
MS&E314: Optimization in ML&DS Lecture Note #10

Randomized Block Coordinate and Stochastic (Sub-)Gradient Methods

Yinyu Ye

Stanford University, MS&E and ICME

http://www.stanford.edu/˜yyye

(Chapter 8)

1

MS&E314: Optimization in ML&DS Lecture Note #10

Block Coordinate Descent Method for Unconstrained Optimization I

min
x∈RN

f(x) = f((x1; x2, ...; xn)), where x = (x1; x2; ...; xn).

For presentation simplicity, we let each xj be a scalar variable so that N = n.

Let f(x) be differentiable every where and satisfy the (first-order) β-Coordinate Lipschitz condition, that

is, for any two vectors x and d

∥∇jf(x+ ej . ∗ d)−∇jf(x)∥ ≤ βj∥ej . ∗ d∥ (1)

where ej is the unit vector that ej = 1 and zero everywhere else, and .∗ is the component-wise product.

Cyclic Block Coordinate Descent (CBCD) Method (Gauss-Seidel):

x1 ←− argminx1 f(x1, . . . ,xn),
...

xn ←− argminxn f(x1, . . . ,xn).

2

MS&E314: Optimization in ML&DS Lecture Note #10

Aitken Double Sweep Method:

x1 ←− argminx1 f(x1, . . . ,xn),
...

xn ←− argminxn f(x1, . . . ,xn),

xn−1 ←− argminxn−1 f(x1, . . . ,xn),
...

x2 ←− argminx2 f(x1, . . . ,xn).

Gauss-Southwell Method:

• Compute the gradient vector∇f(x) and let i∗ = argmax{|∇f(x)j |}.

•
xi∗ ←− argminxi f(x1, . . . ,xn).

3

MS&E314: Optimization in ML&DS Lecture Note #10

Block Coordinate Descent Method for Unconstrained Optimization II

Randomly-Permuted Cyclic Block Coordinate Descent (RCBCD) Method:

• Draw a random permutation σ = {σ(1), . . . , σ(n)} of {1, . . . , n};

•
xσ(1) ←− argminxσ(1)

f(x1, . . . ,xn),
...

xσ(n) ←− argminxσ(n)
f(x1, . . . ,xn).

Randomized Block Coordinate Descent (RBCD) Method:

• Randomly choose i∗ ∈ {1, 2, ..., n}.

•
xi∗ ←− argminxi∗ f(x1, . . . ,xn).

4

MS&E314: Optimization in ML&DS Lecture Note #10

Convergence of the BCD Methods

The following theorem gives some conditions under which the deterministic BCD method will generate a

sequence of iterates that converge.

Theorem 1 Let f : Rn → R be given. For some given point x0 ∈ Rn, let the level set

X0 = {x ∈ Rn : f(x) ≤ f(x0)}

be bounded. Assume further that f is continuously differentiable on the convex hull of X0. Let {xk} be

the sequence of points generated by the Cyclic Block Coordinate Descent Method initiated at x0. Then

every accumulation point of {xk} is a stationary point of f .

For strictly convex quadratic minimization with Hessian Q, e.g., the linear convergence rate of

Gauss-Southwell is(
1− λmin(Q)

λmax(Q)(n− 1)

)n−1

≥ 1− λmin(Q)

λmax(Q)
≥
(
λmax(Q)− λmin(Q)

λmax(Q) + λmin(Q)

)2

.

5

MS&E314: Optimization in ML&DS Lecture Note #10

Worst-Case Convergnece Comparison of BCDs

There is a convex quadratic minimization problem of dimension n:

min xTQx, where for γ ∈ (0, 1)

Q =


1 γ ... γ

γ 1 ... γ

...

γ γ ... 1

 .

• CBCD is n
2π2 times slower than SDM;

• CBCD is n2

2π2 times slower than RBCD (each iteratione consists of n random selections);

• CBCD is n(n+1)
2π2 times slower than RCBCD;

Randomization makes a difference.

6

MS&E314: Optimization in ML&DS Lecture Note #10

Randomized Block Coordinate Gradient Descent Method

At the kth Iteration of RBCGD:

• Randomly choose ik ∈ {1, 2, ..., n}.

•
xk+1
ik

= xk
ik −

1
β
ik
∇ikf(x

k),

xk+1
i = xk

i , ∀i ̸= ik.

