## Recall Transportation Problem

$$
\begin{array}{ccl}
\min & \sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j} & \\
\text { s.t. } & \sum_{j=1}^{n} x_{i j} & =s_{i}, \forall i=1, \ldots, m \\
& \sum_{i=1}^{m} x_{i j} & =\widehat{a}_{i} . \forall j=1, \ldots, n \\
& x_{i j} & \geq 0, \forall i, j .
\end{array}
$$



Demand
Supply

## Transportation Dual: Economic Interpretation

$$
\begin{array}{rc}
\max & \sum_{i=1}^{m} s_{i} u_{i}+\sum_{j=1}^{n} d_{j} v_{j} \\
\text { s.t. } & u_{i}+v_{j} \leq c_{i j}, \forall i, j .
\end{array}
$$

$u_{i}$ : supply site unit price
$v_{i}$ : demand site unit price
$u_{i}+v_{j} \leq c_{i j}:$ competitiveness

## Algorithmic Applications: Optimal Value Function and Shadow Prices

$$
\begin{aligned}
z(\mathbf{b})= & \text { minimize } \mathbf{c}^{T} \mathbf{x} \\
& \text { subject to } A \mathbf{x}=\mathbf{b}, \mathbf{x} \geq 0
\end{aligned}
$$

Suppose a new right-hand-vector $\mathrm{b}^{+}$such that

$$
b_{k}^{+}=b_{k}+\delta \quad \text { and } \quad b_{i}^{+}=b_{i}, \forall i \neq k
$$

Then, the optimal dual solution $\mathrm{y}^{*}$ has a property

$$
y_{k}^{*}=\left(z\left(\mathbf{b}^{+}\right)-z(\mathbf{b})\right) / \delta
$$

as long as $\mathrm{y}^{*}$ remains the dual optimal solution for $\mathrm{b}^{+}$, because

$$
z\left(\mathbf{b}^{+}\right)=\left(\mathbf{b}^{+}\right)^{T} \mathbf{y}^{*}=z(\mathbf{b})+\delta \cdot y_{k}^{*}
$$

Thus, the optimal dual value is the rate of the net change of the optimal objective value over the net change of an entry of the right-hand-vector resources, i.e.,

$$
\nabla z(\mathbf{b})=\mathbf{y}^{*}
$$

## Application in the Wassestein Barycenter Problem



Find distribution of $x_{i}, i=1,2,3,4$ to minimize


The objective is a nonlinear function, but its gradient vector $\nabla W D_{l}(\mathbf{x}), \nabla W D_{m}(\mathbf{x})$ and $\nabla W D_{l}(\mathbf{x})$ are shadow prices of the three sub-transportation problems -popularly used in Hierarchy Optimization.

## The Dual of the Reinforcement Learning LP

Recall the cost-to-go value of the reinforcement learning LP problem:

$$
\begin{array}{rc}
\operatorname{maximize}_{\mathbf{y}} & \sum_{i=1}^{m} y_{i} \\
\text { subject to } & y_{1}-\gamma \mathbf{p}_{j}^{T} \mathbf{y} \quad \leq \quad c_{j}, j \in \mathcal{A}_{1}
\end{array}
$$

$$
\text { Pr.ank } \quad y_{i}-\gamma \mathbf{p}_{j}^{T} \mathbf{y} \leq c_{j}, j \in \mathcal{A}_{i}
$$

$$
y_{m}-\gamma \mathbf{p}_{j}^{T} \mathbf{y} \leq c_{j}, j \in \mathcal{A}_{m}
$$

$$
\operatorname{minimize}_{\mathbf{x}} \quad \sum_{j \in \mathcal{A}_{1}} c_{j} x_{j}+\quad \ldots \quad+\sum_{j \in \mathcal{A}_{m}} c_{j} x_{j}
$$

where $\mathbf{e}_{i}$ is the unit vector with 1 at the $i$ th position and 0 everywhere else.

$$
\begin{aligned}
& \text { subject to } \quad \sum_{j \in \mathcal{A}_{1}}\left(\mathbf{e}_{1}-\gamma \mathbf{p}_{j}\right) x_{j}+\ldots+\sum_{j \in \mathcal{A}_{m}}\left(\mathbf{e}_{m}-\gamma \mathbf{p}_{j}\right) x_{j}=\mathbf{e}, \\
& x_{j} \quad \ldots \quad 0, \forall j,
\end{aligned}
$$

## Interpretation of the Dual of the RL-LP

Variable $x_{j}, j \in \mathcal{A}_{i}$, is the state-action frequency or called flux, or the expected present value of the number of times that an individual is in state $i$ and takes state-action $j$.

