf{x}^k)$ . What Y should we use to reduce the variance of the estimate?
  - Try  $Y = \nabla f_{i_k}(\tilde{\mathbf{x}}^k)$  for some fixed  $\tilde{\mathbf{x}}^k$ .
  - Note that  $\mathsf{E}[Y] = \nabla F(\tilde{\mathbf{x}}^k)$ .
- Now, form  $Z = X Y + \mathsf{E}[Y] = \nabla f_{i_k}(\mathbf{x}^k) \nabla f_{i_k}(\tilde{\mathbf{x}}^k) + \nabla F(\tilde{\mathbf{x}}^k)$  and set

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha_k \left( \nabla f_{i_k}(\mathbf{x}^k) - \nabla f_{i_k}(\tilde{\mathbf{x}}^k) + \nabla F(\tilde{\mathbf{x}}^k) \right).$$

- Since the computation of \(\nabla F(\tilde{\mathbf{x}}^k)\) is costly, we don't want to update \(\tilde{\mathbf{x}}^k\) too often but only once for a while.
- This is the core idea behind the stochastic variance–reduced gradient (SVRG) method, which has generated much recent research; see *Accelerating Stochastic Gradient Descent Using Predictive Variance Reduction*, NIPS 2013.

# VR Illustration: Finite–Sum Minimization III

- One choice is to update  $\tilde{\mathbf{x}}$  at a uniform (or geometric) pace, that is, when k = rK (or  $k = 2^r$ ) for a nonnegative integer r, we let  $\tilde{\mathbf{x}}^k = \mathbf{x}^k$  and it remains unchanged from iteration k to k + K (or 2k).
- Thus, from iteration 1 to k,  $\tilde{\mathbf{x}}^k$  is updated, or  $\nabla F(\tilde{\mathbf{x}}^k)$  is computed, only k/K (or  $\log(k)$ ) times.
- Moreover, most likely  $cov(\mathbf{x}^k, \tilde{\mathbf{x}}^k) > 0$  during the iteration period k to k + K, since both  $\mathbf{x}^k$  and  $\tilde{\mathbf{x}}^k$  converge to the same limit solution.

## VR Illustration: Finite–Sum Minimization IV

• The VR-SGD method can be shown to converge linearly when F satisfies the so-called error bound condition: there exists a  $\tau > 0$  such that

$$\operatorname{dist}(\mathbf{x}, \mathcal{X}^*) \le \tau \|\nabla F(\mathbf{x})\|_2 \quad \text{for all } \mathbf{x}, \tag{4}$$

where  $\mathcal{X}^*$  is the set of optimal solutions.

- If *F* is strongly convex, then it satisfies 4. However, the converse need not hold; for details, see *Non-Asymptotic Convergence Analysis of Inexact Gradient Methods for Machine Learning Without Strong Convexity*. Optim. Methods Softw. 32(4): 963–992, 2017.
- Extensions of the VR-SGD method to the case where F is non-convex have been proposed and analyzed in *Stochastic Variance Reduction for Nonconvex Optimization*. ICML 2016, and *Variance Reduction for Faster Nonconvex Optimization*. ICML 2016.

#### Case 1: Variance Reduction in Stochastic Value Iteration for MDP

Let  $y \in \mathbb{R}^m$  represent the cost-to-go values of the m states, ith entry for ith state, of a given policy. The MDP problem entails choosing the fixed-point value vector  $y^*$  such that it satisfies:

$$y_i^* = \min_{j \in \mathcal{A}_i} \{ c_j + \gamma \mathbf{p}_j^T \mathbf{y}^* \}, \, \forall i.$$

The Value-Iteration (VI) Method is, starting from any  $\mathbf{y}^0$ ,

$$y_i^{k+1} = \min_{j \in \mathcal{A}_i} \{ c_j + \gamma \mathbf{p}_j^T \mathbf{y}^k \}, \ \forall i.$$

If the initial  $\mathbf{y}^0$  is strictly feasible for state *i*, that is,  $y_i^0 < c_j + \gamma \mathbf{p}_j^T \mathbf{y}^0$ ,  $\forall j \in \mathcal{A}_i$ , then  $y_i^k$  would be increasing in the VI iteration for all *i* and *k*.

