
MS&E314: Optimization in ML&DS Lecture Note #07

Zero-Order Optimization Algorithms

Yinyu Ye

MS&E and ICME, Stanford University

https://web.stanford.edu/class/msande314/handout.shtml

http://www.stanford.edu/˜yyye

(Chapters 7 and 8)

1

MS&E314: Optimization in ML&DS Lecture Note #07

Introduction

Optimization algorithms tend to be iterative procedures. Starting from a given point x0, they generate a

sequence {xk} of iterates (or trial solutions) that converge to a “solution” – or at least they are designed

to be so.

Recall that scalars {xk} converges to 0 if and only if for all real numbers ε > 0 there exists a positive

integer K such that

|xk| < ε for all k ≥ K.

Then {xk} converges to solution x∗ if and only if {∥xk − x∗∥} converges to 0.

We study algorithms that produce iterates according to

• well determined rules–Deterministic Algorithm

• random selection process–Randomized Algorithm.

The rules to be followed and the procedures that can be applied depend to a large extent on the

characteristics of the problem to be solved.

2

MS&E314: Optimization in ML&DS Lecture Note #07

The Meaning of “Solution”

What is meant by a solution may differ from one algorithm to another.

In some cases, one seeks a local minimum; in some cases, one seeks a global minimum; in others, one

seeks a first-order and/or second-order stationary or KKT point of some sort as in the method of steepest

descent discussed below.

In fact, there are several possibilities for defining what a solution is. Once the definition is chosen, there

must be a way of testing whether or not an iterate (trial solution) belongs to the set of solutions. For

example, the residuals of the KKT conditions converge to zero.

3

MS&E314: Optimization in ML&DS Lecture Note #07

Generic Algorithms for Minimization and Global Convergence Theorem

A Generic Algorithm: A point to set mapping in a subspace of Rn.

Theorem 1 (Page 222, L&Y) Let A be an “algorithmic mapping” defined over set X , and let sequence

{xk}, starting from a given point x0, be generated from

xk+1 ∈ A(xk).

Let a solution set S ⊂ X be given, and suppose

i) all points {xk} are in a compact set;

ii) there is a continuous (merit) function z(x) such that if x ̸∈ S, then z(y) < z(x) for all y ∈ A(x);

otherwise, z(y) ≤ z(x) for all y ∈ A(x);

iii) the mapping A is closed at points outside S (xk → x̄ ∈ X and A(xk) = yk → ȳ imply

ȳ ∈ A(x̄)).

Then, the limit of any convergent subsequences of {xk} is a solution in S.

4

MS&E314: Optimization in ML&DS Lecture Note #07

Descent Direction Methods

In this case, merit function z(x) = f(x), that is, just the objective itself.

(A1) Test for convergence If the termination conditions are satisfied at xk, then it is taken (accepted) as a

“solution.” In practice, this may mean satisfying the desired conditions to within some tolerance. If so,

stop. Otherwise, go to step (A2).

(A2) Compute a search direction, say dk ̸= 0. This might be a direction in which the function value is

known to decrease within the feasible region.

(A3) Compute a step length, say αk such that

f(xk + αkdk) < f(xk).

This may necessitate a one-dimensional (or line) search.

(A4) Define the new iterate by setting

xk+1 = xk + αkdk

and return to step (A1).

5

MS&E314: Optimization in ML&DS Lecture Note #07

Algorithm Complexity and Speeds I

The intrinsic computational cost/time of an algorithm depends on

• number of decision variables n: cost of the inner product of two vectors, cost of solving system of

linear equations

• number of constraints m: cost of the product of a matrix and a vector, cost of the product of two

matrices

• number of nonzero data entries NNZ: sparse matrix/data representation

• the desired accuracy 0ϵ < 1: the cost could be propotional to 1
ϵ2 ,

1
ϵ , log(

1
ϵ), log[log(

1
ϵ)], ...

• problem difficulty or complexity measures such as the Lipschiz constant β, the condition number of a

matrix, etc

6

MS&E314: Optimization in ML&DS Lecture Note #07

Algorithm Complexity and Speeds II

• Finite versus infinite convergence. For some classes of optimization problems there are algorithms

that obtain an exact solution—or detect the unboundedness–in a finite number of iterations.

• Polynomial-time versus exponential-time. The solution time grows, in the worst-case, as a function of

problem sizes (number of variables, constraints, accuracy, etc.).

