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What you lean in CME307/MS&E311?

• Present a core element, mathematical optimization theories and algorithms, for the ICME/MS&E

disciplines.

• Provide mathematical proofs and in-depth theoretical analyses of optimization/game

models/algorithms discussed in MS&E211

• Introduce additional conic and nonlinear/nonconvex optimization/game models/problems comparing to

MS&E310.

• Describe new/recent effective optimization/game models/methods/algorithms in Data Science,

Machine Learning and AI.

• Emphasis is on nonlinear, nonconvex and stochastic/sample-based optimization theories and

practices together with convex analyses.
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Mathematical Optimization

The field of optimization is concerned with the study of maximization and minimization of mathematical

functions. Very often the arguments of (i.e., variables or unknowns in) these functions are subject to side

conditions or constraints. By virtue of its great utility in such diverse areas as applied science, engineering,

economics, finance, medicine, and statistics, optimization holds an important place in the practical world

and the scientific world. Indeed, as far back as the Eighteenth Century, the famous Swiss mathematician

and physicist Leonhard Euler (1707-1783) proclaimeda that . . . nothing at all takes place in the Universe in

which some rule of maximum or minimum does not appear.

aSee Leonhardo Eulero, Methodus Inviendi Lineas Curvas Maximi Minimive Proprietate Gaudentes,

Lausanne & Geneva, 1744, p. 245.
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Mathematical Optimization/Programming (MP)

The class of mathematical optimization/programming problems considered in this course can all be

expressed in the form

(P) minimize f(x)

subject to x ∈ X

where X usually specified by constraints:

ci(x) = 0 i ∈ E
ci(x) ≤ 0 i ∈ I.

If the constraint functions are linear/affine type, then X is a convex polyhedral set/region.
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Model Classifications

Optimization problems are generally divided into Unconstrained, Linear and Nonlinear Programming based

upon the objective and constraints of the problem

• Unconstrained Optimization: Ω is the entire space Rn

• Linear Optimization: If both the objective and the constraint functions are linear/affine

• Nonlinear Optimization: If the objective/constraints contain general nonlinear functions

• Convex Optimization: If the objective is a convex function and the constraint region is a convex set

• Conic Linear Optimization: If both the objective and the constraint functions are linear/affine, and

variables are in a convex cone.

• (Mixed) Integer Optimization: If the some variables are restricted to be integral

• Stochastic Optimization: Optimize the expected objective function with random parameters

• Fixed-Point or Min-Max Optimization: Optimization of multiple agents with zero-sum objectives

We present a few optimization examples in this lecture that we would cover through out this course.
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Structured Optimization: Conic Linear Programming (CLP)

minimize cTx

subject to Ax = b,

x ∈ K.

Linear Programming (LP): when K is the nonnegative orthant cone

Second-Order Cone Programming (SOCP): when K is the second-order cone

Semidefinite Cone Programming (SDP): when K is the semidefinite matrix cone

min 2x1 + x2 + x3

s.t. x1 + x2 + x3 = 1,

(x1;x2;x3) ≥ 0;

min 2x1 + x2 + x3

s.t. x1 + x2 + x3 = 1,√
x2
2 + x2

3 ≤ x1.

min 2x1 + x2 + x3

s.t. x1 + x2 + x3 = 1,(
x1 x2

x2 x3

)
≽ 0,
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Facility Location Problem

Let cj be the location of client j = 1, 2, ...,m, and y be the location decision of a facility to be built. Then

we solve

minimizey
∑

j ∥y − cj∥p.

Or equivalently (?)

minimize
∑

j δj

subject to y + xj = cj , ∥xj∥p ≤ δj , ∀j.

This is a p-order conic linear program (POCP) for p ≥ 1.

In particular, when p = 2, it is an SOCP problem.

For simplicity, consider m = 3.
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Figure 1: Facility Location at Point y.
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Sparse Linear Regression Problems

We want to find a sparsest solution to fit exact data measurements, that is, to minimize the number of

non-zero entries in x such that Ax = b:

minimize ∥x∥0 = |{j : xj ̸= 0}|
subject to Ax = b.

Sometimes this objective can be accomplished by LASSO:

minimize ∥x∥1 =
∑n

j=1 |xj |
subject to Ax = b.

It can be equivalently represented by (?)

minimize
∑n

j=1 yj

subject to Ax = b, −y ≤ x ≤ y;
or

minimize
∑n

j=1(x
′
j + x′′

j )

subject to A(x′ − x′′) = b, x′ ≥ 0, x” ≥ 0.

Both are linear programs!
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Sparsest Data Fitting continued

A better approximation of the objective can be accomplished by

minimize ∥x∥p :=
(∑n

j=1 |xj |p
)1/p

subject to Ax = b;
or minimize ∥Ax− b∥2 + µ

(∑n
j=1 |xj |p

)1/p
for some 0 < p < 1, where µ > 0 is a regularization parameter.

Or simply

minimize ∥x∥pp :=
(∑n

j=1 |xj |p
)

subject to Ax = b;
or minimize ∥Ax− b∥2 + β

(∑n
j=1 |xj |p

)
;

where the former is a linearly constrained (nonconvex) optimization problem and the latter is an

unconstrained (nonconvex) optimization problem
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Linear Classifier: Logistic Regression and Support Vector Machine
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Data Classification: Supporting Vector Machine I

A powerful binary-classification method is the Supporting Vector Machine (SVM).

Let the first class, say in Red, data points i be denoted by ai ∈ Rd, i = 1, ..., n1 and the second class

data points j be denoted by bj ∈ Rd, j = 1, ..., n2. We like to find a hyperplane, slope vector x and

intersect scalar x0, to separate the two data classes:

subject to aTi x+ x0 ≥ 1, ∀i,
bT
j x+ x0 ≤ −1, ∀j.

