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Primal and Dual of Conic LP

Recall the pair of

(CLP ) minimize c • x
subject to ai • x = bi, i = 1, 2, ...,m, (Ax = b), x ∈ K;

and it dual problem

(CLD) maximize bTy

subject to
∑m

i yiai + s = c, (ATy + s = c), s ∈ K∗,

where y ∈ Rm, s is called the dual slack vector/matrix, and K∗ is the dual cone of K .

Theorem 1 (Weak duality theorem) c • x− bTy = x • s ≥ 0 for any feasible x of (CLP) and (y, s) of

(CLD).

Here, operator Ax and Adjoint-Operator ATy minimic matrix-vector production Ax and its transpose

operation ATy, where

A = (a1;a2; ...;am), Ax = (a1 • x; ...;am • x), and ATy =
∑
i

yia
T
i .
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CLP Duality Theorems

The weak duality theorem shows that a feasible solution to either problem yields a bound on the value of

the other problem. We call c • x− bTy the duality gap.

Corollary 1 Let x∗ ∈ Fp and (y∗, s∗) ∈ Fd. Then, c • x∗ = bTy∗ implies that x∗ is optimal for

(CLP) and (y∗, s∗) is optimal for (CLD).

Is the reverse also true? That is, given x∗ optimal for (CLP), then there is (y∗, s∗) feasible for (CLD) and

c • x∗ = bTy∗?

This is called the Strong Duality Theorem.

“True” when K = Rn
+, that is, the polyhedral cone case, but not true in general.
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Proof of Strong Duality Theorem for LP

Let x∗ be an minimizer of (LP). Then the following system

Ax′ − bτ = 0, (x′; τ) ≥ 0, cTx′ − (cTx∗)τ = −1 < 0

must have no feasible solution (x′; τ). This is because otherwise, if τ > 0, x′/τ is feasible for (LP) and

cTx′/τ < cTx∗, which is a contradiction; and if τ = 0, x∗ + x′ is feasible for (LP) and

cT (x∗ + x′) = cTx∗ − 1 < cTx∗, which is also a contradiction. Thus, from the LP alternative system

pair II, there is y∗ feasible for

c−ATy∗ ≥ 0, −cTx∗ + bTy∗ ≥ 0.

Then, y∗ is feasible for (LD) from the first inequality; and from the weak duality theorem and the second

inequality cTx∗ − bTy∗ = 0.
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LP and LD Cases

Theorem 2 The following statements hold for every pair of (LP) and (LD) :

i) If (LP) and (LD) are both feasible, then both problems have optimal solutions and the optimal objective

values of the objective functions are equal, that is, optimal solutions for both (LP) and (LD) exist and

there is no duality gap.

ii) If (LP) or (LD) is feasible and bounded, then the other is feasible and bounded.

iii) If (LP) or (LD) is feasible and unbounded, then the other has no feasible solution.

iv) If (LP) or (LD) is infeasible, then the other is either unbounded or has no feasible solution.

A case that neither (LP) nor (LD) is feasible: c = (−1; 0), A = (0, −1), b = 1.

The proofs follow the Farkas lemma and the Weak Duality Theorem.
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The LP Primal and Dual Relation

Figure 1: Both primal and dual are infeasible
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Farkas Lemma and Duality

The Farkas lemma concerns the system the system {x : Ax = b, x ≥ 0} and its alternative

{y : −ATy ≥ 0,bTy > 0} for given data (A,b). This pair can be represented as a primal-dual LP

pair

min 0Tx

s. t. Ax = b,

x ≥ 0;

max bTy

s.t. ATy ≤ 0.

If the primal is infeasible, then the dual must be feasible and unbounded since it is always feasible.

Geometric Interpretation: Let A = [a1, a2, ...,an], then if b ̸∈ {Ax : x ≥ 0}, then there must be a

vector y where the angle between y and b is strictly acute, and the angle with aj is either right or obtuse

for all i.
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Optimality Conditions for LP

(x,y, s) ∈ (Rn
+,Rm,Rn

+) :

cTx− bTy = 0

Ax = b

−ATy − s = −c

 ,

which is a system of linear inequalities and equations. Now it is easy to verify whether or not a pair

(x,y, s) is optimal.
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Complementarity Condition

For feasible x and (y, s), xT s = xT (c−ATy) = cTx− bTy is called the complementarity gap.

