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Recall Transportation Problem I

min D0 D0 €T

S.i. Z?:1 oy =s;, Vi=1,....m
m :
Z’Lzl :CIL‘] :@ VJ — 1’ ...,TL
\
Tij >0, Vi, 7.
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Transportation Dual: Economic Interpretation I

pY la még
max ., Sju; + Z?:1 d;v;

S.t. U; + Vj < Cij, VZ,]
u; . supply site unit price

v, . demand site unit price

u; +v; < ¢;j: competitiveness
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Algorithmic Applications: Optimal Value Function and Shadow Prices I

z(b) = minimize c’x

subject to X > 0.

Suppose a new right-hand-vector b™ such that
by =b,+3d and b =b;, Vi#k.
Then, the optimal dual solution y™* has a property
yr = (2(b™) — 2(b))/0
as long as y* remains the dual optimal solution for b™, because
2(b") = (b")"y" = 2(b) +d - yj.

Thus, the optimal dual value is the rate of the net change of the optimal objective value over the net
change of an entry of the right-hand-vector resources, i.e.,

Vz(b) =(y")
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Application in the Wassestein Barycenter Problem I

3 3T—/3 3
36 163 3 36— e
7

N
L QY

e

X0 | ®X,

Find distribution of 2;, 7 = 1, 2, 3, 4 to minimize
Y,
min (W D;(x) 4 WD,,(x)+ WD,(x)
s.t. 1+ T2 +x3+14 =9, x; >0,1=1,2,3,4.

The objective is a nonlinear function, but its gradient vector VW D, (x), VIW D,,,(x) and VIV D;(x)

are shadow prices of the three sub-transportation problems —popularly used in Hierarchy Optimization.
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The Dual of the Reinforcement Learning LP I

Recall the cost-to-go value of the reinforcement learning LP problem:

. ™m
maximizey, > ., Y

subjectto Yy — vpjTy < ¢,j€eA

Q\,:;SL'

Yi =P}y < ¢, jEA

Ym — ,yp;Ty S Cj, ] < -Am

&y' minimizex Zj€A1 CjT i+ —I—ZjeAm Cj T

subjectto > .. 4 (€1 —vPj)zit+ o +Dica (€m —APj)T; = e,
X Z O, V],
where e; is the unit vector with 1 at the 7th position and 0 everywhere else.
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Interpretation of the Dual of the RL-LP I

Variable =, 7 € A, is the state-action frequency or called flux, or the expected present value of the

number of times that an individual is in state 2 and takes state-action ;.

Thus, solving the problem entails choosing a state-action frequencies/fluxes that minimizes the expected
present value of total costs for the infinite horizon, where the RHS is (1; 1;1;1;1;1):

x: | (01)  (02) (1) (12) (21) (22) (31) (32) (41) (51) | b
C: 0 0 0 0 0 0 0 0 1 0

0) | 1 1 o o o 0o 0 0 0o 0 |1
1) | —y 0 1 1 o o 0o o0 0 o0 |1
2)] 0 —v/2 —v 0 1 1 0 0 0 0 1
3)] 0 —/4 0 —v/2 —v 0 1 1 0 0 1
4] 0 —/8 0 —/4 0 —/2 —x 0 1 0 1
G)] 0 —/8 0 -4 0 —//2 0 -y -y 1-9]1

where state 5 is the absorbing state that has a infinite loops to itself.
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The Maze Runner Example: Complementarity Condition I

The LP optimal Cost-to-Go values are y] = 0,y; = 0,y5 =0,y = 0,y; = 1:

maximizey, Yo+ Y1+ Y2 +Ys + Ys+ Ys

subject to Yo — YY1 <0, (x5, =1)
Yo — Y(0.5y2 + 0.25y3 + 0.125y4) <0, (zj, = 0)
Y1 — VY2 <0, (21, =1+9)
y1 — v(0.5y3 + 0.25y4) <0, (z75 =0)
Y2 — VY3 <0, (@3 =14+7+7°)
y2 — 7(0.5y4) <0, (235 = 0)
Yz — VY4 <0, (z3; =0)
Y3 <0, (@ =1+v+7"+7°)
Yya — VY <1 (a3 =1)
Ys — VY5 = 0. (25, = 1+27+17i;r73+74)
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Dual of Information Markets '

max X —Z

e

st. Ax—e-z gO,b@
X §q7<”7'

x >0.

7! x: the optimistic amount can be collected.

z: the worst-case amount need to pay to the winning bids.

wm
min q'y i\?ﬂ 15
st. Alp+y >, ¥4:2 T - p
elp =1, gyj = |
(p7Y) Z 0. P =0~ \a.J—>/ O V—)'

P represents the state prices or probability distributions.
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Dual Interpretation: Regression using Important Data Samples I

Note that
y; = max{0, m; — aij}, V7.
so that
min > max{0, m; — a;p}
s.t. elp =1,
p =>0.