The computation work for state *i* at iteration *k*, is to compute  $\mathbf{p}_j^T \mathbf{y}^k = \mu_j(\mathbf{y}^k)$  for each  $j \in \mathcal{A}_i$ . This needs O(m) operations.

Could we approximate  $\mu_j(\mathbf{y}^k)$  by sampling?

# Motivations

- In many practical applications,  $\mathbf{p}_j$  is unknown so that we have to approximate the mean  $\mathbf{p}_j^T \mathbf{y}^k$  by stochastic sampling,
- Even we know  $\mathbf{p}_j$  exactly, it may be too dense so that the computation of  $\mathbf{p}_j^T \mathbf{y}^k$  takes up to O(m) operations so that we would rather estimate the mean by sampling which can be easily parallelized.
- Since randomization is introduced in the algorithm, the iterative solution sequence becomes a random sequence.
- One can analyze this performance using Hoeffdings inequality and classic results on contraction properties of value iteration. Moreover, we improve the final result using Variance Reduction and Monotone Iteration.
- Variance Reduction enables us to update the values so that the needed number of samples is decreased from iteration to iteration.

#### Variance Reduction in Stochastic Value Iteration for MDP

We carry out the VI iteration as:

$$y_i^{k+1} = \min_{j \in \mathcal{A}_i} \{ c_j + \gamma \mathbf{p}_j^T \tilde{\mathbf{y}}^k + \gamma \mathbf{p}_j^T (\mathbf{y}^k - \tilde{\mathbf{y}}^k) \}, \ \forall i,$$

where  $\tilde{\mathbf{y}}^k$  is updated at the geometric pace as before. Or compute once a while for a hash vector

$$\tilde{c}_j^k = c_j + \gamma \mathbf{p}_j^T \tilde{\mathbf{y}}^k, \ \forall j$$

and do

$$y_i^{k+1} = \min_{j \in \mathcal{A}_i} \{ \tilde{c}_j^k + \gamma \mathbf{p}_j^T (\mathbf{y}^k - \tilde{\mathbf{y}}^k) \}, \ \forall i.$$

Then we only need to approximate

$$\mathbf{p}_j^T(\mathbf{y}^k - \tilde{\mathbf{y}}^k) = \mu_j(\mathbf{y}^k - \tilde{\mathbf{y}}^k).$$

Since  $\mathbf{y}^* \geq \mathbf{y}^k \geq \tilde{\mathbf{y}}^k$  during the period of k to 2k and  $(\mathbf{y}^k - \tilde{\mathbf{y}}^k)$  monotonically converges to zero, the norm of  $(\mathbf{y}^k - \tilde{\mathbf{y}}^k)$  becomes smaller and smaller so that only a constant number of samples are needed to estimate the mean for desired accuracy, which leads to a geometrically convergent algorithm with high probability.

## **Near-Optimal Randomized Value-Iteration Result**

Few computation and sample complexity results based on Variance Reduction:

• Knowing  $\mathbf{p}_j$ :

$$O\left((mn + \frac{n}{(1-\gamma)^3})\log(\frac{1}{\epsilon})\log(\frac{1}{\delta})\right)$$

to compute an  $\epsilon$ -optimal policy with probability at least  $1-\delta.$ 

• Computation and sample complexity on the pure generative model:

$$O\left(\frac{n}{(1-\gamma)^3\epsilon^2}\log(\frac{1}{\delta})\right)$$

to compute an  $\epsilon$ -optimal policy with probability at least  $1 - \delta$ .

