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Recall Transportation Problem

min
∑m

i=1

∑n
j=1 cijxij

s.t.
∑n

j=1 xij = si, ∀i = 1, ...,m∑m
i=1 xij = dj , ∀j = 1, ..., n

xij ≥ 0, ∀i, j.
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Transportation Dual: Economic Interpretation

max
∑m

i=1 siui +
∑n

j=1 djvj

s.t. ui + vj ≤ cij , ∀i, j.
ui: supply site unit price

vi: demand site unit price

ui + vj ≤ cij : competitiveness
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Algorithmic Applications: Optimal Value Function and Shadow Prices

z(b) = minimize cTx

subject to Ax = b, x ≥ 0.

Suppose a new right-hand-vector b+ such that

b+k = bk + δ and b+i = bi, ∀i ̸= k.

Then, the optimal dual solution y∗ has a property

y∗k = (z(b+)− z(b))/δ

as long as y∗ remains the dual optimal solution for b+, because

z(b+) = (b+)Ty∗ = z(b) + δ · y∗k.

Thus, the optimal dual value is the rate of the net change of the optimal objective value over the net

change of an entry of the right-hand-vector resources, i.e.,

∇z(b) = y∗.
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Application in the Wassestein Barycenter Problem

Find distribution of xi, i = 1, 2, 3, 4 to minimize

min WDl(x) +WDm(x) +WDr(x)

s.t. x1 + x2 + x3 + x4 = 9, xi ≥ 0, i = 1, 2, 3, 4.

The objective is a nonlinear function, but its gradient vector ∇WDl(x), ∇WDm(x) and ∇WDl(x)

are shadow prices of the three sub-transportation problems –popularly used in Hierarchy Optimization.
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The Dual of the Reinforcement Learning LP

Recall the cost-to-go value of the reinforcement learning LP problem:

maximizey
∑m

i=1 yi

subject to y1 − γpT
j y ≤ cj , j ∈ A1

...

yi − γpT
j y ≤ cj , j ∈ Ai

...

ym − γpT
j y ≤ cj , j ∈ Am.

minimizex
∑

j∈A1
cjxj+ ... +

∑
j∈Am

cjxj

subject to
∑

j∈A1
(e1 − γpj)xj+ ... +

∑
j∈Am

(em − γpj)xj = e,

... xj ... ≥ 0, ∀j,
where ei is the unit vector with 1 at the ith position and 0 everywhere else.
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Interpretation of the Dual of the RL-LP

Variable xj , j ∈ Ai, is the state-action frequency or called flux, or the expected present value of the

number of times that an individual is in state i and takes state-action j.

Thus, solving the problem entails choosing a state-action frequencies/fluxes that minimizes the expected

present value of total costs for the infinite horizon, where the RHS is (1; 1; 1; 1; 1; 1):

x: (01) (02) (11) (12) (21) (22) (31) (32) (41) (51) b

c: 0 0 0 0 0 0 0 0 1 0

(0) 1 1 0 0 0 0 0 0 0 0 1

(1) −γ 0 1 1 0 0 0 0 0 0 1

(2) 0 −γ/2 −γ 0 1 1 0 0 0 0 1

(3) 0 −γ/4 0 −γ/2 −γ 0 1 1 0 0 1

(4) 0 −γ/8 0 −γ/4 0 −γ/2 −γ 0 1 0 1

(5) 0 −γ/8 0 −γ/4 0 −γ/2 0 −γ −γ 1− γ 1

where state 5 is the absorbing state that has a infinite loops to itself.
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The optimal dual solution is

x∗
01 = 1, x∗

11 = 1 + γ, x∗
21 = 1 + γ + γ2, x∗

32 = 1 + γ + γ2 + γ3, x∗
41 = 1,

x∗
51 = 1+2γ+γ2+γ3+γ4

1−γ .
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The Maze Runner Example: Complementarity Condition