= X
=%, Wi-a; 0 >o
The max{0, -} is calfed RelLu fungtion in Al.
<A< S =0

R
Dual Interpretation: Find the probability estimations such that low-bids are automatlcglly - U

uncounted/removed. _, —
%/]:D/ W, Ty |,5(<O
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Strictly Complementarity Condition in Information Markets I

x; >0 a?p#—yj:m and y; ZOsothatafpgﬂj
0<x; <gj yj:()sothatafp:ﬂj

X = qj y; > 0 so that afp < T

x; =0 a;r’p—l—yj > T andyj:()sothatafp>7rj

The price is Fair:

pl(Ax —e-2)=0 imples p'Ax =ple-z=z;

that is, the worst case cost equals the worth of total shares. Moreover, if a lower bid wins the auction, so

does the higher bid on any same type of bids.
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World Cup Information Market Result
PBytzeV

Order: H#1 | #2 | #3 | #4 | #5 | State Price
Argentina 1 0 1 1 0
Brazil 1 0 0 1 1
ltaly 1 0 1 1 0
Germany 0 1 0 1 1
France 0 0 1 0 0

Bidding Price:m | 0.75 | 0.35 | 0.4 | 0.95 | 0.75

Quantity limit:q | 10 5 10 | 10 5
Order fill:x* @ D D 0 5!

Question: How to make the dual prices unique and the market online?
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L/\J,bl\"L L\g.)

General Auction-Market '

+4h bud
maximizex Y., T2 (0 w
subjectto > | @ity § p Vi=1,...m

U@ =1y ¢ o,

2
Each bid/activity ¢ requests a bundle of 1 resources, and the payment is 7;.

Consider problem:

’3 Vi=1,...,n
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W =7 v
/\_,M—\y
order1(t = 1) | order2(t = 2) | ... Inventory(b)
Price(r;) $100 @o \VAV/N
Decision T To
Pants 1 0 100 %’ P
Shoes -1 0 9
T-shirts 0 1 (500 > “
Jacket 0 0 @ y,
]
Socks 1 1 1000
—7
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Dual of the Auction-Market Problem

minimizex Tp @

subject to <+ Y4 )

o
p’%\izo &-{:3—@

Strict Complementarity/Optimality Conditions:

p /‘\@ W\
0 if 71 <@Fat

(O T =14 1 it m, > pla,
L (O 1) if Ty = pTat

p are itemized prices of Goods!
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Sensor Network Localization '

Recall the system of nonlinear equations for xX; & R4

Ix; — x|, = dij, ¥V (i,5) € Ny, i < J,
|lar — x| = dk;, V (k,j) € Na,

where aj are possible points whose locations are known, often called anchors.

One can equivalently represent it as

&C&P { ’|X’i_Xj“3:d§j7v<7:7j)€Na:7 1< 7,
Haki _Xsz — J%ja V(k,]) € Ng,

which becomes a system of multi-variable-quadratic equations.
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SOCP Relaxation for SNL '

System of SOCP Feasibility for x; € R?:
Hak o X]H S dkj? \% <k7]> S NCL?
where aj. are points whose locations are known.

Consider the case where a single unknow pomt X ig connected to three anchors a;, k£ = 1,2.3

onR?:
|ak—XH <d, k=1,2,3
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The Standard SOCP Relaxation and Dual '

minimize 0
O = di, (M), k=1,2,3
v +X=ayg, (zr), k=1,2,3
(0k;yk) € SOCP, k=1,2,3

The Dual
maximize Y., (dx Ak + ai zx)

Zk Zp — 07
(_)\kS —Zk;) e SOCP, k=1,2,3

Suppose the true sensor location is b, the dual can be written as
minimize Y, (—dgAr + (ar — b)'z)

Zk Zp — 07
(Ak;zk) e SOCP, k=1,2,3
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Optimality Condition of the SOCP Relaxation I

The conditions would be

zi = (A /di)(ar — b)
and

> (/di)(ax —b) =0

k
Thus, A\ represents a positive force in direction a;. — b, and the total forces should be balanced along
the three directions.

If b is in the convex-hull, this can be achieved so that the optimal solution of the SOCP relaxation is
x* = b.

What happen if NOT?
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SDP Relaxation for SNL '

Find a symmetric matrix Z € R(2T7)%(247) gych that

N\
£1:2,1:2 =1 ‘
&
(0;e; —€;)(0;e; —e;)! o Z :dgj,Vi,jENx, 1 < 7,
(ax; —e;)(ay; —e;)! o Z = dij, Vk,7€ Ng,
A ~ 0.

This is semidefinite programming feasibility system (with a null objective).
When this relaxation is exact?
One case is that the single unknown point x is connected to three anchors a;, k = 1, 2, 3.

