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What you lean in MS&E314?

• Review mathematical optimization theories and algorithms for the Engineering disciplines.

• Introduce additional conic and nonlinear/nonconvex optimization/game algorithms comparing to

MS&E310.

• Describe new/recent effective optimization/game models/methods/algorithms in Market Design, Data

Science and Machine Learning.

• Emphasis is on nonlinear, nonconvex and stochastic/sample-based optimization methodologies and

practices together with convex optimization algorithms.
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Mathematical Optimization/Programming (MP)

The field of optimization is concerned with the study of maximization and minimization of mathematical

functions. Very often the arguments of (i.e., variables or unknowns in) these functions are subject to side

conditions or constraints. By virtue of its great utility in such diverse areas as applied science, engineering,

economics, finance, medicine, and statistics, optimization holds an important place in the practical world

and the scientific world. Indeed, as far back as the Eighteenth Century, the famous Swiss mathematician

and physicist Leonhard Euler (1707-1783) proclaimeda that . . . nothing at all takes place in the Universe in

which some rule of maximum or minimum does not appear.

aSee Leonhardo Eulero, Methodus Inviendi Lineas Curvas Maximi Minimive Proprietate Gaudentes,

Lausanne & Geneva, 1744, p. 245.
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Mathematical Optimization/Programming Model

The class of mathematical optimization/programming problems considered in this course can all be

expressed in the form

(P) minimize f(x)

subject to x ∈ X

where X usually specified by constraints:

ci(x) = 0 i ∈ E
ci(x) ≤ 0 i ∈ I.

If the constraint functions are linear/affine type, then X is a convex polyhedral set/region.
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Model Classifications

Optimization problems are generally divided into Unconstrained, Linear and Nonlinear Programming based

upon the objective and constraints of the problem

• Unconstrained Optimization: Ω is the entire space Rn

• Linear Optimization: If both the objective and the constraint functions are linear/affine

• Nonlinear Optimization: If the objective/constraints contain general nonlinear functions

• Convex Optimization: If the objective is a convex function and the constraint region is a convex set

• Conic Linear Optimization: If both the objective and the constraint functions are linear/affine, and

variables are in a convex cone.

• (Mixed) Integer Optimization: If the some variables are restricted to be integral

• Stochastic Optimization: Optimize the expected objective function with random parameters

• Fixed-Point or Min-Max Optimization: Optimization of multiple agents with zero-sum objectives

We present a few optimization examples in this lecture that we would cover through out this course.
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Structured Optimization: Conic Linear Programming (CLP)

minimize cTx

subject to Ax = b,

x ∈ K.

Linear Programming (LP): when K is the nonnegative orthant cone

Second-Order Cone Programming (SOCP): when K is the second-order cone

Semidefinite Cone Programming (SDP): when K is the semidefinite matrix cone

min 2x1 + x2 + x3

s.t. x1 + x2 + x3 = 1,

(x1;x2;x3) ≥ 0;

min 2x1 + x2 + x3

s.t. x1 + x2 + x3 = 1,√
x2
2 + x2

3 ≤ x1.

min 2x1 + x2 + x3

s.t. x1 + x2 + x3 = 1,(
x1 x2

x2 x3

)
≽ 0,
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The Transportation Problem
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Mathematical Optimization Model:

min
∑m

i=1

∑n
j=1 cijxij

s.t.
∑n

j=1 xij = si, ∀i = 1, ...,m∑m
i=1 xij = dj , ∀j = 1, ..., n

xij ≥ 0, ∀i, j.

The minimal transportation cost is called the Wasserstein Distance (WD) between supply distribution s

and demand distribution d (can be interpreted as two probability distributions after normalization). This is

a linear program!

What happen if supplies s are also decision variables?

The Wasserstein Barycenter Problem is to find a distribution such that the sum of its Wasserstein Distance

to each of a set of distributions would be minimized.
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A Wassestein Barycenter Application: Stochastic Optimization

Find distribution of si, i = 1, 2, 3, 4 to minimize

min WDl(s,dl) +WDm(s,dm) +WDr(s,dr)

s.t. s1 + s2 + s3 + s4 = 9, si ≥ 0, i = 1, 2, 3, 4.