The LP optimal Cost-to-Go values are y∗1 = 0, y∗1 = 0, y∗2 = 0, y∗3 = 0, y∗4 = 1:

maximizey y0 + y1 + y2 + y3 + y4 + y5

subject to y0 − γy1 ≤ 0, (x∗
01 = 1)

y0 − γ(0.5y2 + 0.25y3 + 0.125y4) ≤ 0, (x∗
02 = 0)

y1 − γy2 ≤ 0, (x∗
11 = 1 + γ)

y1 − γ(0.5y3 + 0.25y4) ≤ 0, (x∗
12 = 0)

y2 − γy3 ≤ 0, (x∗
21 = 1 + γ + γ2)

y2 − γ(0.5y4) ≤ 0, (x∗
22 = 0)

y3 − γy4 ≤ 0, (x∗
31 = 0)

y3 ≤ 0, (x∗
32 = 1 + γ + γ2 + γ3)

y4 − γy5 ≤ 1, (x∗
41 = 1)

y5 − γy5 = 0. (x∗
51 = 1+2γ+γ2+γ3+γ4

1−γ )
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Dual of Information Markets

max πTx− z

s.t. Ax− e · z ≤ 0,

x ≤ q,

x ≥ 0.

πTx: the optimistic amount can be collected.

z: the worst-case amount need to pay to the winning bids.

min qTy

s.t. ATp+ y ≥ π,

eTp = 1,

(p,y) ≥ 0.

p represents the state prices or probability distributions.
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Dual Interpretation: Regression using Important Data Samples

Note that

yj = max{0, πj − aTj p}, ∀j.

so that

min
∑

j max{0, πj − aTj p}
s.t. eTp = 1,

p ≥ 0.

The max{0, ·} is called ReLu function in AI.

Dual Interpretation: Find the probability estimations such that low-bids are automatically

uncounted/removed.
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Strictly Complementarity Condition in Information Markets

xj > 0 aTj p+ yj = πj and yj ≥ 0 so that aTj p ≤ πj

0 < xj < qj yj = 0 so that aTj p = πj

xj = qj yj > 0 so that aTj p < πj

xj = 0 aTj p+ yj > πj and yj = 0 so that aTj p > πj

The price is Fair:

pT (Ax− e · z) = 0 implies pTAx = pTe · z = z;

that is, the worst case cost equals the worth of total shares. Moreover, if a lower bid wins the auction, so

does the higher bid on any same type of bids.
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World Cup Information Market Result

Order: #1 #2 #3 #4 #5 State Price

Argentina 1 0 1 1 0 0.2

Brazil 1 0 0 1 1 0.35

Italy 1 0 1 1 0 0.2

Germany 0 1 0 1 1 0.25

France 0 0 1 0 0 0

Bidding Price:π 0.75 0.35 0.4 0.95 0.75

Quantity limit:q 10 5 10 10 5

Order fill:x∗ 5 5 5 0 5

Question: How to make the dual prices unique and the market online?
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General Auction-Market

Consider problem:

maximizex
∑n

t=1 πtxt (or ut(xt))

subject to
∑n

t=1 aitxt ≤ bi, ∀i = 1, ...,m

0 ≤ xt ≤ 1, ∀t = 1, ..., n

Each bid/activity t requests a bundle of m resources, and the payment is πt.
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order 1(t = 1) order 2(t = 2) ..... Inventory(b)

Price(πt) $100 $30 ...

Decision x1 x2 ...

Pants 1 0 ... 100

Shoes 1 0 ... 50

T-shirts 0 1 ... 500

Jacket 0 0 ... 200

Socks 1 1 ... 1000

16



MS&E314: Optimization in ML&DS Lecture Note #04

Dual of the Auction-Market Problem

minimizex bTp+
∑n

j=1 zj

subject to pTat − πt + zt ≥ 0 ∀j = 1, ..., n

(p, z) ≥ 0

Strict Complementarity/Optimality Conditions:

xt =


0 if πt < pTat

1 if πt > pTat

(0 1) if πt = pTat

p are itemized prices of Goods!
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Sensor Network Localization

Recall the system of nonlinear equations for xi ∈ Rd:

∥xi − xj∥ = dij , ∀ (i, j) ∈ Nx, i < j,

∥ak − xj∥ = dkj , ∀ (k, j) ∈ Na,

where ak are possible points whose locations are known, often called anchors.

