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First-Order Algorithms for Conic Constrained Optimization (CCO)

Consider the conic nonlinear optimization problem: min f(x) s.t. x ∈ K.

• Nonnegative Linear Regression: given data A ∈ Rm×n and b ∈ Rm

min f(x) =
1

2
∥Ax− b∥2 s.t. x ≥ 0; where ∇f(x) = AT (Ax− b).

• Semidefinite Linear Regression: given data Ai ∈ Sn for i = 1, ...,m and b ∈ Rm

min f(X) =
1

2
∥AX − b∥2 s.t. X ≽ 0; where ∇f(X) = AT (AX − b).

AX =


A1 •X

...

Am •X

 and ATy =
∑
i=1

yiAi.

Suppose we start from a feasible solution x0 or X0.
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SDM Followed by the Conic-Region-Projection

• x̂k+1 = xk − 1
β∇f(xk)

• xk+1 = ProjK(x̂k+1): Solve minx∈K ∥x− x̂k+1∥2.

For examples:

• if K = {x : x ≥ 0}, then

xk+1 = ProjK(x̂k+1) = max{0, x̂k+1}.

• If K = {X : X ≽ 0}, then factorize X̂k+1 =
∑n

j=1 λjvjv
T
j and let

Xk+1 = ProjK(X̂k+1) =
∑

j:λj>0

λjvjv
T
j .

(The drawback is that the total eigenvalue-factorization may be costly...)

Does the method converge? What is the convergence speed? See more details in HW3.
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SDM Followed by the Convex-Region-Projection

Consider the convex-region-constrained nonlinear optimization problem: min f(x) s.t. Ax = b. that

is K = {x : Ax = b}.

The projection method becomes, starting from a feasible solution x0 and let direction

dk = −(I −AT (AAT )−1A)∇f(xk)

xk+1 = xk + αkdk; (1)

where the stepsize can be chosen from line-search or again simply let

αk =
1

β

and β is the (global) Lipschitz constant.

Does the method converge? What is the convergence speed? See more details in HW3.
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SDM Followed by the Nonconvex-Region-Projection

• K ⊂ Rn whose support size is no more than d(< n): x = ProjK(x̂) contains the largest d

absolute entries of x̂ and set the rest of them to zeros.

• K ⊂ Rn
+ and its support size is no more than d(< n): x = ProjK(x̂) contains the largest no more

than d positive entries of x̂ and set the rest of them to zeros.

• K ⊂ Sn whose rank is no more than d(< n): factorize

X̂ =
∑n

j=1 λjvjv
T
j with |λ1| ≥ |λ2| ≥ ... ≥ |λn| then ProjK(X̂) =

∑d
j=1 λjvjv

T
j .

• K ⊂ Sn
+ whose rank is no more than d(< n): factorize

X̂ =
∑n

j=1 λjvjv
T
j with λ1 ≥ λ2 ≥ ... ≥ λn then ProjK(X̂) =

∑d
j=1 max{0, λj}vjv

T
j .

Does the method converge? What is the convergence speed? What if f(·) is not a convex function?
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Multiplicative-Update I: “Mirror” SDM for CCO

At the kth iterate with xk > 0:

xk+1 = xk. ∗ exp(− 1

β
∇f(xk))

Note that xk+1 remains positive in the updating process.

The classical Projected SDM update can be viewed as

xk+1 = argmin
x≥0

∇f(xk)Tx+
β

2
∥x− xk∥2.

One can choose any strongly convex function h(·) and define

Dh(x,y) = h(x)− h(y)−∇h(y)T (x− y)

and define the update as

xk+1 = argmin
x≥0

∇f(xk)Tx+ βDh(x,x
k).

The update above is the result of choosing (negative) entropy function h(x) =
∑

j xj log(xj).
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Multiplicative-Update II: Affine Scaling SDM for CCO

At the kth iterate with xk > 0, let Dk be a diagonal matrix such that

Dk
jj = xk

j , ∀j

and

xk+1 = argmin
x≥0

∇f(xk)Tx+
β

2
∥(Dk)−1(x− xk)∥2,

or

xk+1 = xk − αk(D
k)2∇f(xk) = xk. ∗ (e− αk∇f(xk). ∗ xk)

where variable step-sizes can be

αk = min{ 1

βmax(xk)2
,

1

2∥xk. ∗ ∇f(xk)∥∞
}.

Is xk > 0, ∀k? Does it converge? What is the convergence speed? See more details in HW3.

Geometric Interpretation: inscribed ball vs inscribed ellipsoid.
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Affine Scaling for SDP Cone?