• Convergence order and rate. If there is a positive numberγ such that

∥xk − x∗∥ ≤ O(1)

kγ
∥x0 − x∗∥,

then {xk} converges arithmetically to x∗ with power γ. If there exists a number γ ∈ [0, 1) such that

∥xk+1 − x∗∥ ≤ γ∥xk − x∗∥ (⇒ ∥xk − x∗∥ ≤ γk∥x0 − x∗∥),

then {xk} converges geometrically or linearly to x∗ with rate γ. If there exists a number γ ∈ [0, 1)

∥xk+1 − x∗∥ ≤ γ∥xk − x∗∥2 after γ∥xk − x∗∥ < 1

then {xk} converges quadratically to x∗ (such as
{
(12)

2k
}

).

7

MS&E314: Optimization in ML&DS Lecture Note #07

Algorithm Classes

Depending on information of the problem being used to create a new iterate, we have

(a) Zero-order algorithms. Popular when the gradient and Hessian information are difficult to obtain, e.g.,

no explicit function forms are given, functions are not differentiable, etc.

(b) First-order algorithms. Most popular now-days, suitable for large scale data optimization with low

accuracy requirement, e.g., Machine Learning, Statistical Predictions...

(c) Second-order algorithms. Popular for optimization problems with high accuracy need, e.g., some

scientific computing, etc.

8

MS&E314: Optimization in ML&DS Lecture Note #07

One-Variable Optimization: Golden Section (Zero Order) Method

Assume that the one variable function f(x) is Unimodel in interval [a b], that is, for any point x ∈ [ar bl]

such that a ≤ ar < bl ≤ b, we have that f(x) ≤ max{f(ar), f(bl)}. How do we find x∗ within an

error tolerance ϵ?

0) Initialization: let xl = a, xr = b, and choose a constant 0 < r < 0.5;

1) Let two other points x̂l = xl + r(xr − xl) and x̂r = xl + (1− r)(xr − xl), and evaluate their

function values.

2) Update the triple points xr = x̂r, x̂r = x̂l, xl = xl if f(x̂l) < f(x̂r); otherwise update the triple

points xl = x̂l, x̂l = x̂r, xr = xr ; and return to Step 1.

In either cases, the length of the new interval after one golden section step is (1− r). If we set

(1− 2r)/(1− r) = r, then only one point is new in each step and needs to be evaluated. This give

r = 0.382 and the linear convergence rate is 0.618.

9

MS&E314: Optimization in ML&DS Lecture Note #07

Figure 1: Illustration of Golden Section

10

MS&E314: Optimization in ML&DS Lecture Note #07

One-Variable Optimization: Bisection (First Order) Method

For a one variable problem, an KKT point is the root of g(x) := f ′(x) = 0.

Assume we know an interval [a b] such that a < b, and g(a)g(b) < 0. Then we know there exists an x∗,

a < x∗ < b, such that g(x∗) = 0; that is, interval [a b] contains a root of g. How do we find x within an

error tolerance ϵ, that is, |x− x∗| ≤ ϵ?

0) Initialization: let xl = a, xr = b.

1) Let xm = (xl + xr)/2, and evaluate g(xm).

2) If g(xm) = 0 or xr − xl < ϵ stop and output x∗ = xm. Otherwise, if g(xl)g(xm) > 0 set

xl = xm; else set xr = xm; and return to Step 1.

The length of the new interval containing a root after one bisection step is 1/2 which gives the linear

convergence rate is 1/2, and this establishes a linear convergence rate 0.5.

11

MS&E314: Optimization in ML&DS Lecture Note #07

Figure 2: Illustration of Bisection

12

MS&E314: Optimization in ML&DS Lecture Note #07

One-Variable Optimization: Newton’s (Second Order) Method

For functions of a single real variable x, the KKT condition is g(x) := f ′(x) = 0. When f is twice

continuously differentiable then g is once continuously differentiable, Newton’s method can be a very

effective way to solve such equations and hence to locate a root of g. Given a starting point x0, Newton’s

method for solving the equation g(x) = 0 is to generate the sequence of iterates

xk+1 = xk − g(xk)

g′(xk)
.

The iteration is well defined provided that g′(xk) ̸= 0 at each step.

For strictly convex function, Newton’s method has a linear convergence rate and, when the point is “close”

to the root, the convergence becomes quadratic, which leads to the iterations bound of log[log(1ϵ)].

13

MS&E314: Optimization in ML&DS Lecture Note #07

Figure 3: Illustration of Newton’s Method

14

MS&E314: Optimization in ML&DS Lecture Note #07

How Close is Close: One-variable Criterion

Theorem 2 (Smale 86). Let g(x) be an analytic function. Then, if x in the domain of g satisfies

sup
k>1

∣∣∣∣g(k)(x)k!g′(x)

∣∣∣∣1/(k−1)

≤ (1/8)

∣∣∣∣g′(x)g(x)

∣∣∣∣ .
Then, x is an approximate root of g.