Thus, solving the problem entails choosing a state-action frequencies/fluxes that minimizes the expected present value of total costs for the infinite horizon, where the RHS is $(1 ; 1 ; 1 ; 1 ; 1 ; 1)$ :

| $\mathrm{x}:$ | $\left(0_{1}\right)$ | $\left(0_{2}\right)$ | $\left(1_{1}\right)$ | $\left(1_{2}\right)$ | $\left(2_{1}\right)$ | $\left(2_{2}\right)$ | $\left(3_{1}\right)$ | $\left(3_{2}\right)$ | $\left(4_{1}\right)$ | $\left(5_{1}\right)$ | b |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{c}:$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |  |
| $(0)$ | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| $(1)$ | $-\gamma$ | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| $(2)$ | 0 | $-\gamma / 2$ | $-\gamma$ | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
| $(3)$ | 0 | $-\gamma / 4$ | 0 | $-\gamma / 2$ | $-\gamma$ | 0 | 1 | 1 | 0 | 0 | 1 |
| $(4)$ | 0 | $-\gamma / 8$ | 0 | $-\gamma / 4$ | 0 | $-\gamma / 2$ | $-\gamma$ | 0 | 1 | 0 | 1 |
| $(5)$ | 0 | $-\gamma / 8$ | 0 | $-\gamma / 4$ | 0 | $-\gamma / 2$ | 0 | $-\gamma$ | $-\gamma$ | $1-\gamma$ | 1 |

where state 5 is the absorbing state that has a infinite loops to itself.


The optimal dual solution is

$$
\begin{gathered}
x_{01}^{*}=1, x_{11}^{*}=1+\gamma, x_{21}^{*}=1+\gamma+\gamma^{2}, x_{32}^{*}=1+\gamma+\gamma^{2}+\gamma^{3}, x_{41}^{*}=1 \\
x_{51}^{*}=\frac{1+2 \gamma+\gamma^{2}+\gamma^{3}+\gamma^{4}}{1-\gamma}
\end{gathered}
$$

## The Maze Runner Example: Complementarity Condition

The LP optimal Cost-to-Go values are $y_{1}^{*}=0, y_{1}^{*}=0, y_{2}^{*}=0, y_{3}^{*}=0, y_{4}^{*}=1$ :

$$
\begin{array}{ccl}
\operatorname{maximize}_{\mathbf{y}} & y_{0}+y_{1}+y_{2}+y_{3}+y_{4}+y_{5} & \\
\text { subject to } & y_{0}-\gamma y_{1} & \leq 0,\left(x_{01}^{*}=1\right) \\
& y_{0}-\gamma\left(0.5 y_{2}+0.25 y_{3}+0.125 y_{4}\right) & \leq 0,\left(x_{02}^{*}=0\right) \\
y_{1}-\gamma y_{2} & \leq 0,\left(x_{11}^{*}=1+\gamma\right) \\
y_{1}-\gamma\left(0.5 y_{3}+0.25 y_{4}\right) & \leq 0,\left(x_{12}^{*}=0\right) \\
y_{2}-\gamma y_{3} & \leq 0,\left(x_{21}^{*}=1+\gamma+\gamma^{2}\right) \\
y_{2}-\gamma\left(0.5 y_{4}\right) & \leq 0,\left(x_{22}^{*}=0\right) \\
y_{3}-\gamma y_{4} & \leq 0,\left(x_{31}^{*}=0\right) \\
y_{3} & \leq 0,\left(x_{32}^{*}=1+\gamma+\gamma^{2}+\gamma^{3}\right) \\
y_{4}-\gamma y_{5} & \leq 1,\left(x_{41}^{*}=1\right) \\
y_{5}-\gamma y_{5} & & =0 .\left(x_{51}^{*}=\frac{1+2 \gamma+\gamma^{2}+\gamma^{3}+\gamma^{4}}{1-\gamma}\right)
\end{array}
$$

