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Recall Rules to Construct the Lagrangian Dual

(GCO)
min f(x)

s.t. cix) (≤,=,≥) 0, i = 1, ...,m,

• All multipliers are dual variables.

• Derive the LDC

∇f(x) = yT∇c(x)

If no x appeared in an equation, set it as an equality constraint for the dual; otherwise, express x in

terms of y and replace x in the Lagrange function, which becomes the Dual objective. (This may be

very difficult ...)

• Add the MSC as dual constraints.
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The Lagrangian Dual of LP with Bound Constraints

Sometimes the dual can be constructed by simple reasoning: consider

(LP ) minimize cTx

subject to Ax = b, −e ≤ x ≤ e (∥x∥∞ ≤ 1);

Let the Lagrangian multipliers be y for equality constraints. Then the Lagrangian dual objective would be

ϕ(y) = inf
−e≤x≤e

L(x,y) = inf
−e≤x≤e

[
(c−ATy)Tx+ bTy

]
;

where if (c−ATy)j ≤ 0, xj = 1; and otherwise, xj = −1.

Therefore, the Lagrangian dual is

(LDP ) maximize bTy − ∥c−ATy∥1
subject to y ∈ Rm.
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The Lagrangian Dual of LP with the Log-Barrier I

For a fixed µ > 0, consider the problem

min cTx− µ
∑n

j=1 log(xj)

s.t. Ax = b,

x ≥ 0

Again, the non-negativity constraints can be “ignored” if the feasible region has an ”interior”, that is, any

minimizer must have x(µ) > 0. Thus, the Lagrangian function would be simply given by

L(x,y) = cTx− µ
n∑

j=1

log(xj)− yT (Ax− b) = (c−ATy)Tx− µ
n∑

j=1

log(xj) + bTy.

Then, the Lagrangian dual objective (we implicitly need x > 0 for the function to be defined)

ϕ(y) := inf
x

L(x,y) = inf
x

(c−ATy)Tx− µ

n∑
j=1

log(xj) + bTy

 .
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The Lagrangian Dual of LP with the Log-Barrier II

First, from the view point of the dual, the dual needs to choose y such that c−ATy > 0, since

otherwise the primal can choose x > 0 to make ϕ(y) go to −∞.

Now for any given y such that c−ATy > 0, the inf problem has a unique finite close-form minimizer x

xj =
µ

(c−ATy)j
, ∀j = 1, ..., n.

Thus,

ϕ(y) = bTy + µ

n∑
j=1

log(c−ATy)j + nµ(1− log(µ)).

Therefore, the dual problem, for any fixed µ, can be written as

max
y

ϕ(y) = nµ(1− log(µ)) + max
y

[bTy + µ
n∑

j=1

log(c−ATy)j ].

This is actually the LP dual with the Log-Barrier on dual inequality constraints c−ATy ≥ 0.
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The Dual of SVM

minimizex,x0,β β + µ∥x∥2

subject to aTi x+ x0 + β ≥ 1, ∀i, (ya ≥ 0)

−bT
j x− x0 + β ≥ 1, ∀j, (yb ≥ 0)

β ≥ 0. (α ≥ 0)

L(x, x0, β,ya,yb, α) = β+µ∥x∥2−yT
a (A

Tx+x0e+βe−e)−yT
b (−BTx−x0e+βe−e)−αβ.

∇xL(·) = 2µx−Aya +Byb = 0, (replace x)

∇x0L(·) = −eTya + eTyb = 0, (dual constraint)

∇βL(·) = 1− eTya − eTyb − α = 0. (dual constraint)

Then the dual objective is
−1

4µ
∥Aya −Byb∥2 + eTya + eTyb.
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The Lagrangian Dual of LP with the Fisher Market

max
∑

i∈B wi log(u
T
i xi)

s.t.
∑

i∈B xi = b, ∀j ∈ G

xij ≥ 0, ∀i, j,

The Lagrangian function would be simply given by

L(xi ≥ 0, i ∈ B,y) =
∑
i∈B

wi log(u
T
i xi)−yT (

∑
i∈B

xi−b) =
∑
i∈B

(wi log(u
T
i xi)−yTxi)+bTy.

Then, the Lagrangian dual objective, for any given y > 0, would be

ϕ(y) := sup
xi≥0,i∈B

L(xi, i ∈ B,y) = inf
xi≥0,i∈B

∑
i∈B

(wi log(u
T
i xi)− yTxi) + bTy.
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The Lagrangian Dual of LP with the Fisher Market II

For each i ∈ B, the sup-solution is

xij∗ =
wi

yj∗
> 0, j∗ = argmin

j

yj
uij

, xij = 0 ∀j ̸= j∗.