At the kth iterate with Xk ≻ 0. the new SDM iterate would be

Xk+1 = Xk − αkX
k∇f(Xk)Xk = Xk(I − αk∇f(Xk)Xk).

Choose step-size is chosen such that the smallest eigenvalue of Xk+1 is at most a fraction from the one

of Xk?

Does it converge? What is the convergence speed? See more details in HW3.
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Reduced Gradient Method – the Simplex Algorithm for LP

LP: min cTx s.t. Ax = b, x ≥ 0,

where A ∈ Rm×n has a full row rank m.

Theorem 1 (The Fundamental Theorem of LP in Algebraic form) Given (LP) and (LD) where A has full

row rank m,

i) if there is a feasible solution, there is a basic feasible solution (Carathéodory’s theorem);

ii) if there is an optimal solution, there is an optimal basic solution.

High-Level Idea:

1. Initialization Start at a BSF or corner point of the feasible polyhedron.

2. Test for Optimality. Compute the reduced gradient vector at the corner. If no descent and feasible

direction can be found, stop and claim optimality at the current corner point; otherwise, select a new

corner point and go to Step 2.
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Figure 1: The LP Simplex Method
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When a Basic Feasible Solution is Optimal

Suppose the basis of a basic feasible solution is AB and the rest is AN . One can transform the equality

constraint to

A−1
B Ax = A−1

B b, so that xB = A−1
B b−A−1

B ANxN .

That is, we express xB in terms of xN , the non-basic variables are are active for constraints x ≥ 0.

Then the objective function equivalently becomes

cTx = cTBxB + cTNxN = cTBA
−1
B b− cTBA

−1
B ANxN + cTNxN

= cTBA
−1
B b+ (cTN − cTBA

−1
B AN )xN .

Vector rT = cT − cTBA
−1
B A is called the Reduced Gradient/Cost Vector where rB = 0 always.

Theorem 2 If Reduced Gradient Vector rT = cT − cTBA
−1
B A ≥ 0, then the BFS is optimal.

Proof: Let yT = cTBA
−1
B (called Shadow Price Vector), then y is a dual feasible solution

(r = c−ATy ≥ 0) and cTx = cTBxB = cTBA
−1
B b = yTb, that is, the duality gap is zero.
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The Simplex Algorithm Procedures

0. Initialize Start a BFS with basic index set B and let N denote the complementary index set.

1. Test for Optimality: Compute the Reduced Gradient Vector r at the current BFS and let

re = minj∈N{rj}.

If re ≥ 0, stop – the current BFS is optimal.

2. Determine the Replacement: Increase xe while keep all other non-basic variables at the zero value

(inactive) and maintain the equality constraints:

xB = A−1
B b−A−1

B A.exe (≥ 0).

If xe can be increased to ∞, stop – the problem is unbounded below. Otherwise, let the basic

variable xo be the one first becoming 0.

3. Update basis: update B with xo being replaced by xe, and return to Step 1.
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A Toy Example

minimize −x1 −2x2

subject to x1 +x3 = 1

x2 +x4 = 1

x1 +x2 +x5 = 1.5.

A =


1 0 1 0 0

0 1 0 1 0

1 1 0 0 1

 , b =


1

1

1.5

 , cT = (−1 − 2 0 0 0).

Consider initial BFS with basic variables B = {3, 4, 5} and N = {1, 2}.

Iteration 1:

1. AB = I , A−1
B = I , yT = (0 0 0) and rN = (−1 − 2) – it’s NOT optimal. Let e = 2.
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2. Increase x2 while

xB = A−1
B b−A−1

B A.2x2 =


1

1

1.5

−


0

1

1

x2.

We see x4 becomes 0 first.

3. The new basic variables are B = {3, 2, 5} and N = {1, 4}.

Iteration 2:

1.

AB =


1 0 0

0 1 0

0 1 1

 , A−1
B =


1 0 0

0 1 0

0 −1 1

 ,

yT = (0 − 2 0) and rN = (−1 2) – it’s NOT optimal. Let e = 1.
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2. Increase x1 while

xB = A−1
B b−A−1

B A.1x1 =


1

1

0.5

−


1

0

1

x1.

We see x5 becomes 0 first.

3. The new basic variables are B = {3, 2, 1} and N = {4, 5}.

Iteration 3:

1.

AB =


1 0 1

0 1 0

0 1 1

 , A−1
B =


1 1 −1

0 1 0

0 −1 1

 ,

yT = (0 − 1 − 1) and rN = (1 1) – it’s Optimal.