## Dual of Information Markets

$$
\begin{aligned}
\max \quad & \quad \pi^{T} \mathbf{x}-z \\
\text { s.t. } \quad A \mathbf{x}-\mathbf{e} \cdot z & \leq \mathbf{0}, \leftarrow \mathscr{f} \\
\mathbf{x} & \leq \mathbf{q}, \leftarrow \mathbf{y} \\
\mathbf{x} & \geq 0
\end{aligned}
$$

$\pi^{T} \mathbf{x}$ : the optimistic amount can be collected.
$z$ : the worst-case amount need to pay to the winning bids.

$$
\left.\min \begin{array}{rl}
\mathbf{q}^{T} \mathbf{y} \\
\text { s.t. } \quad A^{T} \mathbf{p}+\mathbf{y} & \geq \pi \\
\mathbf{e}^{T} \mathbf{p} & =1, \\
(\mathbf{p}, \mathbf{y}) & \geq 0
\end{array}\right\} \begin{aligned}
& \sum_{j=1}^{n} q_{j} y_{j} \\
& y_{j} \geqslant \pi_{j}-a_{j}^{\top} p \\
& \sum p_{j}=1 \\
& p \geq 0, \quad y ; \geqslant 0
\end{aligned}
$$

p represents the state prices or probability distributions.

## Dual Interpretation: Regression using Important Data Samples

Note that
so that

$$
y_{j}=\max \left\{0, \pi_{j}-\mathbf{a}_{j}^{T} \mathbf{p}\right\}, \forall j
$$

$$
\left.\begin{array}{rl}
\min & \sum_{j} \max \left\{0, \pi_{j}-\mathbf{a}_{j}^{T} \mathbf{p}\right\} \\
\text { s.t. } & \mathbf{e}^{T} \mathbf{p}=1 \\
& \mathbf{p} \geq 0
\end{array}\right\}
$$

The $\max \{0, \cdot\}$ is called ReLu function in Al .

$$
x_{j}=q_{j}, \quad u_{j}-a_{i}^{-} p^{x}>0
$$

Dual Interpretation: Find the probability estimations such that low-bids are automatically $\pi \bar{\pi}-u_{j}^{\bar{j}} D^{x}=0$ uncounted/removed.

$$
x_{j}=0, \quad \bar{u}_{j}-a_{j}^{j} \rho^{k}<0
$$

## Strictly Complementarity Condition in Information Markets

$$
\begin{array}{|c|c|}
\hline x_{j}>0 & \mathbf{a}_{j}^{T} \mathbf{p}+y_{j}=\pi_{j} \text { and } y_{j} \geq 0 \text { so that } \mathbf{a}_{j}^{T} \mathbf{p} \leq \pi_{j} \\
0<x_{j}<q_{j} & y_{j}=0 \text { so that } \mathbf{a}_{j}^{T} \mathbf{p}=\pi_{j} \\
x_{j}=q_{j} & y_{j}>0 \text { so that } \mathbf{a}_{j}^{T} \mathbf{p}<\pi_{j} \\
x_{j}=0 & \mathbf{a}_{j}^{T} \mathbf{p}+y_{j}>\pi_{j} \text { and } y_{j}=0 \text { so that } \mathbf{a}_{j}^{T} \mathbf{p}>\pi_{j} \\
\hline
\end{array}
$$

The price is Fair:

$$
\mathbf{p}^{T}(A \mathbf{x}-\mathbf{e} \cdot z)=0 \quad \text { implies } \quad \mathbf{p}^{T} A \mathbf{x}=\mathbf{p}^{T} \mathbf{e} \cdot z=z
$$

that is, the worst case cost equals the worth of total shares. Moreover, if a lower bid wins the auction, so does the higher bid on any same type of bids.