In general, if the rank of a feasible / is 2, then it solves the original graph relaxation problem.
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Duality Theorem for SNL I

Theorem 1 Let Z be a feasible solution for SDP and U be an optimal slack matrix of the dual. Then,

1. complementarity condition holds: 7 e U=00rZU = 0;

2. Rank(Z) + Rank(U) < 2 4+ n; <\- 7~ w~t 2
3. Rank(Z) > 2 and Rank(U) g—n % 5— =

—

An immediate result from the theorem is the following:

Corollary 1 If an optimal dual slack matrix has rank n, then every solution of the SDP has rank 2, that is,
the SDP relaxation solves the original problem exactly.
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Theoretical Analyses on SNL-SDP Relaxation I

A sensor network is 2-universally-localizable (UL) if there is a unique localization in R? and there is no
xj € R" j=1,...,n,where h > 2, such that

sz _ijHZ - dzzja Vi,g € Ny, 1 <,

|(ax;0) — z;]|* = di;, Yk, j € Na.

The latter says that the problem cannot be localized in a higher dimension space where anchor points are
simply augmented to (a;;0) € R, k =1, ..., m.
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151
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Figure 2: Two sensor-Three anchors: Strongly Localizable
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Figure 3: Two sensor-Three anchors: Localizable but not Strongly
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161

Figure 4: Two sensor-Three anchors: Not Localizable
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161

Figure 5: Two sensor-Three anchors: Strongly Localizable
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Universally-Localizable Problems (ULP) I

Theorem 2 The following SNL problems are Universally-Localizable:

e If every edge length is specified, then the sensor network is 2-universally-localizable (Schoenberg
1942).

® There is a sensor network (trilateral graph), with O(n) edge lengths specified, that is
2-universally-localizable (So 2007).

e [f one sensor with its edge lengths to at least three anchors (in general positions) specified, then it is
2-universally-localizable (So and Y 2005).
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ULPs Can be Localized as Convex Optimization I

Theorem 3 (So and Y 2005) The following statements are equivalent:
1. The sensor network is 2-universally-localizable;
v = 2
2. The max-rank solution of the SDP relaxation has rank 2 Ve L %\

3. The solution matrix has Y = X' X or THY — X' X) =0. Rz

When an optimal dual (stress) slack matrix has rank 72, then the problem is 2-strongly-localizable-problem
(SLP). This is a sub-class of ULP.

Example: if one sensor with its edge lengths to three anchors (in general positions) are specified, then it is
2-strongly-localizable.
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c,0Cp

One Sensor and three Anchors '
g >
=
Find 1 € R? such that (=) 4/

law — x1[|> = d3,, fork = 1,2,3,

Let X1 be the true position of the sensor.
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SDP Relaxation Standard Form '

(1;0;0)(1;0;0)" e Z =1,

(0;1;0)(0;1;0)" ¢ Z =1,

(1;1;0)(1;1;0)T 0 Z = 2,

(ap; —1)(ag; —1)! ¢ Z = d%l, fork =1,2,3,

Z =0

_ I =

Z ! — (I7 XI)T(Ia }_(1)
xI' zlz,

is a feasible rank-2 solution for the relaxation.
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Dual Slack Matrices '

3 N T 3 "
)+ D i Wkiaga,  — >, Wk1ak
w3 Wy + W3 0.

w1 + w3 w3

~ ]

) . . . .
¢ _<Zi:1 ’wmak)T w11 + W21 + W31

Does an optimmatrix U have rank 1 with

3
w1 + wWo + 2?1]3 + Zwkldil = 07
k=1
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Optimal Dual Slack Matrix I

U= (—z1;1)(—x%1;1)",

If we choose w,e’s such that

then, U = 0 and U @ X = () so that U is an optimal slack matrix for the dual and its rank is 1.
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How to Select w’s '

We only need to consider choosing w’s:

3 AN — 3 A J—
Zk:1 Wri1ap = X1 Zk:l wyi(ay —x1) =0
or
w11 + Wo1 + w3 = 1. w11 + W1 + W31 = 1.
This system always has a solution if aj is not co-linear.

Then, select the rest

3
w1 + w3 w3 7 . T
= X1X7 — E WEg1Ag AL
w3 w2 + W3 k=1
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Other Conditions? '

Even if a; is co-linear, the system

may still have a solution we?

Physical interpretation: wy; is a stress/force on the edge and all stresses are balanced or at an

equilibrium state. The objective represents the potential of the system.
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Localize All Localizable Points '

Theorem 4 (So and Y 2005) If a problem (graph) contains a subproblem (subgraph) that is
universally-localizable, then the submatrix solution corresponding to the subproblem in the SDP solution

has rank 2. That is, the SDP relaxation computes a solution that localize all possibly localizable unknown
sensor points.

The proof is similar to the proof of Theorem 3 by removing the notes that is not localizable.

Implication: Diagonals of “co-variance” matrix

Y - XTX,

Y;; — ||Z]|%, can be used as a measure to see whether jth sensor’s estimated position is reliable or not.
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Uncertainty Analysis and Confidence Measure I

Alternatively, each x;’s can be viewed as uncertain points from the incomplete/uncertain distance
measures. Then the solution to the SDP problem provides the first and second moment estimation
(Bertsimas and Y 1998).

Generally, 7 ; is a point estimate of x; and )71-]- is a point estimate xZT:Cj

Consequently,

which is the individual variance estimation of sensor 7, gives an interval estimation for its true position
(Biswas and Y 2004).
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