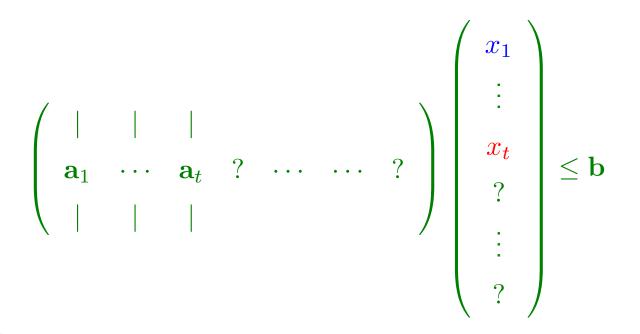
- Sample complexity lower bound:  $O\left(\frac{n}{(1-\gamma)^3\epsilon^2}\right)$ .
- The method is also extended to computing *ϵ*-optimal policies for finite-horizon MDP with a generative model and provide a nearly matching sample complexity lower bound.

S[ICML 2017] and [NIPS 2018].

# Case 2: Online Linear Programming (OLP) Problem

At time t=1,...,n,

 $r_1 x_1 + \cdots + r_t x_t + \cdots ? \cdots$ 



Decision:  $\boldsymbol{x_t} \in [0, 1]$ 

Previous decisions already made:  $x_1, \cdots, x_{t-1}$ 

Primal



|      |                                     | Dual |        |                                                           |
|------|-------------------------------------|------|--------|-----------------------------------------------------------|
| max  | $\mathbf{r}^{	op}\mathbf{x}$        |      | $\min$ | $\mathbf{b}^{	op}\mathbf{p} + \mathbf{e}^{	op}\mathbf{s}$ |
| s.t. | $A\mathbf{x} \leq \mathbf{b}$       |      | s.t.   | $A^{\top}\mathbf{p} + \mathbf{s} \ge \mathbf{r}$          |
|      | $0 \leq \mathbf{x} \leq \mathbf{e}$ |      |        | $\mathbf{p} \geq 0, \mathbf{s} \geq 0$                    |

where the decision variables are  $\mathbf{x} \in \mathcal{R}^n$  ,  $\mathbf{p} \in \mathcal{R}^m$  ,  $\mathbf{s} \in \mathcal{R}^n$ 

Denote the offline primal/dual optimal solution as  $\mathbf{x}^* \in \mathcal{R}^n, \mathbf{p}^*_n \in \mathcal{R}^m, \mathbf{s}^* \in \mathcal{R}^n$ 

LP duality/complementarity tells that for j = 1, ..., n,

$$x_j^* = \begin{cases} 1, & r_j > \mathbf{a}_j^\top \mathbf{p}_n^* \\ 0, & r_j < \mathbf{a}_j^\top \mathbf{p}_n^* \end{cases}$$

 $x_j^*$  may take a fractional value when  $r_j = \mathbf{a}_j^\top \mathbf{p}_n^*$ .

# Equivalent Form of the Dual Problem (I)

The dual objective is a large-sum of functions:

min 
$$\mathbf{b}^{\top}\mathbf{p} + \sum_{j=1}^{n} s_j$$
  
s.t.  $s_j \ge r_j - \mathbf{a}_j^{\top}\mathbf{p}, \ j = 1, ..., n$   
 $\mathbf{p}, \mathbf{s} \ge 0$ 

Equivalently, by removing  $s_j$ 's,

min 
$$\mathbf{b}^{\top}\mathbf{p} + \sum_{j=1}^{n} (r_j - \mathbf{a}_j^{\top}\mathbf{p})^+$$
  
s.t.  $\mathbf{p} \ge 0$ 

 $(\cdot)^+$  is the positive-part or ReLu function.

