Lagrangian Dual Interpretations and Duality Applications

Yinyu Ye
Department of Management Science and Engineering
Stanford University
Stanford, CA 94305, U.S.A.
http://www.stanford.edu/~yyye
Chapters 11.7-8, 14.1-2

Recall Rules to Construct the Lagrangian Dual

- All multipliers are dual variables.
- Derive the LDC

$$
\begin{array}{ll}
\min & f(\mathbf{x}) \tag{GCO}\\
\text { s.t. } & \left.c_{i} \mathbf{x}\right) \quad(\leq,=, \geq) \quad 0, i=1, \ldots, m
\end{array}
$$

$$
\nabla f(\mathbf{x})=\mathbf{y}^{T} \nabla \mathbf{c}(\mathbf{x})
$$

If no \mathbf{x} appeared in an equation, set it as an equality constraint for the dual; otherwise, express \mathbf{x} in terms of y and replace x in the Lagrange function, which becomes the Dual objective. (This may be very difficult ...)

- Add the MSC as dual constraints.

The Lagrangian Dual of LP with Bound Constraints

Sometimes the dual can be constructed by simple reasoning: consider

$$
\begin{array}{lll}
(L P) & \text { minimize } & \mathbf{c}^{T} \mathbf{x} \\
& \text { subject to } A \mathbf{x}=\mathbf{b},-\mathbf{e} \leq \mathbf{x} \leq \mathbf{e}\left(\|\mathbf{x}\|_{\infty} \leq 1\right)
\end{array}
$$

Let the Lagrangian multipliers be y for equality constraints. Then the Lagrangian dual objective would be

$$
\phi(\mathbf{y})=\inf _{-\mathbf{e} \leq \mathbf{x} \leq \mathbf{e}} L(\mathbf{x}, \mathbf{y})=\inf _{-\mathbf{e} \leq \mathbf{x} \leq \mathbf{e}}\left[\left(\mathbf{c}-A^{T} \mathbf{y}\right)^{T} \mathbf{x}+\mathbf{b}^{T} \mathbf{y}\right]
$$

where if $\left(\mathbf{c}-A^{T} \mathbf{y}\right)_{j} \leq 0, x_{j}=1$; and otherwise, $x_{j}=-1$.
Therefore, the Lagrangian dual is

$$
\begin{array}{lll}
(L D P) & \text { maximize } & \mathbf{b}^{T} \mathbf{y}-\left\|\mathbf{c}-A^{T} \mathbf{y}\right\|_{1} \\
& \text { subject to } & \mathbf{y} \in R^{m}
\end{array}
$$

The Lagrangian Dual of LP with the Log-Barrier I

For a fixed $\mu>0$, consider the problem

$$
\begin{array}{lc}
\min & \mathbf{c}^{T} \mathbf{x}-\mu \sum_{j=1}^{n} \log \left(x_{j}\right) \\
\text { s.t. } & A \mathbf{x}=\mathbf{b} \\
& \mathbf{x} \geq \mathbf{0}
\end{array}
$$

Again, the non-negativity constraints can be "ignored" if the feasible region has an "interior", that is, any minimizer must have $\mathbf{x}(\mu)>0$. Thus, the Lagrangian function would be simply given by

$$
L(\mathbf{x}, \mathbf{y})=\mathbf{c}^{T} \mathbf{x}-\mu \sum_{j=1}^{n} \log \left(x_{j}\right)-\mathbf{y}^{T}(A \mathbf{x}-\mathbf{b})=\left(\mathbf{c}-A^{T} \mathbf{y}\right)^{T} \mathbf{x}-\mu \sum_{j=1}^{n} \log \left(x_{j}\right)+\mathbf{b}^{T} \mathbf{y}
$$

Then, the Lagrangian dual objective (we implicitly need $\mathrm{x}>0$ for the function to be defined)

$$
\phi(\mathbf{y}):=\inf _{\mathbf{x}} L(\mathbf{x}, \mathbf{y})=\inf _{\mathbf{x}}\left[\left(\mathbf{c}-A^{T} \mathbf{y}\right)^{T} \mathbf{x}-\mu \sum_{j=1}^{n} \log \left(x_{j}\right)+\mathbf{b}^{T} \mathbf{y}\right]
$$

The Lagrangian Dual of LP with the Log-Barrier II

First, from the view point of the dual, the dual needs to choose y such that $\mathrm{c}-A^{T} \mathbf{y}>\mathbf{0}$, since otherwise the primal can choose $\mathrm{x}>0$ to make $\phi(\mathrm{y})$ go to $-\infty$.