If xT s = 0, then we say x and s are complementary to each other.

Since both x and s are nonnegative, xT s = 0 implies that x. ∗ s = 0 or xjsj = 0 for all j = 1, . . . , n.

x. ∗ s = 0

Ax = b

−ATy − s = −c.

This system has total 2n+m unknowns and 2n+m equations including n nonlinear equations.

Interpretation of sj = 0: the jth inequality constraint of the dual is “binding” or “active”.
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The Maze Runner Example: Complementarity Condition

The LP optimal Cost-to-Go values are y∗1 = 0, y∗1 = 0, y∗2 = 0, y∗3 = 0, y∗4 = 1:

maximizey y0 + y1 + y2 + y3 + y4 + y5

subject to y0 − γy1 ≤ 0, (x∗1 = 1)

y0 − γ(0.5y2 + 0.25y3 + 0.125y4) ≤ 0, (x∗2 = 0)

y1 − γy2 ≤ 0, (x∗3 = 1 + γ)

y1 − γ(0.5y3 + 0.25y4) ≤ 0, (x∗4 = 0)

y2 − γy3 ≤ 0, (x∗5 = 1 + γ + γ2)

y2 − γ(0.5y4) ≤ 0, (x∗6 = 0)

y3 − γy4 ≤ 0, (x∗7 = 0)

y3 ≤ 0, (x∗8 = 1 + γ + γ2 + γ3)

y4 − γy5 ≤ 1, (x∗9 = 1)

y5 − γy5 = 0. (x∗10 = 1+2γ+γ2+γ3+γ4

1−γ )
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General CLP: an SDP Example with a Duality Gap

The strong duality theorem may not hold for general convex cones:

c =


0 1 0

1 0 0

0 0 0

 ,a1 =


0 0 0

0 1 0

0 0 0

 ,a2 =


0 −1 0

−1 0 0

0 0 2


and

b =

 0

2

 .
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When Strong Duality Theorems Holds for CLP

Theorem 3 The following statements hold for every pair of (CLP) and (CLD):

i) If (CLP) and (CLD) both are feasible, and furthermore one of them have an interior, then there is no

duality gap between (CLP) and (CLD). However, one of the optimal solution may not be attainable.

ii) If (CLP) and (CLD) both are feasible and have interior, then, then both have attainable optimal solutions

with no duality gap.

iii) If (CLP) or (CLD) is feasible and unbounded, then the other has no feasible solution.

iv) If (CLP) or (CLD) is infeasible, and furthermore the other is feasible and has an interior, then the other

is unbounded.

In case i), one of the optimal solution may not be attainable although no gap.
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SDP Example with Zero-Duality Gap but not Attainable

C =

 1 0

0 0

 , A1 =

 0 1

1 0

 , and b1 = 2.

The primal has an interior, but the dual does not.
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Proof of CLP Strong Duality Theorem under Nonempty Interior Cond.

i) Let Fp be feasible and have an interior, and let z∗ be its infimum. Then we consider the alternative

system pair

Ax− bτ = 0, c • x− z∗τ < 0, (x, τ) ∈ K ×R+,

and

ATy + s = c, −bTy + κ = −z∗, (s, κ) ∈ K∗ ×R+.

But the former is infeasible, so that we have a solution for the latter. From the Weak Duality theorem, we

must have κ = 0, that is, we have a solution (y, s) such that

ATy + s = c, bTy = z∗, s ∈ K∗.

ii) We only need to prove that there exist a solution x ∈ Fp such that c • x = z∗, that is, the infimum of

(CLP) is attainable. But this is just the other side of the proof given that Fd is feasible and has an interior,

and z∗ is also the supremum of (CLD).

iii) The proof by contradiction follows the Weak Duality Theorem.
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iv) Suppose Fd is empty and Fp is feasible and have an interior. Then, we have x̄ ∈ intK and τ̄ > 0

such that Ax̄− bτ̄ = 0, (x̄, τ̄) ∈ int(K ×R+). Then, for any z∗, we again consider the alternative

system pair

Ax− bτ = 0, c • x− z∗τ < 0, (x, τ) ∈ K ×R+,

and

ATy + s = c, −bTy + s = −z∗, (s, s) ∈ K∗ ×R+.