Theorem 2 (Expected Error Convergence Estimate Theorem) Let the objective function f(x) be convex

and satisfy the (first-order) β-Coordinate Lipschitz condition, and admit a minimizer x∗. Then

Eξk [f(x
k+1)]− f(x∗) ≤ n

n+ k + 1

(
1

2
∥x0 − x∗∥2β + f(x0)− f(x∗)

)
,

where random vector ξk−1 = (i0, i1, ..., ik−1) and norm-square ∥x∥2β =
∑

j βjx
2
j .

7

MS&E314: Optimization in ML&DS Lecture Note #10

Proof: Denote by δk = f(xk)− f(x∗), ∆k = xk − x∗, and

(rk)2 = ∥xk − x∗∥2β =
∑
j

βj(x
k
j − x∗

j)
2.

Then, from the RBCGD iteration

(rk+1)2 = (rk)2 − 2∇ikf(x
k)(xk

ik − x∗
ik) +

1

βik
(∇ikf(x

k))2.

It follows from the β-Coordinate Lipschitz condition,

f(xk+1)− f(xk) ≤ ∇ikf(x
k)(xk+1

ik
− xk

ik) +
1

2β
ik
(∇ikf(x

k))2

= −1
2β

ik
(∇ikf(x

k))2.

Combining the two inequalities, we have

(rk+1)2 ≤ (rk)2 − 2∇ikf(x
k)(xk

ik − x∗
ik) + 2(f(xk)− f(xk+1)).

Dividing both sides by 2 and taking expectation with respect to ik yields

Eik [
1

2
(rk+1)2] ≤ 1

2
(rk)2 − 1

n
∇f(xk)T (xk − x∗) + f(xk)− Eik [f(x

k+1)],

8

MS&E314: Optimization in ML&DS Lecture Note #10

which together with convexity assumption∇f(xk)T (x∗ − xk) ≤ f(x∗)− f(xk) gives

Eik [
1

2
(rk+1)2] ≤ 1

2
(rk)2 +

1

n
f(x∗) +

n− 1

n
f(xk)− Eik [f(x

k+1)],

Rearranging gives, for each k ≥ 0,

Eik [
1

2
(rk+1)2 + δk+1] ≤

(
1

2
(rk)2 + δk

)
− 1

n
δk.

Taking expectation with respect to ξk−1 on both sides

Eξk [
1
2 (r

k+1)2 + δk+1] ≤ Eξk−1 [12 (r
k)2 + δk]− 1

nEξk−1 [δk]

= Eξk [
1
2 (r

k)2 + δk]− 1
nEξk [δ

k].

Recursively applying the inequalities from and noting that Eξk [f(x
k+1)] is monotonically decreasing

Eξk [δ
k+1] ≤ Eξk [

1
2 (r

k+1)2 + δk+1]

≤ (12 (r
0)2 + δ0)− 1

n

∑k
j=0 Eξk [δ

j]

≤ (12 (r
0)2 + δ0)− k+1

n Eξk [δ
k+1]

which leads to the desired result.

9

MS&E314: Optimization in ML&DS Lecture Note #10

Stochastic-Gradient-Method for Minimizing a Large-Sum of Functions

In many applications, the objective value is partially determined by decision makers and partially

determined by “Nature”.

(OPT) minx f(x, ω)

s.t. c(x, ω) ∈ K ⊂ Rm.
(2)

where ω represents uncertain data and x ∈ Rn is the decision vector, and K is a constraint set.

For deterministic optimization, we assume ξ is known and fixed. In reality, we may have

• the (exact) probability distribution ξ of data ω.

• the sample distribution and/or few moments of data ω.

• knowledge of ω belonging to a given uncertain set U .

In the following we consider the unconstrained case.

10

MS&E314: Optimization in ML&DS Lecture Note #10

Stochastic Optimization and Stochastic Gradient Descent (SGD) Methods

minx F (x) := Eξ[f(x, ω)].

Large-Sum of Functions – Sample Average Approximation (SAA):

minx FM (x) := 1
M

∑M
i=1 f(x, ω

i).
Two Approaches:

• Sample-First and Iterate-Second, in particular, SAA: collect enough examples then search a solution

of an approximated deterministic optimization problem. The computation of the gradient vector:

∇FM (x) =
1

M

M∑
i=1

∇f(x, ωi) and xk+1 = xk − αk∇FM (xk).

• Sample and Iterate Concurrently – SGD: collect a sample set Sk of few samples of ω at iteration k:

ĝk =
1

|Sk|
∑
i∈Sk

∇f(xk, ωi) and xk+1 = xk − αkĝk.

Key Questions: how many samples are sufficient for an ϵ approximate solution to the original stochastic

optimization problem. This is the information/sample complexity issue in optimization.