Now for any given \mathbf{y} such that $\mathbf{c}-A^{T} \mathbf{y}>0$, the inf problem has a unique finite close-form minimizer x

$$
x_{j}=\frac{\mu}{\left(\mathbf{c}-A^{T} \mathbf{y}\right)_{j}}, \forall j=1, \ldots, n
$$

Thus,

$$
\phi(\mathbf{y})=\mathbf{b}^{T} \mathbf{y}+\mu \sum_{j=1}^{n} \log \left(\mathbf{c}-A^{T} \mathbf{y}\right)_{j}+n \mu(1-\log (\mu))
$$

Therefore, the dual problem, for any fixed μ, can be written as

$$
\max _{\mathbf{y}} \phi(\mathbf{y})=n \mu(1-\log (\mu))+\max _{\mathbf{y}}\left[\mathbf{b}^{T} \mathbf{y}+\mu \sum_{j=1}^{n} \log \left(\mathbf{c}-A^{T} \mathbf{y}\right)_{j}\right]
$$

This is actually the LP dual with the Log-Barrier on dual inequality constraints $\mathbf{c}-A^{T} \mathbf{y} \geq \mathbf{0}$.

The Dual of SVM

$$
\begin{aligned}
\operatorname{minimize}_{\mathbf{x}, x_{0}, \beta} & \beta+\mu\|\mathbf{x}\|^{2} \\
\text { subject to } & \mathbf{a}_{i}^{T} \mathbf{x}+x_{0}+\beta \geq 1, \forall i, \quad\left(\mathbf{y}_{a} \geq \mathbf{0}\right) \\
& -\mathbf{b}_{j}^{T} \mathbf{x}-x_{0}+\beta \geq 1, \forall j, \quad\left(\mathbf{y}_{b} \geq \mathbf{0}\right) \\
& \beta \geq 0 .(\alpha \geq 0)
\end{aligned}
$$

$$
L\left(\mathbf{x}, x_{0}, \beta, \mathbf{y}_{a}, \mathbf{y}_{b}, \alpha\right)=\beta+\mu\|\mathbf{x}\|^{2}-\mathbf{y}_{a}^{T}\left(A^{T} \mathbf{x}+x_{0} \mathbf{e}+\beta \mathbf{e}-\mathbf{e}\right)-\mathbf{y}_{b}^{T}\left(-B^{T} \mathbf{x}-x_{0} \mathbf{e}+\beta \mathbf{e}-\mathbf{e}\right)-\alpha \beta
$$

$$
\begin{gathered}
\left.\nabla_{\mathbf{x}} L(\cdot)=2 \mu \mathbf{x}-A \mathbf{y}_{a}+B \mathbf{y}_{b}=\mathbf{0}, \text { (replace } \mathbf{x}\right) \\
\nabla_{x_{0}} L(\cdot)=-\mathbf{e}^{T} \mathbf{y}_{a}+\mathbf{e}^{T} \mathbf{y}_{b}=0, \text { (dual constraint) } \\
\nabla_{\beta} L(\cdot)=1-\mathbf{e}^{T} \mathbf{y}_{a}-\mathbf{e}^{T} \mathbf{y}_{b}-\alpha=0 . \text { (dual constraint) }
\end{gathered}
$$

Then the dual objective is

$$
\frac{-1}{4 \mu}\left\|A \mathbf{y}_{a}-B \mathbf{y}_{b}\right\|^{2}+\mathbf{e}^{T} \mathbf{y}_{a}+\mathbf{e}^{T} \mathbf{y}_{b}
$$