Thus,

ϕ(y) = bTy −
∑
i∈B

wi log

(
min
j

[
yj
uij

]

)
+

∑
i∈B

wi(log(wi)− 1).
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The gradient and Hessian of ϕ

Let x(y) be a minimizer. Then

ϕ(y) = f(x(y))− yTh(x(y))

Thus,

∇ϕ(y) = ∇f(x(y))T∇x(y)− yT∇h(x(y))∇x(y)− h(x(y))

= (∇f(x(y))T − yT∇h(x(y)))∇x(y)− h(x(y))

= −h(x(y)).

Similarly, we can derive

∇2ϕ(y) = −∇h(x(y))
(
∇2

xL(x(y),y)
)−1 ∇h(x(y))T ,

where ∇2
xL(x(y),y) is the Hessian of the Lagrangian function that is assumed to be positive definite at

any (local) minimizer.
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The Toy Example

minimize (x1 − 1)2 + (x2 − 1)2

subject to x1 + 2x2 − 1 = 0, 2x1 + x2 − 1 = 0.

L(x,y) = (x1 − 1)2 + (x2 − 1)2 − y1(x1 + 2x2 − 1)− y2(2x1 + x2 − 1).

x1 = 0.5y1 + y2 + 1, x2 = y1 + 0.5y2 + 1.

ϕ(y) = −1.25y21 − 1.25y22 − 2y1y2 − 2y1 − 2y2.

∇ϕ(y) =

 2.5y1 + 2y2 + 2

2y1 + 2.5y21 + 2

 ,

∇2ϕ(y) = −

 1 2

2 1

 2 0

0 2

−1  1 2

2 1

T

= −

 2.5 2

2 2.5


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The Fisher Example again

minimize −5 log(2x1 + x2)− 8 log(3x3 + x4)

subject to x1 + x3 = 1, x2 + x4 = 1, x ≥ 0.

L(x(≥ 0),y) = −5 log(2x1 + x2)− 8 log(3x3 + x4)− y1(x1 + x3 − 1)− y2(x2 + x4 − 1).

Start from y0 > 0, at the kth step, compute xk+1 from

xk+1 = argmin
x≥0

L(x(≥ 0),yk),

then let

yk+1 = yk − 1

β
(Axk+1 − b).
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Farkas Lemma for Nonlinear Constraints I

Consider the convex constrained system:

(CCS)
min 0Tx

s.t. ci(x) ≥ 0, i = 1, ...,m,

where ci(.) are concave functions and the Lagrangian Function is given by

L(x,y) = −yT c(x) = −
m∑
i=1

yici(x), y ≥ 0.

Again, let

ϕ(y) := inf
x

L(x,y).

Theorem 1 If there exists y ≥ 0 such that ϕ(y) > 0, then (CSS) is infeasible.

The proof is directly from the dual objective function ϕ(y) is a homogeneous function and the dual has its

objective value unbounded from above.
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Farkas Lemma for Nonlinear Constraints II

Consider the system, for a parameter b ≥ 0,

−x2
1 − (x2 − 1)2 + b ≥ 0, (y1 ≥ 0)

−x2
1 − (x2 + 1)2 + b ≥ 0, (y2 ≥ 0)

L(x,y) = y1(x
2
1 + (x2 − 1)2 − b) + y2(x

2
1 + (x2 + 1)2 − b).

Then, if y1 + y2 ̸= 0,

ϕ(y) =
4y1y2 − b(y1 + y2)

2

y1 + y2
, (y1, y2) ≥ 0

When b ≥ 1, ϕ(y) ≤ 0; and, otherwise, one can choose y1 = y2 = y > 0 such that

ϕ(y) = 2(1− b)y > 0

which implies that the original constrained system is infeasible.
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The Augmented Lagrangian Function

For equality constraints {x : h(x) = 0}, in both theory and practice, we can consider an augmented

Lagrangian function (ALF)

La(x,y, s) = f(x)− yTh(x)− sT c(x) +
ρ

2
∥h(x)∥2

for some positive parameter ρ, which corresponds to an equivalent problem of (??):

f∗ := min f(x) + β
2 ∥h(x)∥

2 s.t. h(x) = 0.

Note that, although at feasibility the additional square term in objective is redundant, it helps to improve

strict convexity of the Lagrangian function.

For the Fisher example:

La(x(≥ 0),y)

= −5 log(2x1 + x2)− 8 log(3x3 + x4)− y1(x1 + x3 − 1)− y2(x2 + x4 − 1)

+β
2 ((x1 + x3 − 1)2 + (x2 + x4 − 1)2).
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The Augmented Lagrangian Dual

Now the dual function:

ϕa(y) = min
x∈X

La(x,y); (1)

and the dual problem

(f∗ ≥)ϕ∗
a := max ϕa(y). (2)

Note that the dual function approximately satisfies 1
β -Lipschitz condition (see Chapter 14 of L&Y).

For the convex optimization case, say h(x) = Ax− b, we have

∇2La(x,y) = ∇2f(x) + β(ATA).
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