But the latter is infeasible, so that the formal has a feasible solution for any z∗. At such an solution, if

τ > 0, we have c • (x/τ) < z∗; if τ = 0, we have x̂+ αx, where x̂ is any feasible solution for (CLP),

being feasible for (CLP) and its objective value goes to −∞ as α goes to ∞.
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The SDP Primal and Dual Relation

min

(
0 0

0 0

)
•X

s.t.

(
0 0

0 1

)
•X = 0(

0 1

1 0

)
•X = 2

X ≽ 0

max 2y2

s.t. y1

(
0 0

0 1

)
+ y2

(
0 1

1 0

)
+ S =

(
0 0

0 0

)
S ≽ 0

The Dual is feasible and bounded, but Primal is infeasible.
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Rules to Construct the Dual in General

(CLP ) minimize
∑

k ck • xk

subject to
∑

k Akxk = b,

xk ∈ Kk, ∀k.

(CLD) minimize bTy

subject to AT
k y + sk = ck, ∀k,

sk ∈ K∗
k , ∀k.

obj. coef. vector right-hand-side

right-hand-side obj. coef. vector

A AT

Max model Min model

xk ∈ K kth block-constraint slack sk ∈ K∗

xk “free” kth block-constraint slack sk = 0

ith block-constraint slack si ∈ K yi ∈ K∗

ith block-constraint slack si = 0 yi “free”

The dual of the dual is primal!

17



CME307/MS&E311: Optimization Lecture Note #04

Optimality and Complementarity Conditions for SDP

c •X − bTy = 0

AX = b

−ATy − S = −c

X,S ≽ 0

, (1)

XS = 0

AX = b

−ATy − S = −c

X,S ≽ 0

(2)
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LP, SOCP, and SDP Examples

min 2x1 + x2 + x3

s. t. x1 + x2 + x3 = 1,

(x1;x2;x3) ≥ 0.

max y

s.t. e · y + s = (2; 1; 1),

(s1; s2; s3) ≥ 0.

min 2x1 + x2 + x3

s.t. x1 + x2 + x3 = 1,

x1 −
√
x22 + x23 ≥ 0.

max y

s.t. e · y + s = (2; 1; 1),

s1 −
√
s22 + s23 ≥ 0.

For the SOCP case: 2− y ≥
√
2(1− y)2. Since y = 1 is feasible for the dual, y∗ ≥ 1 so that the dual

constraint becomes 2− y ≥
√
2(y − 1) or y ≤

√
2. Thus, y∗ =

√
2, and there is no duality gap.
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minimize

 2 .5

.5 1

 ·

 x1 x2

x2 x3


subject to

 1 .5

.5 1

 ·

 x1 x2

x2 x3

 = 1, x1 x2

x2 x3

 ≽ 0,

maximize y

subject to

 1 .5

.5 1

 y + s =

 2 .5

.5 1

 ,

s =

 s1 s2

s2 s3

 ≽ 0.
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Equivalence of Convex Optimization and CLP

The convex program can be rewritten as

(CO) minimize α

subject to c0(x)− α ≤ 0,

ci(x) ≤ 0, i = 1, 2, ...,m.

Thus, it is sufficient to consider convex optimization in a form

(CO) minimize cTx

subject to ci(x) ≤ 0, i = 1, 2, ...,m,

where ci(x), i = 1, ...,m, are convex functions of x.
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Convex Optimization and CLP continued

Consider set

{(τ ;x) : τ > 0, τci(x/τ) ≤ 0, }

and Ki be its closure. Then, it is a closed and pointed convex cone !

Then, (CO) can be written as

minimize (0; c) • (τ ;x)
subject to (1;0) • (τ ;x) = 1,

(τ ;x) ∈ K = K1∩, ...,∩Km,
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How to Construct the Dual Cone

The dual cone is the set of all points (κ; s) such that

κτ + sTx ≥ 0, ∀(τ ;x) s.t. τ > 0, τci(x/τ) ≤ 0, i = 1, ...,m.

Without loss of generality, we can set τ = 1 and the condition becomes

κ+ sTx ≥ 0, ∀x s.t. ci(x) ≤ 0, i = 1, ...,m.