The Lagrangian Dual of LP with the Fisher Market

$$
\begin{array}{cc}
\max & \sum_{i \in B} w_{i} \log \left(\mathbf{u}_{i}^{T} \mathbf{x}_{i}\right) \\
\text { s.t. } & \sum_{i \in B} \mathbf{x}_{i}=\mathbf{b}, \quad \forall j \in G \\
& x_{i j} \geq 0, \quad \forall i, j
\end{array}
$$

The Lagrangian function would be simply given by
$L\left(\mathbf{x}_{i} \geq \mathbf{0}, i \in B, \mathbf{y}\right)=\sum_{i \in B} w_{i} \log \left(\mathbf{u}_{i}^{T} \mathbf{x}_{i}\right)-\mathbf{y}^{T}\left(\sum_{i \in B} \mathbf{x}_{i}-\mathbf{b}\right)=\sum_{i \in B}\left(w_{i} \log \left(\mathbf{u}_{i}^{T} \mathbf{x}_{i}\right)-\mathbf{y}^{T} \mathbf{x}_{i}\right)+\mathbf{b}^{T} \mathbf{y}$.
Then, the Lagrangian dual objective, for any given $y>0$, would be

$$
\phi(\mathbf{y}):=\sup _{\mathbf{x}_{i} \geq \mathbf{0}, i \in B} L\left(\mathbf{x}_{i}, i \in B, \mathbf{y}\right)=\inf _{\mathbf{x}_{i} \geq \mathbf{0}, i \in B} \sum_{i \in B}\left(w_{i} \log \left(\mathbf{u}_{i}^{T} \mathbf{x}_{i}\right)-\mathbf{y}^{T} \mathbf{x}_{i}\right)+\mathbf{b}^{T} \mathbf{y}
$$

The Lagrangian Dual of LP with the Fisher Market II

For each $i \in B$, the sup-solution is

$$
x_{i j^{*}}=\frac{w_{i}}{y_{j^{*}}}>0, j^{*}=\arg \min _{j} \frac{y_{j}}{u_{i j}}, x_{i j}=0 \forall j \neq j^{*}
$$

Thus,

$$
\phi(\mathbf{y})=\mathbf{b}^{T} \mathbf{y}-\sum_{i \in B} w_{i} \log \left(\min _{j}\left[\frac{y_{j}}{u_{i j}}\right]\right)+\sum_{i \in B} w_{i}\left(\log \left(w_{i}\right)-1\right)
$$

The gradient and Hessian of ϕ

Let $\mathbf{x}(\mathbf{y})$ be a minimizer. Then

$$
\phi(\mathbf{y})=f(\mathbf{x}(\mathbf{y}))-\mathbf{y}^{T} \mathbf{h}(\mathbf{x}(\mathbf{y}))
$$

Thus,

$$
\begin{aligned}
\nabla \phi(\mathbf{y}) & =\nabla f(\mathbf{x}(\mathbf{y}))^{T} \nabla \mathbf{x}(\mathbf{y})-\mathbf{y}^{T} \nabla \mathbf{h}(\mathbf{x}(\mathbf{y})) \nabla \mathbf{x}(\mathbf{y})-\mathbf{h}(\mathbf{x}(\mathbf{y})) \\
& =\left(\nabla f(\mathbf{x}(\mathbf{y}))^{T}-\mathbf{y}^{T} \nabla \mathbf{h}(\mathbf{x}(\mathbf{y}))\right) \nabla \mathbf{x}(\mathbf{y})-\mathbf{h}(\mathbf{x}(\mathbf{y})) \\
& =-\mathbf{h}(\mathbf{x}(\mathbf{y})) .
\end{aligned}
$$

Similarly, we can derive

$$
\nabla^{2} \phi(\mathbf{y})=-\nabla \mathbf{h}(\mathbf{x}(\mathbf{y}))\left(\nabla_{\mathbf{x}}^{2} L(\mathbf{x}(\mathbf{y}), \mathbf{y})\right)^{-1} \nabla \mathbf{h}(\mathbf{x}(\mathbf{y}))^{T}
$$

where $\nabla_{\mathbf{x}}^{2} L(\mathbf{x}(\mathbf{y}), \mathbf{y})$ is the Hessian of the Lagrangian function that is assumed to be positive definite at any (local) minimizer.