## World Cup Information Market Result

| Order: | $\# 1$ | $\# 2$ | $\# 3$ | $\# 4$ | $\# 5$ | State Price |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Argentina | 1 | 0 | 1 | 1 | 0 | 0.2 |
| Brazil | 1 | 0 | 0 | 1 | 1 | 0.35 |
| Italy | 1 | 0 | 1 | 1 | 0 | 0.2 |
| Germany | 0 | 1 | 0 | 1 | 1 | 0.25 |
| France | 0 | 0 | 1 | 0 | 0 | 0 |
| Bidding Price: $\pi$ | 0.75 | 0.35 | 0.4 | 0.95 | 0.75 |  |
| Quantity limit:q | 10 | 5 | 10 | 10 | 5 |  |
| Order fill:x* | 5 | 5 | 5 | 0 | 5 |  |

Question: How to make the dual prices unique and the market online?
$w_{b} \ln \left(u_{t}\right)$

## General Auction-Market

Consider problem:
t th bid
$\operatorname{maximize}_{\mathbf{x}} \sum_{t=1}^{n} \pi_{t} x_{t}\left(\operatorname{or} u_{t}\left(x_{t}\right)\right.$
subject to $\quad \sum_{t=1}^{n} a_{i t} x_{t} \leq b_{i}, \quad \mathrm{P} \quad \forall i=1, \ldots, m$
$0 \leq x_{t} \leq 1, \quad \chi_{t} \in\{0,1\} \quad \forall t=1, \ldots, n$
Each bid/activity $t$ requests a bundle of $m$ resources, and the payment is $\pi_{t}$.



Strict Complementarity/Optimality Conditions:

$$
\text { n-di: } \begin{cases}0 & \text { if } \pi_{t}<\underline{\mathbf{p}} \mathbf{x}_{t}=\left\{\begin{array}{ll}
\mathbf{a}_{t} \\
1 & \text { if } \pi_{t}>\mathbf{p}^{T} \mathbf{a}_{t} \\
(01) & \text { if } \pi_{t}=\mathbf{p}^{T} \mathbf{a}_{t}
\end{array}\right. \text { m }\end{cases}
$$

p are itemized prices of Goods!

## Sensor Network Localization

Recall the system of nonlinear equations for $\mathbf{x}_{i} \in R^{d}$ :

$$
\begin{aligned}
& \left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|_{2}=d_{i j}, \forall(i, j) \in N_{x}, i<j \\
& \left\|\mathbf{a}_{k}-\mathbf{x}_{j}\right\|_{2}=d_{k j}, \forall(k, j) \in N_{a}
\end{aligned}
$$

where $\mathbf{a}_{k}$ are possible points whose locations are known, often called anchors.
One can equivalently represent it as

$$
\text { QCQP }\left\{\begin{array}{l}
\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|_{2}^{2}=d_{i j}^{2}, \forall(i, j) \in N_{x}, i<j \\
\left\|\mathbf{a}_{k}-\mathbf{x}_{j}\right\|_{2}^{2}=d_{k j}^{2}, \forall(k, j) \in N_{a}
\end{array}\right.
$$


which becomes a system of multi-variable-quadratic equations.

## SOCP Relaxation for SNL

System of SOCP Feasibility for $\mathbf{x}_{i} \in R^{2}$ :

$$
\left\{\begin{array}{l}
\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\| \leq d_{i j}, \forall(i, j) \in N_{x}, i<j, \\
\left\|\mathbf{a}_{k}-\mathbf{x}_{j}\right\| \leq d_{k j}, \forall(k, j) \in N_{a}
\end{array}\right.
$$


where $\mathbf{a}_{k}$ are points whose locations are known.
Consider the case where a single unknown point $\mathbf{x}_{1}$ is connected to three anchors $\mathbf{a}_{k}, k=1,2,3$ on $R^{2}$ :