One can equivalently represent it as

∥xi − xj∥2 = d2ij , ∀ (i, j) ∈ Nx, i < j,

∥ak − xj∥2 = d2kj , ∀ (k, j) ∈ Na,

which becomes a system of multi-variable-quadratic equations.
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SOCP Relaxation for SNL

System of SOCP Feasibility for xi ∈ R2:

∥xi − xj∥ ≤ dij , ∀ (i, j) ∈ Nx, i < j,

∥ak − xj∥ ≤ dkj , ∀ (k, j) ∈ Na,

where ak are points whose locations are known.

Consider the case where a single unknown point x1 is connected to three anchors ak, k = 1, 2, 3

onR2:

∥ak − x∥ ≤ dk, k = 1, 2, 3
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The Standard SOCP Relaxation and Dual

minimize 0

δk = dk, (λk), k = 1, 2, 3

yk + x = ak, (zk), k = 1, 2, 3

(δk;yk) ∈ SOCP, k = 1, 2, 3

The Dual

maximize
∑

k(dkλk + aTk zk)∑
k zk = 0,

(−λk;−zk) ∈ SOCP, k = 1, 2, 3

Suppose the true sensor location is b, the dual can be written as

minimize
∑

k(−dkλk + (ak − b)T zk)∑
k zk = 0,

(λk; zk) ∈ SOCP, k = 1, 2, 3
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Optimality Condition of the SOCP Relaxation

The conditions would be

zk = (λk/dk)(ak − b)

and ∑
k

(λk/dk)(ak − b) = 0

Thus, λk represents a positive force in direction ak − b, and the total forces should be balanced along

the three directions.

If b is in the convex-hull, this can be achieved so that the optimal solution of the SOCP relaxation is

x∗ = b.

What happen if NOT?

21



MS&E314: Optimization in ML&DS Lecture Note #04

SDP Relaxation for SNL

Find a symmetric matrix Z ∈ R(2+n)×(2+n) such that

Z1:2,1:2 = I

(0; ei − ej)(0; ei − ej)
T • Z = d2ij , ∀ i, j ∈ Nx, i < j,

(ak;−ej)(ak;−ej)
T • Z = d2kj , ∀ k, j ∈ Na,

Z ≽ 0.

This is semidefinite programming feasibility system (with a null objective).

When this relaxation is exact?

One case is that the single unknown point x1 is connected to three anchors ak, k = 1, 2, 3.

In general, if the rank of a feasible Z is 2, then it solves the original graph relaxation problem.
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Duality Theorem for SNL

Theorem 1 Let Z̄ be a feasible solution for SDP and Ū be an optimal slack matrix of the dual. Then,

1. complementarity condition holds: Z̄ • Ū = 0 or Z̄Ū = 0;

2. Rank(Z̄) + Rank(Ū) ≤ 2 + n;

3. Rank(Z̄) ≥ 2 and Rank(Ū) ≤ n.

An immediate result from the theorem is the following:

Corollary 1 If an optimal dual slack matrix has rank n, then every solution of the SDP has rank 2, that is,

the SDP relaxation solves the original problem exactly.
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Theoretical Analyses on SNL-SDP Relaxation

A sensor network is 2-universally-localizable (UL) if there is a unique localization in R2 and there is no

xj ∈ Rh, j = 1, ..., n, where h > 2, such that

∥xi − xj∥2 = d2ij , ∀ i, j ∈ Nx, i < j,

∥(ak;0)− xj∥2 = d̂2kj , ∀ k, j ∈ Na.

The latter says that the problem cannot be localized in a higher dimension space where anchor points are

simply augmented to (ak;0) ∈ Rh, k = 1, ...,m.
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Figure 1: One sensor-Two anchors: Not Localizable
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Figure 2: Two sensor-Three anchors: Strongly Localizable
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Figure 3: Two sensor-Three anchors: Localizable but not Strongly
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Figure 4: Two sensor-Three anchors: Not Localizable
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Figure 5: Two sensor-Three anchors: Strongly Localizable
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Universally-Localizable Problems (ULP)

Theorem 2 The following SNL problems are Universally-Localizable:

• If every edge length is specified, then the sensor network is 2-universally-localizable (Schoenberg

1942).

• There is a sensor network (trilateral graph), with O(n) edge lengths specified, that is

2-universally-localizable (So 2007).