The Toy Example

minimize

$$
\left(x_{1}-1\right)^{2}+\left(x_{2}-1\right)^{2}
$$

subject to $\quad x_{1}+2 x_{2}-1=0, \quad 2 x_{1}+x_{2}-1=0$.

$$
\begin{gathered}
L(\mathbf{x}, \mathbf{y})=\left(x_{1}-1\right)^{2}+\left(x_{2}-1\right)^{2}-y_{1}\left(x_{1}+2 x_{2}-1\right)-y_{2}\left(2 x_{1}+x_{2}-1\right) \\
x_{1}=0.5 y_{1}+y_{2}+1, \quad x_{2}=y_{1}+0.5 y_{2}+1 \\
\phi(\mathbf{y})=-1.25 y_{1}^{2}-1.25 y_{2}^{2}-2 y_{1} y_{2}-2 y_{1}-2 y_{2} \\
\nabla \phi(\mathbf{y})=\binom{2.5 y_{1}+2 y_{2}+2}{2 y_{1}+2.5 y_{2} 1+2}
\end{gathered}
$$

$$
\nabla^{2} \phi(\mathbf{y})=-\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)^{-1}\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right)^{T}=-\left(\begin{array}{cc}
2.5 & 2 \\
2 & 2.5
\end{array}\right)
$$

The Fisher Example again

$$
\begin{array}{ll}
\operatorname{minimize} & -5 \log \left(2 x_{1}+x_{2}\right)-8 \log \left(3 x_{3}+x_{4}\right) \\
\text { subject to } & x_{1}+x_{3}=1, \quad x_{2}+x_{4}=1, \quad \mathbf{x} \geq 0
\end{array}
$$

$L(\mathbf{x}(\geq \mathbf{0}), \mathbf{y})=-5 \log \left(2 x_{1}+x_{2}\right)-8 \log \left(3 x_{3}+x_{4}\right)-y_{1}\left(x_{1}+x_{3}-1\right)-y_{2}\left(x_{2}+x_{4}-1\right)$.
Start from $\mathbf{y}^{0}>\mathbf{0}$, at the k th step, compute \mathbf{x}^{k+1} from

$$
\mathbf{x}^{k+1}=\arg \min _{\mathbf{x} \geq \mathbf{0}} L\left(\mathbf{x}(\geq \mathbf{0}), \mathbf{y}^{k}\right)
$$

then let

$$
\mathbf{y}^{k+1}=\mathbf{y}^{k}-\frac{1}{\beta}\left(A \mathbf{x}^{k+1}-\mathbf{b}\right)
$$

Farkas Lemma for Nonlinear Constraints I

Consider the convex constrained system:

$$
\begin{array}{lll}
\text { (CCS) } & \min & \mathbf{0}^{T} \mathbf{x} \\
& \text { s.t. } & c_{i}(\mathbf{x}) \geq 0, i=1, \ldots, m,
\end{array}
$$

where $c_{i}($.$) are concave functions and the Lagrangian Function is given by$

$$
L(\mathbf{x}, \mathbf{y})=-\mathbf{y}^{T} \mathbf{c}(\mathbf{x})=-\sum_{i=1}^{m} y_{i} c_{i}(\mathbf{x}), \mathbf{y} \geq \mathbf{0}
$$

Again, let

$$
\phi(\mathbf{y}):=\inf _{\mathbf{x}} L(\mathbf{x}, \mathbf{y}) .
$$

Theorem 1 If there exists $\mathrm{y} \geq 0$ such that $\phi(\mathbf{y})>0$, then (CSS) is infeasible.
The proof is directly from the dual objective function $\phi(\mathbf{y})$ is a homogeneous function and the dual has its objective value unbounded from above.