## The Standard SOCP Relaxation and Dual

$$
\begin{array}{ll}
\operatorname{minimize} & 0 \\
& \delta_{k}=d_{k},\left(\lambda_{k}\right), k=1,2,3 \\
& \mathbf{y}_{k}+\mathbf{x}=\mathbf{a}_{k},\left(\mathbf{z}_{k}\right), k=1,2,3 \\
& \left(\delta_{k} ; \mathbf{y}_{k}\right) \in S O C P, k=1,2,3
\end{array}
$$

The Dual

$$
\begin{aligned}
\operatorname{maximize} & \sum_{k}\left(d_{k} \lambda_{k}+\mathbf{a}_{k}^{T} \mathbf{z}_{k}\right) \\
& \sum_{k} \mathbf{z}_{k}=\mathbf{0} \\
& \left(-\lambda_{k} ;-\mathbf{z}_{k}\right) \in S O C P, k=1,2,3
\end{aligned}
$$

Suppose the true sensor location is $b$, the dual can be written as

$$
\begin{aligned}
\operatorname{minimize} & \sum_{k}\left(-d_{k} \lambda_{k}+\left(\mathbf{a}_{k}-\mathbf{b}\right)^{T} \mathbf{z}_{k}\right) \\
& \sum_{k} \mathbf{z}_{k}=\mathbf{0} \\
& \left(\lambda_{k} ; \mathbf{z}_{k}\right) \in S O C P, k=1,2,3
\end{aligned}
$$

## Optimality Condition of the SOCP Relaxation

The conditions would be

$$
\mathbf{z}_{k}=\left(\lambda_{k} / d_{k}\right)\left(\mathbf{a}_{k}-\mathbf{b}\right)
$$

and


$$
\sum_{k}\left(\lambda_{k} / d_{k}\right)\left(\mathbf{a}_{k}-\mathbf{b}\right)=\mathbf{0}
$$

Thus, $\lambda_{k}$ represents a positive force in direction $\mathbf{a}_{k}-\mathbf{b}$, and the total forces should be balanced along the three directions.

If $b$ is in the convex-hull, this can be achieved so that the optimal solution of the SOCP relaxation is $\mathrm{x}^{*}=\mathrm{b}$.

What happen if NOT?

## SDP Relaxation for SNL

Find a symmetric matrix $Z \in \mathbf{R}^{(2+n) \times(2+n)}$ such that

$$
\begin{cases}Z_{1: 2,1: 2} & =I \\ \left(\mathbf{0} ; \mathbf{e}_{i}-\mathbf{e}_{j}\right)\left(\mathbf{0} ; \mathbf{e}_{i}-\mathbf{e}_{j}\right)^{T} \bullet Z & =d_{i j}^{2}, \forall i, j \in N_{x}, i<j \\ \left(\mathbf{a}_{k} ;-\mathbf{e}_{j}\right)\left(\mathbf{a}_{k} ;-\mathbf{e}_{j}\right)^{T} \bullet Z & =d_{k j}^{2}, \forall k, j \in N_{a} \\ Z & \succeq \mathbf{0}\end{cases}
$$

This is semidefinite programming feasibility system (with a null objective).
When this relaxation is exact?
One case is that the single unknown point $\mathbf{x}_{1}$ is connected to three anchors $\mathbf{a}_{k}, k=1,2,3$.
In general, if the rank of a feasible $Z$ is 2 , then it solves the original graph relaxation problem.

## Duality Theorem for SNL

Theorem 1 Let $\bar{Z}$ be a feasible solution for SDP and $\bar{U}$ be an optimal slack matrix of the dual. Then,

1. complementarity condition holds: $\bar{Z} \bullet \bar{U}=0$ or $\bar{Z} \bar{U}=0$;
2. $\operatorname{Rank}(\bar{Z})+\operatorname{Rank}(\bar{U}) \leq 2+n$;
3. $\operatorname{Rank}(\bar{Z}) \geq 2$ and $\operatorname{Rank}(\bar{U}) \overline{\overline{\leq}}$.. $\left(\begin{array}{l}\frac{\pi}{x} \frac{x}{y}\end{array}\right)=z$

An immediate result from the theorem is the following:
Corollary 1 If an optimal dual slack matrix has rank $n$, then every solution of the SDP has rank 2 , that is, the SDP relaxation solves the original problem exactly.