11

MS&E314: Optimization in ML&DS Lecture Note #10

Information Complexity and Sample Size in SAA

• In SAA, the required number of samples, M , should be larger than the dimension of decision vector

and should grow polynomially with the increase of dimensionality. In specific, let xSAA be the optimal

solution from the SAA method. Then to ensure probability

P [F (xSAA)− F (x∗) ≤ ϵ] ≥ 1− α,

M = O(
1

ϵ2
)(n ln(

1

ϵ
) + ln(

1

α
)).

• If x∗ is sparse or it can be approximated by a sparse solution with cardinality p << n, then by adding

a regulative penalty function into the objective

minx
1
M

∑M
i=1 f(x, ω

i) + P (x),

the sample size can be reduced to

M = O(
1

ϵ2
)(
p

ϵ
ln1.5(

n

ϵ
) + ln(

1

α
)); or in convex case: M = O(

1

ϵ2
)(p ln(

n

ϵ
) + ln(

1

α
)).

12

MS&E314: Optimization in ML&DS Lecture Note #10

SGD and its Advantages

Apply SGD with one ωk sampled uniformly at iteration k:

ĝk = ∇f(xk, ωk) and xk+1 = xk − αkĝk.

• Works with the step size rule:

αk → 0 and

(∞∑
k=0

αk

)
→∞ (e.g., αk = O(k−1)).

• A great technology to potentially reduce the computation complexity – need fewer samples at the

beginning.

• Potentially only select important and sensitive samples – learn where to sample.

• Dynamically incorporate new empirical observations to tune-up the probability distribution.

13

MS&E314: Optimization in ML&DS Lecture Note #10

Variance Reduction in Stochastic Algorithm Design

• The VR technique has been used extensively in the design of fast stochastic methods for solving

large–scale optimization problems in machine learning.

• High Level Idea: Reduce the variance of an estimate X by using another estimate Y with known

expectation.

• Specifically, consider Zα = α(X − Y) + E[Y].

– E[Zα] = α · E[X] + (1− α) · E[Y]

– var(Zα) = E
[
(Zα − E[Zα])

2
]
= α2 [var(X) + var(Y)− 2cov(X,Y)]

– When α = 1, we have E[Zα] = E[X], which is useful for establishing concentration bounds.

– When α < 1, Zα will potentially have a smaller variance than X , but we no longer have

E[Zα] = E[X]. (In what follows, we let α = 1.)

– Overall, variance reduction occur if cov(X,Y) > 0.

14

MS&E314: Optimization in ML&DS Lecture Note #10

VR Illustration: Finite–Sum Minimization I

• Consider the following so–called finite–sum minimization problem:

min
x

{
F (x) =

1

M

M∑
i=1

fi(x)

}
. (3)

Here, f1, . . . , fM are smooth (convex) loss functions and M is huge so that the computation of

∇F (·) is costly.

• Examples

– Linear regression: fi(x) = (aTi x− bi)
2

– Logistic regression: fi(x) = ln
(
1 + exp

(
bia

T
i x
))

• Stochastic Gradient Descent (SGD): choose ik from {1, ...,M} uniformly at random and let

xk+1 = xk − αk∇fik(xk).

– We have E
[
∇fik(xk)

]
= ∇F (xk), but variance of the estimate can be large.

– To guarantee convergence, we generally need diminishing step sizes (e.g., αk = O(k−1)).

15

MS&E314: Optimization in ML&DS Lecture Note #10

VR Illustration: Finite–Sum Minimization II

• Now let X = ∇fik(xk) for estimating∇F (xk). What Y should we use to reduce the variance of

the estimate?

– Try Y = ∇fik(x̃k) for some fixed x̃k.

– Note that E[Y] = ∇F (x̃k).

• Now, form Z = X − Y + E[Y] = ∇fik(xk)−∇fik(x̃k) +∇F (x̃k) and set

xk+1 = xk − αk

(
∇fik(xk)−∇fik(x̃k) +∇F (x̃k)

)
.

• Since the computation of∇F (x̃k) is costly, we don’t want to update x̃k too often but only once for a

while.

• This is the core idea behind the stochastic variance–reduced gradient (SVRG) method, which has

generated much recent research; see Accelerating Stochastic Gradient Descent Using Predictive

Variance Reduction, NIPS 2013.

16

MS&E314: Optimization in ML&DS Lecture Note #10

VR Illustration: Finite–Sum Minimization III

• One choice is to update x̃ at a uniform (or geometric) pace, that is, when k = rK (or k = 2r) for a

nonnegative integer r, we let x̃k = xk and it remains unchanged from iteration k to k +K (or 2k).