The objective is a nonlinear function, but its gradient vector ∇WDl(s,dl), ∇WDm(s,dm) and

∇WDr(s,dr) are shadow prices of the three sub-transportation problems –popularly used in Hierarchy

Optimization.
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The Wasserstein Barycenter (Mean) Problem in Data Science

What is the “mean or consensus” image from a set of images/distributions:
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Figure 1: Mean picture constructed from the (a) Euclidean mean after re-centering images (b) Euclidean

mean (c) Wasserstein Barycenter (self recenter, resize and rotate)

Euclidean Mean/Center:

x =
1

n

n∑
i=1

ai, or min
x

n∑
i=1

∥x− ai∥22,

which is an unconstrained optimization, or least-squares, problem
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Algorithmic Market Design: World Cup Prediction Market

Order: #1 #2 #3 #4 #5

Argentina 1 0 1 1 0

Brazil 1 0 0 1 1

Italy 1 0 1 1 0

Germany 0 1 0 1 1

France 0 0 1 0 0

Bidding Prize:π 0.75 0.35 0.4 0.95 0.75

Quantity limit:q 10 5 10 10 5

Order fill:x x1 x2 x3 x4 x5
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Prediction Call Auction Market

Given m potential states that are mutually exclusive and exactly one of them will be realized at the maturity.

An order is a bet on one or a combination of states, with a price limit (the maximum price the participant is

willing to pay for one unit of the order) and a quantity limit (the maximum number of units or shares the

participant is willing to accept).

A contract on an order is a paper agreement so that on maturity it is worth a notional $1 dollar if the order

includes the winning state and worth $0 otherwise.

There are n orders submitted now.
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Prediction Call Auction Market: Input Order Data

The ith order is given as (ai· ∈ Rm
+ , πi ∈ R+, qi ∈ R+): ai· is the betting indication row vector

where each component is either 1 or 0

ai· = (ai1, ai2, ..., aim)

where 1 is winning state and 0 is non-winning state; πi is the price limit for one unit of such a contract,

and qi is the maximum number of contract units the better like to buy.
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Prediction Call Auction Market: Output Order-Fill Decisions

Let xi be the number of units or shares awarded to the ith order. Then, the ith bidder will pay the amount

πi · xi and the total amount collected would be πTx =
∑

i πi · xi.

If the jth state is the winning state, then the auction organizer need to pay the winning bidders(
n∑

i=1

aijxi

)
= aT·jx

where column vector

a·j = (a1j ; a2j ; ...; anj)

The question is, how to decide x ∈ Rn, that is, how to fill the orders.
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Prediction Call Auction Market: Worst-Case Profit Maximization

max πTx−maxj{aT·jx}
s.t. x ≤ q,

x ≥ 0.

max πTx−max(ATx)

s.t. x ≤ q,

x ≥ 0.

This is NOT a linear program.
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Prediction Call Auction Market: Linear Optimization Representation

However, the problem can be rewritten as

max πTx− z

s.t. ATx− e · y ≤ 0,

x ≤ q,

x ≥ 0,

where e is the vector of all ones. This is a linear program.

max πTx− z

s.t. ATx− e · y + s = 0,

x ≤ q,

(x, s) ≥ 0, z free,
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Prediction Online Auction Market

In real applications, data/information is revealed sequentially, and one has to make decisions sequentially

based on what is known – cannot wait for solving the offline problem.

max πTx− z + u(s)

s.t. Ax− e · z + s = 0,

x ≤ q,

x, s ≥ 0, z free,

u(s): a value function for the market organizer on slack shares.

s0: initial seed of slack shares.

If u(·) is a strictly concave function, then the state price vector is unique.

Online Market: solve the convex problem sequentially - SCPM.
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A Physical Auction Market

order 1(t = 1) order 2(t = 2) ..... Inventory(b)

Price(πt) $100 $30 ...

Decision x1 x2 ...