## Equivalent Form of the Dual Problem (II)

Normalize the objective, the large-sum functions become SAA:

$$\min_{\mathbf{p} \ge \mathbf{0}} f_n(\mathbf{p}) := \mathbf{d}^\top \mathbf{p} + \frac{1}{n} \sum_{j=1}^n \left( r_j - \mathbf{a}_j^\top \mathbf{p} \right)^+$$

We know

- The primal optimal solution is largely determined by the dual optimal  $\mathbf{p}_n^*$
- $\mathbf{p}_n^*$  is the optimal solution of the above sample average approximation

Implication for online LP when orders coming randomly:

• At time t, one can solve  $f_t(\mathbf{p})$  (based on all the observed samples) to obtain  $\mathbf{p}_t^*$  and decide  $x_t$ 

$$\min_{\mathbf{p} \ge \mathbf{0}} f_t(\mathbf{p}) := \mathbf{d}^\top \mathbf{p} + \frac{1}{t} \sum_{j=1}^t \left( r_j - \mathbf{a}_j^\top \mathbf{p} \right)^+$$

• Simply apply one step of Stochastic Sub-Gradient Projection Method to decide  $x_t$  and update  $\mathbf{p}$ .

## The Simple and Fast Iterative OLP Algorithm

Instead of finding the optimal  $\mathbf{p}_t^*$ , we perform stochastic sub-gradient descent based on the newly arrived order t in minimizing

$$\min_{\mathbf{p} \ge 0} f_t(\mathbf{p}) := \mathbf{d}^\top \mathbf{p} + \frac{1}{t} \sum_{j=1}^t \left( r_j - \mathbf{a}_j^\top \mathbf{p} \right)^+$$

At time t, the sub-gradient constructed from the new observation is

$$\nabla_{\mathbf{p}} \left( \mathbf{d}^{\top} \mathbf{p} + \left( r_t - \mathbf{a}_t^{\top} \mathbf{p} \right)^+ \right) \Big|_{\mathbf{p} = \mathbf{p}_t} = \mathbf{d} - \mathbf{a}_t I(r_t > \mathbf{a}_t^{\top} \mathbf{p}) \Big|_{\mathbf{p} = \mathbf{p}_t}$$
$$= \mathbf{d} - \mathbf{a}_t x_t$$

where  $\mathbf{p}_t$  is the current dual price vector at time t.

Simple Online (SO) Algorithm for Solving (Binary) Online LP I

- Input:  $\mathbf{d} = \mathbf{b}/n$  and initialize  $\mathbf{p}_1 = \mathbf{0}$
- $\bullet \ \ {\rm For} \ t=1,2,...,n \ {\rm do}$

$$x_t = \begin{cases} 1, & \text{if } r_t > \mathbf{a}_t^\top \mathbf{p}_t \\ 0, & \text{if } r_t \le \mathbf{a}_t^\top \mathbf{p}_t \end{cases}$$

• Then compute

$$\mathbf{p}_{t+1} = \mathbf{p}_t + \alpha_t \left( \mathbf{a}_t x_t - \mathbf{d} \right)$$
$$\mathbf{p}_{t+1} := \mathbf{p}_{t+1} \lor \mathbf{0}$$

• Return  $\mathbf{x} = (x_1, ..., x_n)$ 

This is Sample without Replacement Implementation of Stochastic Gradient Method with one Cycle only, where the primal decision is made "on the fly".

(fastOLP.m and fastOLPadap.m of Chapter 8)

# Simple Online (SO) Algorithm for Solving (Binary) Online LP II

- The algorithm is a first-order online algorithm and it does not involve any matrix inversion.
- It does not need even to store the data, the total number of operations is the number of nonzero entries of all input data.
- $\alpha_t$  is the step size and it is chosen to be  $\frac{1}{\sqrt{n}}$  (or  $\frac{1}{\sqrt{t}}$ ) in the following analyses
- The algorithm does not require any prior knowledge besides d, the average inventory vector.
- May add "adaptiveness" and/or "boosting" ideas to improve effectiveness
- May apply the Mirror-Descent and other first-order methods

The algorithm works for both the stochastic input model and the random permutation model following where the performance is guaranteed in expectation.