• Thus, from iteration 1 to k, x̃k is updated, or∇F (x̃k) is computed, only k/K (or log(k)) times.

• Moreover, most likely cov(xk, x̃k) > 0 during the iteration period k to k+K , since both xk and x̃k

converge to the same limit solution.

17

MS&E314: Optimization in ML&DS Lecture Note #10

VR Illustration: Finite–Sum Minimization IV

• The VR-SGD method can be shown to converge linearly when F satisfies the so–called error bound

condition: there exists a τ > 0 such that

dist(x,X ∗) ≤ τ∥∇F (x)∥2 for all x, (4)

where X ∗ is the set of optimal solutions.

• If F is strongly convex, then it satisfies 4. However, the converse need not hold; for details, see

Non-Asymptotic Convergence Analysis of Inexact Gradient Methods for Machine Learning Without

Strong Convexity. Optim. Methods Softw. 32(4): 963–992, 2017.

• Extensions of the VR-SGD method to the case where F is non–convex have been proposed and

analyzed in Stochastic Variance Reduction for Nonconvex Optimization. ICML 2016, and Variance

Reduction for Faster Nonconvex Optimization. ICML 2016.

18

MS&E314: Optimization in ML&DS Lecture Note #10

Case 1: Variance Reduction in Stochastic Value Iteration for MDP

Let y ∈ Rm represent the cost-to-go values of the m states, ith entry for ith state, of a given policy. The

MDP problem entails choosing the fixed-point value vector y∗ such that it satisfies:

y∗i = min
j∈Ai

{cj + γpT
j y

∗}, ∀i.

The Value-Iteration (VI) Method is, starting from any y0,

yk+1
i = min

j∈Ai

{cj + γpT
j y

k}, ∀i.

If the initial y0 is strictly feasible for state i, that is, y0i < cj + γpT
j y

0, ∀j ∈ Ai, then yki would be

increasing in the VI iteration for all i and k.

The computation work for state i at iteration k, is to compute pT
j y

k = µj(y
k) for each j ∈ Ai. This

needs O(m) operations.

Could we approximate µj(y
k) by sampling?

19

MS&E314: Optimization in ML&DS Lecture Note #10

Motivations

• In many practical applications, pj is unknown so that we have to approximate the mean pT
j y

k by

stochastic sampling,

• Even we know pj exactly, it may be too dense so that the computation of pT
j y

k takes up to O(m)

operations so that we would rather estimate the mean by sampling which can be easily parallelized.

• Since randomization is introduced in the algorithm, the iterative solution sequence becomes a random

sequence.

• One can analyze this performance using Hoeffdings inequality and classic results on contraction

properties of value iteration. Moreover, we improve the final result using Variance Reduction and

Monotone Iteration.

• Variance Reduction enables us to update the values so that the needed number of samples is

decreased from iteration to iteration.

20

MS&E314: Optimization in ML&DS Lecture Note #10

Variance Reduction in Stochastic Value Iteration for MDP

We carry out the VI iteration as:

yk+1
i = min

j∈Ai

{cj + γpT
j ỹ

k + γpT
j (y

k − ỹk)}, ∀i,

where ỹk is updated at the geometric pace as before. Or compute once a while for a hash vector

c̃kj = cj + γpT
j ỹ

k, ∀j

and do

yk+1
i = min

j∈Ai

{c̃kj + γpT
j (y

k − ỹk)}, ∀i.

Then we only need to approximate

pT
j (y

k − ỹk) = µj(y
k − ỹk).

Since y∗ ≥ yk ≥ ỹk during the period of k to 2k and (yk − ỹk) monotonically converges to zero, the

norm of (yk − ỹk) becomes smaller and smaller so that only a constant number of samples are needed

to estimate the mean for desired accuracy, which leads to a geometrically convergent algorithm with high

probability.

21

MS&E314: Optimization in ML&DS Lecture Note #10

Near-Optimal Randomized Value-Iteration Result

Few computation and sample complexity results based on Variance Reduction:

• Knowing pj :

O

(
(mn+

n

(1− γ)3
) log(

1

ϵ
) log(

1

δ
)

)
to compute an ϵ-optimal policy with probability at least 1− δ.

• Computation and sample complexity on the pure generative model:

O

(
n

(1− γ)3ϵ2
log(

1

δ
)

)
to compute an ϵ-optimal policy with probability at least 1− δ.

• Sample complexity lower bound: O
(

n
(1−γ)3ϵ2

)
.

• The method is also extended to computing ϵ-optimal policies for finite-horizon MDP with a generative

model and provide a nearly matching sample complexity lower bound.