Pants 1 0 ... 100

Shoes 1 0 ... 50

T-shirts 0 1 ... 500

Jacket 0 0 ... 200

Socks 1 1 ... 1000
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Physical Auction Market: Linear Optimization Representation

maximizex
∑n

j=1 πjxj

s.t.
∑n

j=1 aijxj ≤ bi, ∀ i = 1, 2, ...,m,

0 ≤ xj ≤ 1, ∀ j = 1, ..., n.

or online version

(SCPM): maximizexk,s πkxk + u(s)

s.t. aikxk + si = bi −
∑k−1

j=1 aikx̄k, ∀ i = 1, 2, ...,m,

0 ≤ xk ≤ 1,

si ≥ 0, ∀ i = 1, ...,m.
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Physical Auction Market: Nonlinear or Non-Convex

maximizex
∑n

j=1 uj(xj)

s.t.
∑n

j=1 aijxj ≤ bi, ∀ i = 1, 2, ...,m,

0 ≤ xj ≤ 1, ∀ j = 1, ..., n.

and/or

maximizex
∑n

j=1 uj(xj)

s.t.
∑n

j=1 aijxj ≤ bi, ∀ i = 1, 2, ...,m,

xj ∈ {0, 1}, ∀ j = 1, ..., n.
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Non-Auction Market: Fisher and Arrow-Debreu Markets

The Fisher Buyer-Market:

maximizex
∑n

j=1 wj log(u
T
j xj)

s.t.
∑n

j=1 xj = b

0 ≤ xj , ∀ j = 1, ..., n.

The Arrow-Debreu Exchange-Market:

maximizex
∑n

j=1 uj(xj)

s.t.
∑n

j=1 xj = 0

vj ≤ xj ≤ uj , ∀ j = 1, ..., n.
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Facility Location Problem

Let cj be the location of client j = 1, 2, ...,m, and y be the location decision of a facility to be built. Then

we solve

minimizey
∑

j ∥y − cj∥p.

Or equivalently (?)

minimize
∑

j δj

subject to y + xj = cj , ∥xj∥p ≤ δj , ∀j.

This is a p-order conic linear program (POCP) for p ≥ 1.

In particular, when p = 2, it is an SOCP problem.

For simplicity, consider m = 3.
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Figure 2: Facility Location at Point y.
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Linear Classifier: Support Vector Machine and Logistic Regression
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Data Classification: Supporting Vector Machine I

A powerful binary-classification method is the Supporting Vector Machine (SVM).

Let the first class, say in Red, data points i be denoted by ai ∈ Rd, i = 1, ..., n1 and the second class

data points j be denoted by bj ∈ Rd, j = 1, ..., n2. We like to find a hyperplane, slope vector x and

intersect scalar x0, to separate the two data classes:

subject to aTi x+ x0 ≥ 1, ∀i,
bT
j x+ x0 ≤ −1, ∀j.

This is a linear program with the null objective!
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Data Classification: Supporting Vector Machine II

If strict separation is impossible, we then minimize error variable β

minimize β

subject to aTi x+ x0 + β ≥ 1, ∀i,
bT
j x+ x0 − β ≤ −1, ∀j,

β ≥ 0.

Frequently we add the regularization term on the slope vector

minimize β + µ∥x∥2

subject to aTi x+ x0 + β ≥ 1, ∀i,
bT
j x+ x0 − β ≤ −1, ∀j,

β ≥ 0,

where µ is a fixed positive regularization parameter.

This becomes a constrained quadratic program (QP). If µ = 0, then it is a linear program (LP)!
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Supporting Vector Machine: Ellipsoidal Separation?

minimize trace(X) + ∥x∥2

subject to aTi Xai + aTi x+ x0 ≥ 1, ∀i,
bT
j Xbj + bT

j x+ x0 ≤ −1, ∀j,
X ≽ 0.

This type of problems is semidefinite programming (SDP). When the problem is not separable:

minimize β + µ(trace(X) + ∥x∥2)
subject to aTi Xai + aTi x+ x0 + β ≥ 1, ∀i,

bT
j Xbj + bT

j x+ x0 − β ≤ −1, ∀j,
β ≥ 0,

X ≽ 0.

This is a mixed linear and SDP program.
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Figure 3: Quadratic Support Vector Machine
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