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Recall Rules to Construct the Lagrangian Dual I

min  f(x)

(GCO)
st.  ¢x) (<,=,>) 0,i=1,....,m,

e All multipliers are dual variables.

e Derive the LDC
Vf(x)=y' Ve(x)

If no X appeared in an equation, set it as an equality constraint for the dual; otherwise, express x in
terms of y and replace x in the Lagrange function, which becomes the Dual objective. (This may be

very difficult ...)

e Add the MSC as dual constraints.
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The Lagrangian Dual of LP with Bound Constraints I

Sometimes the dual can be constructed by simple reasoning: consider
(LP) minimize c'x
subjectto Ax =b, —e < x < e ([|x][cc < 1);

Let the Lagrangian multipliers be y for equality constraints. Then the Lagrangian dual objective would be

L . o . o T T T .
o(y) = _elgnjgeL(X,Y) = Jof (c—A'y)'x+Dby];

where if (¢ — ATy)j < 0, z; = 1;and otherwise, z;, = —1.
Therefore, the Lagrangian dual is

(LDP) maximize bly —|c— Alyl:

subjectto 'y € R™.
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The Lagrangian Dual of LP with the Log-Barrier | I

For a fixed 11 > 0, consider the problem

min  ¢'x —py i, log(x;)
s.t. Ax = b,
x>0

Again, the non-negativity constraints can be “ignored” if the feasible region has an ”interior”, that is, any
minimizer must have x (1) > 0. Thus, the Lagrangian function would be simply given by

L(x,y) =c'x—p ) log(z;) —y" (Ax —b) = (c — ATy)"x — ) log(z;) +b"y.

71=1 71=1

Then, the Lagrangian dual objective (we implicitly need x > 0 for the function to be defined)

o(y) :=inf L(x,y) = inf |(c — ATy)"x—p) log(z;) +b'y

g=1
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The Lagrangian Dual of LP with the Log-Barrier Il I

First, from the view point of the dual, the dual needs to choose y such that ¢ — ATy > 0, since

otherwise the primal can choose x > 0 to make ¢(y ) go to —oc.

Now for any given y such that ¢ — ATy > 0, the inf problem has a unique finite close-form minimizer x
Yy Yy

[
(c —ATy);’

ij = V] = 1, ceey 1.

Thus,

d(y) ="y +p ) log(c— A"y); +nu(1 —log(p)).
j=1
Therefore, the dual problem, for any fixed (1, can be written as
max ¢(y) = np(l — log(p)) + max [bTy + 41 3 log(e — ATy);].

y o

This is actually the LP dual with the Log-Barrier on dual inequality constraints ¢ — ATy > 0.

5



MS&E314: Optimization in ML&DS Lecture Note #06

The Dual of SVM '

minimizex »,.5 B3 + p|/x]|?
subjectto  a) x+xo + S > 1, Vi, (y, > 0)
—bix—zo+5>1,V] (ys >0)
B8>0.(ax>0)

L(X7 Lo, 67 Yar Yo, O‘) — 5+MHXH2_yz(ATX+er+/6e_e)_Yg(_BTX_$Oe+/6e_e)_&6'

VxL(:) =2ux — Ay, + By, = 0, (replace x)
Voo L(-) = —ely, + ely, = 0, (dual constraint)
VsL(-) =1—-ely, — ey, — a = 0. (dual constraint)
Then the dual objective is

—1
EHAYCL — BYbH2 + eTya + eTYb-
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The Lagrangian Dual of LP with the Fisher Market I

max  »_,.pw;log(ulx;)
st. D epXi=b, VjelG
SCZj 2 O, V’i,j,
The Lagrangian function would be simply given by
L(x; >0,i€ B,y) = sz log( u X;)— sz — Z(wz 1og(uZT -y x;)+bly.
1€eB 1€B 1€B

Then, the Lagrangian dual objective, for any given y > 0, would be

¢(y):= sup L(x;,i€ B,y)= inf Z(wzlog(u? ) —yix;) +bly.

x;>0,2€B = iCB
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The Lagrangian Dual of LP with the Fisher Market Il I

For each 1 € I3, the sup-solution is

W :
Lijj* = ‘ > 0, j*:argminy—], ZCZ]:O\V/]#]*
Yj T Uig

Thus,

o(y) =bly — sz log (mm[y—j]> + Zwi(log(wi) —1).

u. .
i€B I Mg i€B
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The gradient and Hessian of ¢ I

Let x(y) be a minimizer. Then

Thus,
Voly) =Vfx(y))'Vx(y) -y’ Vh(x(y))Vx(y) — h(x(y))
= (Vf(x(y)" —y"Vh(x(y)))Vx(y) — h(x(y))
= —h(x(y)).