S[ICML 2017] and [NIPS 2018].

22

MS&E314: Optimization in ML&DS Lecture Note #10

Case 2: Online Linear Programming (OLP) Problem

At time t = 1, ..., n,

r1x1 + · · ·+ rtxt + · · · ? · · ·


| | |
a1 · · · at ? · · · · · · ?

| | |





x1

...

xt

?
...

?


≤ b

Decision: xt ∈ [0, 1]

Previous decisions already made: x1, · · · , xt−1

23

MS&E314: Optimization in ML&DS Lecture Note #10

Algorithm Motivation from the Offline Primal&Dual LPs

Primal

max r⊤x

s.t. Ax ≤ b

0 ≤ x ≤ e

Dual

min b⊤p+ e⊤s

s.t. A⊤p+ s ≥ r

p ≥ 0, s ≥ 0

where the decision variables are x ∈ Rn, p ∈ Rm, s ∈ Rn

Denote the offline primal/dual optimal solution as x∗ ∈ Rn,p∗
n ∈ Rm, s∗ ∈ Rn

LP duality/complementarity tells that for j = 1, ..., n,

x∗
j =

 1, rj > a⊤j p
∗
n

0, rj < a⊤j p
∗
n

x∗
j may take a fractional value when rj = a⊤j p

∗
n.

24

MS&E314: Optimization in ML&DS Lecture Note #10

Equivalent Form of the Dual Problem (I)

The dual objective is a large-sum of functions:

min b⊤p+
∑n

j=1 sj

s.t. sj ≥ rj − a⊤j p, j = 1, ..., n

p, s ≥ 0

Equivalently, by removing sj ’s,

min b⊤p+
∑n

j=1

(
rj − a⊤j p

)+
s.t. p ≥ 0

(·)+ is the positive-part or ReLu function.

25

MS&E314: Optimization in ML&DS Lecture Note #10

Equivalent Form of the Dual Problem (II)

Normalize the objective, the large-sum functions become SAA:

min
p≥0

fn(p) := d⊤p+
1

n

n∑
j=1

(
rj − a⊤j p

)+
We know

• The primal optimal solution is largely determined by the dual optimal p∗
n

• p∗
n is the optimal solution of the above sample average approximation

Implication for online LP when orders coming randomly:

• At time t, one can solve ft(p) (based on all the observed samples) to obtain p∗
t and decide xt

min
p≥0

ft(p) := d⊤p+
1

t

t∑
j=1

(
rj − a⊤j p

)+
• Simply apply one step of Stochastic Sub-Gradient Projection Method to decide xt and update p.

26

MS&E314: Optimization in ML&DS Lecture Note #10

The Simple and Fast Iterative OLP Algorithm

Instead of finding the optimal p∗
t , we perform stochastic sub-gradient descent based on the newly arrived

order t in minimizing

min
p≥0

ft(p) := d⊤p+
1

t

t∑
j=1

(
rj − a⊤j p

)+
At time t, the sub-gradient constructed from the new observation is

∇p

(
d⊤p+

(
rt − a⊤t p

)+) ∣∣∣∣∣
p=pt

= d− atI(rt > a⊤t p)
∣∣∣
p=pt

= d− atxt

where pt is the current dual price vector at time t.

27

MS&E314: Optimization in ML&DS Lecture Note #10

Simple Online (SO) Algorithm for Solving (Binary) Online LP I

• Input: d = b/n and initialize p1 = 0

• For t = 1, 2, ..., n do

xt =

 1, if rt > a⊤t pt

0, if rt ≤ a⊤t pt

• Then compute

pt+1 = pt + αt (atxt − d)

pt+1 := pt+1 ∨ 0

• Return x = (x1, ..., xn)

This is Sample without Replacement Implementation of Stochastic Gradient Method with one Cycle only,

where the primal decision is made “on the fly”.

(fastOLP.m and fastOLPadap.m of Chapter 8)

28

MS&E314: Optimization in ML&DS Lecture Note #10

Simple Online (SO) Algorithm for Solving (Binary) Online LP II

• The algorithm is a first-order online algorithm and it does not involve any matrix inversion.

• It does not need even to store the data, the total number of operations is the number of nonzero

entries of all input data.

• αt is the step size and it is chosen to be 1√
n

(or 1√
t
) in the following analyses

• The algorithm does not require any prior knowledge besides d, the average inventory vector.

• May add “adaptiveness” and/or “boosting” ideas to improve effectiveness

• May apply the Mirror-Descent and other first-order methods

The algorithm works for both the stochastic input model and the random permutation model following

where the performance is guaranteed in expectation.

29