Then, consider the optimization problem

ψ(s) := inf sTx

s.t. ci(x) ≤ 0, i = 1, 2, ...,m,

Then, the dual cone can be represented as

K∗ = {(κ; s) : κ+ ψ(s) ≥ 0}.
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Example: Ellipsoidal Cone and its Dual

Let convex function c1(x) =
√

xTQx− 1, where data matrix Q is PD. Then

τc1(x/τ) =
√
xTQx− τ , and {(τ ;x) : τ > 0, τci(x/τ) ≤ 0, } is called the ellipsoidal cone. If Q

is an identify matrix, it reduces to the SOCP cone.

To find the dual of the cone, we consider the optimization problem

ψ(s) := inf sTx

s.t.
√
xTQx− 1 ≤ 0, or

ψ(s) := inf sTx

s.t. xTQx ≤ 1.

The problem has a close form minimizer x = −Q−1s/∥Q−1/2s∥ so that ψ(s) = −
√

sTQ−1s, and

the dual cone can be represented as

{(κ; s) : κ−
√

sTQ−1s ≥ 0}.
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Duality Application: Robust Optimization

Consider a linear program

minimize (c+ Cu)Tx

subject to Ax = b,

x ≥ 0,

where u ≥ 0 and u ≤ e is chosen by an Adversary and beyond decision maker’s control.

Robust Min-Max Model:

minimize max{u≥0, u≤e}(c+ Cu)Tx

subject to Ax = b,

x ≥ 0.
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The Dual of Adversary’s Problem

Adversary’s (primal) problem:

maximizeu cTx+ xTCu

subject to u ≤ e,

u ≥ 0.

Dual of Adversary’s problem:

minimizey cTx+ eTy

subject to y ≥ CTx,

y ≥ 0.
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Decision Maker’s Robust Optimization Model

Robust Min-Min Model:

minimizex miny cTx+ eTy

s.t. y ≥ CTx, y ≥ 0

subject to Ax = b,

x, y ≥ 0.

which is equivalent to

minimizex,y cTx+ eTy

subject to y ≥ CTx,

Ax = b,

x, y ≥ 0.
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(Distributionally) Robust Deep-Learning I

Figure 2: Result of the DRO Learning I: Original
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(Distributionally) Robust Deep-Learning II

Figure 3: Result of the DRO Learning II: Nonrobust Result
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(Distributionally) Robust Deep-Learning III

Figure 4: Result of the DRO Learning III: DRO Result
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Duality Application: Combinatorial Auction Pricing I

Given the m different states that are mutually exclusive and exactly one of them will be true at the

maturity. A contract on a state is a paper agreement so that on maturity it is worth a notional $1 if it is on

the winning state and worth $0 if is not on the winning state. There are n orders betting on one or a

combination of states, with a price limit and a quantity limit.
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Combinatorial Auction Pricing II: an order

The jth order is given as (aj ∈ Rm
+ , πj ∈ R+, qj ∈ R+): aj is the combination betting vector where

each component is either 1 or 0

aj =


a1j

a2j

...

amj

 ,

where 1 is winning and 0 is non-winning; πj is the price limit for one such a contract, and qj is the

maximum number of contracts the better like to buy.
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World Cup Information Market

Order: #1 #2 #3 #4 #5

Argentina 1 0 1 1 0

Brazil 1 0 0 1 1

Italy 1 0 1 1 0

Germany 0 1 0 1 1

France 0 0 1 0 0

Bidding Prize:π 0.75 0.35 0.4 0.95 0.75

Quantity limit:q 10 5 10 10 5

Order fill:x x1 x2 x3 x4 x5
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Combinatorial Auction Pricing III: Pricing each state

Let xj be the number of contracts awarded to the jth order. Then, the jth better will pay the amount

πj · xj

and the total collected amount is
n∑

j=1

πj · xj = πTx

If the ith state is the winning state, then the auction organizer need to pay back n∑
j=1

aijxj


The question is, how to decide x ∈ Rn.

34



CME307/MS&E311: Optimization Lecture Note #04

Combinatorial Auction Pricing IV: LP model

max πTx− z

s.t. Ax− e · z ≤ 0,

x ≤ q,

x ≥ 0.

πTx: the optimistic amount can be collected. z: the worst-case amount need to pay back.
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Combinatorial Auction V: The dual

min qTy

s.t. ATp+ y ≥ π,

eTp = 1,

(p,y) ≥ 0.

p represents the state price.

What is y?