Is the Simplex Method always convergent to a minimizer? Which condition of the Global Convergence

Theorem failed?
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The Frank-Wolf Algorithm

P: min f(x) s.t. Ax = b, x ≥ 0,

where A ∈ Rm×n has a full row rank m.

Start with a feasible solution x0, and at the kth iterate do:

• Solve the LP problem

min ∇f(xk)Tx s.t. Ax = b, x ≥ 0

and let x̃k+1 be an optimal solution.

• Choose a step-size 0 < αk ≤ 1 and let

xk+1 = xk + αk(x̃k+1 − xk).

This is also called sequential linear programming (SLP) method.
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First-Order Method for MDP: Value-Iteration of Fixed-Point Mapping

Let y ∈ Rm represent the cost-to-go values of the m states, ith entry for ith state, of a given policy. The

MDP problem entails choosing the optimal value vector y∗ which is a fixed-point of:

y∗i = min
j∈Ai

{cj + γpT
j y

∗}, ∀i,

The Value-Iteration (VI) Method is, starting from any y0, the iterative mapping:

yk+1
i = A(yk)j = min

j∈Ai

{cj + γpT
j y

k}, ∀i.

If the initial y0 is strictly feasible for state i, that is, y0i < cj + γpT
j y

0, ∀j ∈ Ai, then yki would be

increasing in the VI iteration for all i and k.

On the other hand, if any of the inequalities is violated, then we have to decrease y1i at least to

min
j∈Ai

{cj + γpT
j y

0}

.
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Convergence of Value-Iteration for MDP

Theorem 3 Let the VI algorithm mapping be A(v)i = minj∈Ai{cj + γpT
j v, ∀i}. Then, for any two

value vectors u ∈ Rm and v ∈ Rm and every state i:

|A(u)i −A(v)i| ≤ γ∥u− v∥∞, which implies ∥A(u)i −A(v)i∥∞ ≤ γ∥u− v∥∞

Let ju and jv be the two argmin actions for value vectors u and v, respectively. Assume that

A(u)i −A(v)i ≥ 0 where the other case can be proved similarly.

0 ≤ A(u)i −A(v)i = (cju + γpT
ju
u)− (cjv + γpT

jv
v)

≤ (cjv + γpT
jv
u)− (cjv + γpT

jv
v)

= γpT
jv
(u− v) ≤ γ∥u− v∥∞.

where the first inequality is from that ju is the argmin action for value vector u, and the last inequality

follows from the fact that the elements in pjv are non-negative and sum-up to 1.
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Value-Iteration for MDP II: Other issues

The Value-Iteration (VI) Method for zero-sum game, starting from any y0, the iterative mapping:

yk+1
i = A(yk)j = min

j∈Ai

{cj + γpT
j y

k}, ∀i ∈ I−

and

yk+1
i = A(yk)j = max

j∈Ai

{cj + γpT
j y

k}, ∀i ∈ I+.

Remarks’:

• One can choose i at random to update, e.g., follow a random walk.

• Aggregate states if they have similar cost-to-go values

• State-values are updated in a unsynchronized manner: a state is updated after one of its

neighbor-states is updated.

Many research issues in a suggested Project.
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First-Order Method for Nonlinear Constrained Optimization I

We consider the general constrained optimization:

(GCO)

min f(x)

s.t. ci(x) = 0, i ∈ E ,
ci(x) ≥ 0, i ∈ I.

We can convert it to an unconstrained problem:

min f(x) + λ
∑
i∈E

|ci(x)| − µ
∑
i∈I

log(ci(x))

where λ is sufficiently large and µ is sufficiently small.

Not robust if a high accuracy is desired...

A remedy strategy is to adjust λ and µ dynamically, or use a projected gradient or reduced gradient

first-order method, such as the Simplex Method of Dantzig...
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First-Order Method for Nonlinear Constrained Optimization II

Another popular method is again Descent-First and Feasible-Second: linearize the nonlinear constraints

using the first-order Taylor expansion and apply the Frank-Wolfe algorithm to compute a solution feasible

for the linearized constraints, then project it onto the nonlinear-constrained feasible region.
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Summary of the First-Order Methods

• Good global convergence property (e.g. starting from any (feasible) solution under mild technical

assumption...).

• Simple to implement and the computation cost is mainly compute the numerical gradient.

• Maybe difficult to decide step-size: simple back-track is popular in practice.

• The convergence speed can be slow: not suitable for high accuracy computation, certain accelerations

available.

• Can only guarantee converging to a first-order KKT solution.
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