In the following, for simplicity, let the root be in interval [0 R].

Corollary 1 (Y. 92). Let g(x) be an analytic function in R++ and let g be convex and monotonically

decreasing. Furthermore, for x ∈ R++ and k > 1 let∣∣∣∣g(k)(x)k!g′(x)

∣∣∣∣1/(k−1)

≤ α

8
· 1
x

for some constant α > 0. Then, if the root x̄ ∈ [x̂, (1 + 1/α)x̂] ⊂ R++, x̂ is an approximate root of g.

15

MS&E314: Optimization in ML&DS Lecture Note #07

Hybrid of Bisection and Newton I

Note that the interval becomes wider and wider at geometric rate when x̂ is increased.

Thus, we may symbolically construct a sequence of points:

x̂0 = ϵ, x̂1 = (1 + 1/α)x̂0, ..., and x̂j = (1 + 1/α)x̂j−1, ...

until x̂j = x̂J ≥ R. Obviously the total number of points, J , of these points is bounded by

O(log(R/ϵ)). Moreover, define a sequence of intervals

Ij = [x̂j−1, x̂j] = [x̂j−1, (1 + 1/α)x̂j−1].

Then, if the root x̄ of g is in any one of these intervals, say in Ij , then the front point x̂j−1 of the interval

is an approximate root of g so that starting from it Newton’s method generates an x with |x− x̄| ≤ ϵ in

O(log log(1/ϵ)) iterations.

16

MS&E314: Optimization in ML&DS Lecture Note #07

Hybrid of Bisection and Newton II

Now the question is how to identify the interval that contains x̄?

This time, we bisect the number of intervals, that is, evaluate function value at point x̂jm where

jm = [J/2]. Thus, each bisection reduces the total number of the intervals by a half. Since the total

number of intervals is O(log(R/ϵ)), in at most O(log log(R/ϵ)) bisection steps we shall locate the

interval that contains x̄.

Then the total number iterations, including both bisection and Newton methods, is O(log log(R/ϵ))

iterations.

Here we take advantage of the global convergence property of Bisection and local quadratic convergence

property of Newton, and we would see more of these features later...

17

MS&E314: Optimization in ML&DS Lecture Note #07

Multi-Variable Optimization Zero-Order Algorithms: the “Simplex” Method

(1) Start with a Simplex with d+ 1 corner points and their objective function values.

(2) Reflection: Compute other d+ 1 corner points each of them is an additional corner point of a

reflection simplex. If a point is better than its counter point, then the reflection simplex is an improved

simplex, and select the most improved simplex and go to Step1; otherwise go to Step 3.

(3) Contraction: Compute the d+ 1 middle-face points and subdivide the simplex into smaller d+ 1

simplexes, keep the simplex with the lowest sum of the d+ 1 function values, and go to Step 1.

This method can be also implemented with exhausted enumeration in parallel. The method is suitable for

solving problems whose derivatives are difficult to compute.

How to generate the initial d+ 1 points?

18

MS&E314: Optimization in ML&DS Lecture Note #07

Figure 4: Reflection Simplexes

19

MS&E314: Optimization in ML&DS Lecture Note #07

Figure 5: Contraction Simplexes

20

MS&E314: Optimization in ML&DS Lecture Note #07

Multi-Variable Optimization Zero-Order Algorithms: the Finite-Difference Gradient

∇f(xk)j ∼
1

δ

(
f(xk + δej)− f(xk)

)
∀j

for a small δ(> 0), and they can be estimated in parallel.

Randomized Finite-Dirfference Gradient: Randomly select a block of variables B ⊂ of{1, 2, ..., n} and

approximate the gradient vector by

∇f(xk) ∼ n

|B|
∑
j∈B

1

δ

(
f(xk + δej)− f(xk)

)
.

Randomly generate nk i.i.d. Gaussian vectors ui, i = 1, ..., nk and and approximate the gradient vector

by

∇f(xk) ∼ 1

nk

nk∑
i=1

ui[
1

δ

(
f(xk + δui)− f(xk)

)
].

Check ZeroorderNLP.m and ZeroordersubNLP.m, which is modified from the derivative-free nonlinear

optimization solver “SOLNP”. For more advanced one, see “SOLNP+” (https://arxiv.org/abs/2210.07160)!

21