Price information gaps/differentials/slacks where their weighted sum we like to minimize.
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Combinatorial Auction V: (Strict) Complementarity

xj > 0 aTj p+ yj = πj and yj ≥ 0 so that aTj p ≤ πj

0 < xj < qj yj = 0 so that aTj p = πj

xj = qj yj > 0 so that aTj p < πj

xj = 0 aTj p+ yj > πj and yj = 0 so that aTj p > πj

The price is Fair:

pT (Ax− e · z) = 0 implies pTAx = pTe · z = z;

that is, the worst case cost equals the worth of total shares. Moreover, if a lower bid wins the auction, so

does the higher bid on any same type of bids.
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World Cup Information Market Result

Order: #1 #2 #3 #4 #5 State Price

Argentina 1 0 1 1 0 0.2

Brazil 1 0 0 1 1 0.35

Italy 1 0 1 1 0 0.2

Germany 0 1 0 1 1 0.25

France 0 0 1 0 0 0

Bidding Price:π 0.75 0.35 0.4 0.95 0.75

Quantity limit:q 10 5 10 10 5

Order fill:x∗ 5 5 5 0 5

Question 1: The uniqueness of dual prices?
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Combinatorial Auction Pricing VI: Convex Programming Model

max πTx− z + u(s)

s.t. Ax− e · z + s = 0,

x ≤ q,

x, s ≥ 0.

u(s): a value function for the market organizer on slack shares.

If u(·) is a strictly concave function, then the state price vector is unique.

Question 2: Online allocation?
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Duality Application: Online Linear Programming

maximizex
∑n

t=1 πtxt

subject to
∑n

t=1 aitxt ≤ bi, ∀i = 1, ...,m

0 ≤ xt ≤ 1, ∀t = 1, ..., n

Each bid/activity t requests a bundle of m resources, and the payment is πt.

Online Decision Making: we only know (n,b) at the start, but

• the (bounded) order-data of each variable xt is revealed sequentially.

• an irrevocable decision must be made as soon as an order arrives without observing or knowing the

future data.

The algorithm/mechanism quality is evaluated on the expected performance over all the permutations

comparing to the offline optimal solution, i.e., an algorithm A is c-competitive if and only if

Eσ

[
n∑

t=1

πtxt(σ,A)

]
≥ c ·OPT (A, π), ∀(A, π).
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An Example

order 1(t = 1) order 2(t = 2) ..... Inventory(b)

Price(πt) $100 $30 ...

Decision x1 x2 ...

Pants 1 0 ... 100

Shoes 1 0 ... 50

T-shirts 0 1 ... 500

Jacket 0 0 ... 200

Socks 1 1 ... 1000
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Price Observation of Online Learning I

The problem would be easy if there is ”ideal price” vector:

Bid 1(t = 1) Bid 2(t = 2) ..... Inventory(b) p∗

Bid(πt) $100 $30 ...

Decision x1 x2 ...

Pants 1 0 ... 100 $45

Shoes 1 0 ... 50 $45

T-shirts 0 1 ... 500 $10

Jackets 0 0 ... 200 $55

Hats 1 1 ... 1000 $15

Then a simple pricing rule can be applied...

Such itemized prices exist from the offline LP shadow/dual price theorem.
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Online Learning Algorithm

• Set xt = 0 for all 1 ≤ t ≤ ϵn;

• Solve the ϵ portion of the problem

maximizex
∑ϵn

t=1 πtxt

subject to
∑ϵn

t=1 aitxt ≤ ϵbi i = 1, ...,m

0 ≤ xt ≤ 1 t = 1, ..., ϵn

and get the optimal dual solution p̂ of the sample LP;

• Determine the future allocation xt as:

xt =

 0 if πt ≤ p̂Tat

1 if πt > p̂Tat

as long as aitxt ≤ bi −
∑t−1

j=1 aijxj for all i; otherwise, set xt = 0.

Online Learning: Periodically resolve the sample LP with all arrived orders and update the “ideal” prices...
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Main Theorems

Theorem 4 For any fixed 0 < ϵ < 1, there is no online algorithm for solving the linear program with

competitive ratio 1− ϵ if

B <
log(m)

ϵ2
.

Theorem 5 For any fixed 0 < ϵ < 1, there is a 1− ϵ competitive online algorithm for solving the linear

program if

B ≥ Ω

(
m log (n/ϵ)

ϵ2

)
.

Agrawal, Wang and Y [2010, Operations Research 2014], where the “gap” was eventually filled...

44