Similarly, we can derive

V24(y) = —Vh(x(y)) (V2L(x(y),y)) " Vh(x(y))",

where V2 L(x(y), y) is the Hessian of the Lagrangian function that is assumed to be positive definite at

any (local) minimizer.
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The Toy Example I

minimize (1 — 1)% + (29 — 1)?
subjectto x1 + 229 —1=0, 21 +29—1=0.
Lx,y) = (21 —1)* + (22 — 1)* —y1(21 + 229 — 1) — y2(221 + 25 — 1).
1 =0.9y1 +y2 + 1, x90 =7y1 + 0.5y2 + 1.

o(y) = —1.25y7 — 1.25y5 — 2y192 — 2y1 — 24ps.

2.5y1 + 2y2 + 2

Vo(y) = :
2y1 + 2.5y21 + 2
—1 T
V2gb() 1 2 2 0 1 2 2.0 2
y = — — —
2 1 0 2 2 1 2 2.5
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The Fisher Example again I

minimize ~ —5log(2x1 + x2) — 8log(3x3 + z4)
subjectto x1 +x3=1, 29+ x24=1, x> 0.

L(x(>0),y) = —5log(2x1 + x2) — 8log(3ws + x4) —y1(z1 + 23 — 1) — y2(w2 + 24 — 1).

Start from y° > 0, at the kth step, compute x*+1 from

x" = argmin L(x(> 0),y"),

then let
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Farkas Lemma for Nonlinear Constraints | '

Consider the convex constrained system:

min 0%{'x
(CCS)

st.  ¢(x) > 0,1=1,..,m,

where ¢;(.) are concave functions and the Lagrangian Function is given by

L(x,y) = -y c(x) = — Zyici(X)a y = 0.

Again, let
o(y) = inf L(x,y).

Theorem 1 If there exists y > 0 such that ¢(y) > 0, then (CSS) is infeasible.

The proof is directly from the dual objective function ¢(y ) is a homogeneous function and the dual has its
objective value unbounded from above.
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Farkas Lemma for Nonlinear Constraints Il '

Consider the system, for a parameter b > 0,

—zf — (22— 1) +b0>0, (y1=0)
—zf —(z2+1)°+b>0, (y2>0)

L(x,y) = y1 (27 + (22 — 1) = b) + y2(2] + (z2 + 1)° — b).

Then, if y1 + 1o # 0,
¢()_4wm—$@r+mf
Y Y1 T+ Y2
When b > 1, ¢(y) < 0; and, otherwise, one can choose y; = 3> = 3 > 0 such that

o(y) =2(1-b)y >0

which implies that the original constrained system is infeasible.

) (ylayQ) ZO
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The Augmented Lagrangian Function I

For equality constraints {x : h(x) = 0}, in both theory and practice, we can consider an augmented
Lagrangian function (ALF)

P

La(x,y,8) = f(x) =y "h(x) = s'c(x) + T |[h(x)]’

for some positive parameter p, which corresponds to an equivalent problem of (??):
f*:i=min f(x)+Z2|hx)|?> st h(x)=0.

Note that, although at feasibility the additional square term in objective is redundant, it helps to improve
strict convexity of the Lagrangian function.

For the Fisher example:

Lq,(x(>0),y)
= —5log(2z; + x2) — 8log(3xs + 24) —y1(x1 + 23 — 1) —yo2(w2 + 24 — 1)
‘1—%((331 + T3 — 1>2 + (5132 + Ty — 1>2>°
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The Augmented Lagrangian Dual I

Now the dual function:

da(y) = min Lo(x, y); (1)
and the dual problem
(f* 2)¢ :==max  Pa(y). (2)

Note that the dual function approximately satisfies %—Lipsohitz condition (see Chapter 14 of L&Y).

For the convex optimization case, say h(x) = Ax — b, we have

V2L (x,y) = V3f(x) + B(AT A).
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