## Theoretical Analyses on SNL-SDP Relaxation

A sensor network is 2 -universally-localizable (UL) if there is a unique localization in $\mathbf{R}^{2}$ and there is no $x_{j} \in \mathbf{R}^{h}, j=1, \ldots, n$, where $h>2$, such that

$$
\begin{aligned}
& \left\|x_{i}-x_{j}\right\|^{2}=d_{i j}^{2}, \forall i, j \in N_{x}, i<j \\
& \left\|\left(a_{k} ; \mathbf{0}\right)-x_{j}\right\|^{2}=\hat{d}_{k j}^{2}, \forall k, j \in N_{a}
\end{aligned}
$$

The latter says that the problem cannot be localized in a higher dimension space where anchor points are simply augmented to $\left(a_{k} ; \mathbf{0}\right) \in \mathbf{R}^{h}, k=1, \ldots, m$.


Figure 1: One sensor-Two anchors: Not Localizable


Figure 2: Two sensor-Three anchors: Strongly Localizable


Figure 3: Two sensor-Three anchors: Localizable but not Strongly


Figure 4: Two sensor-Three anchors: Not Localizable


Figure 5: Two sensor-Three anchors: Strongly Localizable

## Universally-Localizable Problems (ULP)

Theorem 2 The following SNL problems are Universally-Localizable:

- If every edge length is specified, then the sensor network is 2-universally-localizable (Schoenberg 1942).
- There is a sensor network (trilateral graph), with $O(n)$ edge lengths specified, that is 2-universally-localizable (So 2007).
- If one sensor with its edge lengths to at least three anchors (in general positions) specified, then it is 2-universally-localizable (So and Y 2005).


## ULPs Can be Localized as Convex Optimization

Theorem 3 (So and $Y$ 2005) The following statements are equivalent:

1. The sensor network is 2 -universally-localizable;
2. The max-rank solution of the SDP relaxation has rank 2;

$$
\operatorname{Var}(z)=2
$$

3. The solution matrix has $Y=X^{T} X$ or $\operatorname{Tr}\left(Y-X^{T} X\right)=0$.


When an optimal dual (stress) slack matrix has rank $n$, then the problem is 2 -strongly-localizable-problem (SLP). This is a sub-class of ULP.

Example: if one sensor with its edge lengths to three anchors (in general positions) are specified, then it is 2 -strongly-localizable.
SOCP

## One Sensor and three Anchors

Find $x_{1} \in \mathbf{R}^{2}$ such that

$$
(\leq)
$$

$$
\left\|\mathbf{a}_{k}-\mathbf{x}_{1}\right\|^{2}=\hat{d}_{k j}^{2}, \text { for } k=1,2,3
$$



Let $\overline{\mathbf{X}}_{1}$ be the true position of the sensor.

## SDP Relaxation Standard Form

$$
\begin{aligned}
& (1 ; 0 ; 0)(1 ; 0 ; 0)^{T} \bullet Z=1 \\
& (0 ; 1 ; 0)(0 ; 1 ; 0)^{T} \bullet Z=1 \\
& (1 ; 1 ; 0)(1 ; 1 ; 0)^{T} \bullet Z=2, \\
& \left(\mathbf{a}_{k} ;-1\right)\left(\mathbf{a}_{k} ;-1\right)^{T} \bullet Z=\hat{d}_{k 1}^{2}, \text { for } k=1,2,3, \\
& Z \succeq \mathbf{0}
\end{aligned}
$$

$$
\bar{Z}=\left(\begin{array}{cc}
I & \overline{\mathbf{x}}_{1} \\
\overline{\mathbf{x}}_{1}^{T} & \bar{x}_{1}^{T} \bar{x}_{1}
\end{array}\right)=\left(I, \overline{\mathbf{x}}_{1}\right)^{T}\left(I, \overline{\mathbf{x}}_{1}\right)
$$

is a feasible rank-2 solution for the relaxation.