• If one sensor with its edge lengths to at least three anchors (in general positions) specified, then it is

2-universally-localizable (So and Y 2005).

30



MS&E314: Optimization in ML&DS Lecture Note #04

ULPs Can be Localized as Convex Optimization

Theorem 3 (So and Y 2005) The following statements are equivalent:

1. The sensor network is 2-universally-localizable;

2. The max-rank solution of the SDP relaxation has rank 2;

3. The solution matrix has Y = XTX or Tr(Y −XTX) = 0 .

When an optimal dual (stress) slack matrix has rank n, then the problem is 2-strongly-localizable-problem

(SLP). This is a sub-class of ULP.

Example: if one sensor with its edge lengths to three anchors (in general positions) are specified, then it is

2-strongly-localizable.
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One Sensor and three Anchors

Find x1 ∈ R2 such that

∥ak − x1∥2 = d̂2kj , for k = 1, 2, 3,

Let x̄1 be the true position of the sensor.
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SDP Relaxation Standard Form

(1; 0; 0)(1; 0; 0)T • Z = 1,

(0; 1; 0)(0; 1; 0)T • Z = 1,

(1; 1; 0)(1; 1; 0)T • Z = 2,

(ak;−1)(ak;−1)T • Z = d̂2k1, for k = 1, 2, 3,

Z ≽ 0.

Z̄ =

 I x̄1

x̄T
1 x̄T

1 x̄1

 = (I, x̄1)
T (I, x̄1)

is a feasible rank-2 solution for the relaxation.
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Dual Slack Matrices

 (
w1 + w3 w3

w3 w2 + w3

) +
∑3

k=1 ŵk1aka
T
k −

∑3
k=1 ŵk1ak

−(
∑3

k=1 ŵk1ak)
T ŵ11 + ŵ21 + ŵ31

 ≽ 0.

Does an optimal slack matrix U have rank 1 with

w1 + w2 + 2w3 +
3∑

k=1

ŵk1d̂
2
k1 = 0?
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Optimal Dual Slack Matrix

If we choose w•’s such that

Ū = (−x̄1; 1)(−x̄1; 1)
T ,

then, Ū ≽ 0 and Ū • X̄ = 0 so that Ū is an optimal slack matrix for the dual and its rank is 1.
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How to Select w’s

We only need to consider choosing ŵ’s:∑3
k=1 ŵk1ak = x̄1

ŵ11 + ŵ21 + ŵ31 = 1.
or

∑3
k=1 ŵk1(ak − x̄1) = 0

ŵ11 + ŵ21 + ŵ31 = 1.

This system always has a solution if ak is not co-linear.

Then, select the rest  w1 + w3 w3

w3 w2 + w3

 = x̄1x̄
T
1 −

3∑
k=1

ŵk1aka
T
k
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Other Conditions?

Even if ak is co-linear, the system ∑3
k=1 ŵk1(ak − x̄1) = 0

ŵ11 + ŵ21 + ŵ31 = 1

may still have a solution w•?

Physical interpretation: ŵkj is a stress/force on the edge and all stresses are balanced or at an

equilibrium state. The objective represents the potential of the system.
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Localize All Localizable Points

Theorem 4 (So and Y 2005) If a problem (graph) contains a subproblem (subgraph) that is

universally-localizable, then the submatrix solution corresponding to the subproblem in the SDP solution

has rank 2. That is, the SDP relaxation computes a solution that localize all possibly localizable unknown

sensor points.

The proof is similar to the proof of Theorem 3 by removing the notes that is not localizable.

Implication: Diagonals of “co-variance” matrix

Ȳ − X̄T X̄,

Ȳjj − ∥x̄j∥2, can be used as a measure to see whether jth sensor’s estimated position is reliable or not.
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Uncertainty Analysis and Confidence Measure

Alternatively, each xj ’s can be viewed as uncertain points from the incomplete/uncertain distance

measures. Then the solution to the SDP problem provides the first and second moment estimation

(Bertsimas and Y 1998).

Generally, x̄j is a point estimate of xj and Ȳij is a point estimate xT
i xj .

Consequently,

Ȳjj − ∥x̄j∥2,

which is the individual variance estimation of sensor j, gives an interval estimation for its true position

(Biswas and Y 2004).
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