Farkas Lemma for Nonlinear Constraints II

Consider the system, for a parameter $b \geq 0$,

$$
\begin{gathered}
-x_{1}^{2}-\left(x_{2}-1\right)^{2}+b \geq 0, \quad\left(y_{1} \geq 0\right) \\
-x_{1}^{2}-\left(x_{2}+1\right)^{2}+b \geq 0, \quad\left(y_{2} \geq 0\right) \\
L(\mathbf{x}, \mathbf{y})=y_{1}\left(x_{1}^{2}+\left(x_{2}-1\right)^{2}-b\right)+y_{2}\left(x_{1}^{2}+\left(x_{2}+1\right)^{2}-b\right)
\end{gathered}
$$

Then, if $y_{1}+y_{2} \neq 0$,

$$
\phi(\mathbf{y})=\frac{4 y_{1} y_{2}-b\left(y_{1}+y_{2}\right)^{2}}{y_{1}+y_{2}}, \quad\left(y_{1}, y_{2}\right) \geq 0
$$

When $b \geq 1, \phi(\mathbf{y}) \leq 0$; and, otherwise, one can choose $y_{1}=y_{2}=y>0$ such that

$$
\phi(\mathbf{y})=2(1-b) y>0
$$

which implies that the original constrained system is infeasible.

The Augmented Lagrangian Function

For equality constraints $\{\mathrm{x}: \mathrm{h}(\mathrm{x})=\mathbf{0}\}$, in both theory and practice, we can consider an augmented Lagrangian function (ALF)

$$
L_{a}(\mathbf{x}, \mathbf{y}, \mathbf{s})=f(\mathbf{x})-\mathbf{y}^{T} \mathbf{h}(\mathbf{x})-\mathbf{s}^{T} \mathbf{c}(\mathbf{x})+\frac{\rho}{2}\|\mathbf{h}(\mathbf{x})\|^{2}
$$

for some positive parameter ρ, which corresponds to an equivalent problem of (??):

$$
f^{*}:=\min \quad f(\mathbf{x})+\frac{\beta}{2}\|\mathbf{h}(\mathbf{x})\|^{2} \quad \text { s.t. } \quad \mathbf{h}(\mathbf{x})=\mathbf{0}
$$

Note that, although at feasibility the additional square term in objective is redundant, it helps to improve strict convexity of the Lagrangian function.

For the Fisher example:

$$
\begin{aligned}
& L_{a}(\mathbf{x}(\geq \mathbf{0}), \mathbf{y}) \\
= & -5 \log \left(2 x_{1}+x_{2}\right)-8 \log \left(3 x_{3}+x_{4}\right)-y_{1}\left(x_{1}+x_{3}-1\right)-y_{2}\left(x_{2}+x_{4}-1\right) \\
& +\frac{\beta}{2}\left(\left(x_{1}+x_{3}-1\right)^{2}+\left(x_{2}+x_{4}-1\right)^{2}\right) .
\end{aligned}
$$

The Augmented Lagrangian Dual

Now the dual function:

$$
\begin{equation*}
\phi_{a}(\mathbf{y})=\min _{\mathbf{x} \in X} L_{a}(\mathbf{x}, \mathbf{y}) \tag{1}
\end{equation*}
$$

and the dual problem

$$
\begin{equation*}
\left(f^{*} \geq\right) \phi_{a}^{*}:=\max \quad \phi_{a}(\mathbf{y}) \tag{2}
\end{equation*}
$$

Note that the dual function approximately satisfies $\frac{1}{\beta}$-Lipschitz condition (see Chapter 14 of L\&Y). For the convex optimization case, say $\mathbf{h}(\mathbf{x})=A \mathbf{x}-\mathbf{b}$, we have

$$
\nabla^{2} L_{a}(\mathbf{x}, \mathbf{y})=\nabla^{2} f(\mathbf{x})+\beta\left(A^{T} A\right)
$$