## Dual Slack Matrices

$$
\Delta \quad \Delta \cdot\left(\begin{array}{cc}
\left(\begin{array}{cc}
w_{1}+w_{3} & w_{3} \\
w_{3} & w_{2}+w_{3}
\end{array}\right)+\sum_{k=1}^{3} \hat{w}_{k 1} \mathbf{a}_{k} \mathbf{a}_{k}^{T} & -\sum_{k=1}^{3} \hat{w}_{k 1} a_{k} \\
& -\left(\sum_{k=1}^{3} \hat{w}_{k 1} a_{k}\right)^{T}
\end{array}\right.
$$

Does an optimars slack matrix $U$ have rank 1 with

$$
w_{1}+w_{2}+2 w_{3}+\sum_{k=1}^{3} \hat{w}_{k 1} \hat{d}_{k 1}^{2}=0 ?
$$

## Optimal Dual Slack Matrix

If we choose $w_{\bullet}$ 's such that

$$
\bar{U}=\left(-\bar{x}_{1} ; 1\right)\left(-\overline{\mathbf{x}}_{1} ; 1\right)^{T}
$$

then, $\bar{U} \succeq \mathbf{0}$ and $\bar{U} \bullet \bar{X}=0$ so that $\bar{U}$ is an optimal slack matrix for the dual and its rank is 1 .

## How to Select $w$ 's

We only need to consider choosing $\hat{w}$ 's:

$$
\begin{gathered}
\sum_{k=1}^{3} \hat{w}_{k 1} \mathbf{a}_{k}=\overline{\mathbf{x}}_{1} \\
\hat{w}_{11}+\hat{w}_{21}+\hat{w}_{31}=1 .
\end{gathered} \quad \text { or } \quad \sum_{k=1}^{3} \hat{w}_{k 1}\left(\mathbf{a} k-\overline{\mathbf{x}}_{1}\right)=\mathbf{0}
$$

This system always has a solution if $\mathbf{a}_{k}$ is not co-linear.
Then, select the rest

$$
\left(\begin{array}{cc}
w_{1}+w_{3} & w_{3} \\
w_{3} & w_{2}+w_{3}
\end{array}\right)=\overline{\mathbf{x}}_{1} \overline{\mathbf{x}}_{1}^{T}-\sum_{k=1}^{3} \hat{w}_{k 1} \mathbf{a}_{k} \mathbf{a}_{k}^{T}
$$

## Other Conditions?

Even if $\mathbf{a}_{k}$ is co-linear, the system
may still have a solution $w_{\bullet}$ ?
Physical interpretation: $\hat{w}_{k j}$ is a stress/force on the edge and all stresses are balanced or at an equilibrium state. The objective represents the potential of the system.

## Localize All Localizable Points

Theorem 4 (So and $Y$ 2005) If a problem (graph) contains a subproblem (subgraph) that is universally-localizable, then the submatrix solution corresponding to the subproblem in the SDP solution has rank 2. That is, the SDP relaxation computes a solution that localize all possibly localizable unknown sensor points.

The proof is similar to the proof of Theorem 3 by removing the notes that is not localizable.
Implication: Diagonals of "co-variance" matrix

$$
\bar{Y}-\bar{X}^{T} \bar{X}
$$

$\bar{Y}_{j j}-\left\|\bar{x}_{j}\right\|^{2}$, can be used as a measure to see whether $j$ th sensor's estimated position is reliable or not.

## Uncertainty Analysis and Confidence Measure

Alternatively, each $x_{j}$ 's can be viewed as uncertain points from the incomplete/uncertain distance measures. Then the solution to the SDP problem provides the first and second moment estimation (Bertsimas and $Y$ 1998).

Generally, $\bar{x}_{j}$ is a point estimate of $x_{j}$ and $\bar{Y}_{i j}$ is a point estimate $x_{i}^{T} x_{j}$.
Consequently,

which is the individual variance estimation of sensor $j$, gives an interval estimation for its true position (Biswas and Y 2004).