This is a linear program with the null objective!
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Data Classification: Supporting Vector Machine II

If strict separation is impossible, we then minimize error variable β

minimize β

subject to aTi x+ x0 + β ≥ 1, ∀i,
bT
j x+ x0 − β ≤ −1, ∀j,

β ≥ 0.

Frequently we add the regularization term on the slope vector

minimize β + µ∥x∥2

subject to aTi x+ x0 + β ≥ 1, ∀i,
bT
j x+ x0 − β ≤ −1, ∀j,

β ≥ 0,

where µ is a fixed positive regularization parameter.

This becomes a constrained quadratic program (QP). If µ = 0, then it is a linear program (LP)!
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Supporting Vector Machine: Ellipsoidal Separation?

minimize trace(X) + ∥x∥2

subject to aTi Xai + aTi x+ x0 ≥ 1, ∀i,
bT
j Xbj + bT

j x+ x0 ≤ −1, ∀j,
X ≽ 0.

This type of problems is semidefinite programming (SDP). When the problem is not separable:

minimize β + µ(trace(X) + ∥x∥2)
subject to aTi Xai + aTi x+ x0 + β ≥ 1, ∀i,

bT
j Xbj + bT

j x+ x0 − β ≤ −1, ∀j,
β ≥ 0,

X ≽ 0.

This is a mixed linear and SDP program.
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Figure 2: Quadratic Support Vector Machine
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Unconstrained Optimization: Logistic Regression I

Similar to SVM, given the two-class discrimination training data points ai ∈ Rn, according to the logistic

model, the probability that it’s in a class C , say in Red, is represented by a linear/affine function with

slope-vector x and intersect scalar x0:

ea
T
i x+x0

1 + ea
T
i
x+x0

.

Thus, for some training data points, we like to determine intercept x0 and slope vector x ∈ Rn such that

ea
T
i x+x0

1 + ea
T
i
x+x0

=

 1, if ai ∈ C

0, otherwise
.

Then the probability to give a “right classification answer” for all training data points is( ∏
ai∈C

ea
T
i x+x0

1 + ea
T
i
x+x0

) ∏
ai ̸∈C

1

1 + ea
T
i
x+x0


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Logistic Regression II

Therefore, we like to maximize the probability when deciding intercept x0 and slope vector x ∈ Rn( ∏
ai∈C

ea
T
i x+x0

1 + ea
T
i
x+x0

) ∏
ai ̸∈C

1

1 + ea
T
i
x+x0

 =

( ∏
ai∈C

1

1 + e−aT
i
x−x0

) ∏
ai ̸∈C

1

1 + ea
T
i
x+x0

 ,

which is equivalently to maximize

−

(∑
ai∈C

ln(1 + e−aT
i x−x0)

)
−

∑
ai ̸∈C

ln(1 + ea
T
i x+x0)

 .

Or

min
x0,x

(∑
ai∈C

ln(1 + e−aT
i x−x0)

)
+

∑
ai ̸∈C

ln(1 + ea
T
i x+x0)

 .

This is an unconstrained optimization problem, where the objective is a convex function of decision

variables: intercept x0 and slope vector x ∈ Rn.
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More QP Examples: Portfolio Management

For expected return vector r and co-variance matrix V of an investment portfolio, one management model

is:

minimize xTV x

subject to rTx ≥ µ,

eTx = 1, x ≥ 0,

or simply

minimize xTV x

subject to rTx ≥ µ,

eTx = 1,

where e is the vector of all ones.

This is a (convex) quadratic program.
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More CLP Examples: Robust Portfolio Management

In applications, r and V may be estimated under various scenarios, say ri and Vi for i = 1, ...,m. Then,

we like

minimize maxi x
TVix

subject to mini r
T
i x ≥ µ,

eTx = 1, x ≥ 0.

⇒

minimize α

subject to rTi x ≥ µ, ∀i√
xTVix ≤ α, ∀i

eTx = 1, x ≥ 0.

This is a quadratically constrained quadratic program (QCQP). If factorize Vi = RT
i Ri and let

yi = Rix, we can rewrite the problem as

minimize α

subject to rTi x ≥ µ, yi −Rix = 0, ∀i
∥yi∥ ≤ α, ∀i, eTx = 1, x ≥ 0,

which is an SOCP with additional benefits.
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Portfolio Selection Problem

If no more than k stocks can be selected into your portfolio as a policy constraint?

minimize xTV x

subject to rTx ≥ µ,

eTx = 1,

0 ≤ x ≤ y, eTy ≤ k, y ∈ {0, 1}n

This is a mixed-integer quadratic program (MIP).

If the integer variables are restricted 0 or 1, it is also names as the binary optimization problem.
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The Transportation Problem
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Mathematical Optimization Model:

min
∑m

i=1

∑n
j=1 cijxij

s.t.
∑n

j=1 xij = si, ∀i = 1, ...,m∑m
i=1 xij = dj , ∀j = 1, ..., n

xij ≥ 0, ∀i, j.

The minimal transportation cost is called the Wasserstein Distance (WD) between supply distribution s

and demand distribution d (can be interpreted as two probability distributions after normalization). This is

a linear program!

What happen if supplies s are also decision variables?

The Wasserstein Barycenter Problem is to find a distribution such that the sum of its Wasserstein Distance

to each of a set of distributions would be minimized.
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A Wassestein Barycenter Application: Stochastic Optimization

Find distribution of si, i = 1, 2, 3, 4 to minimize

min WDl(s,dl) +WDm(s,dm) +WDr(s,dr)

s.t. s1 + s2 + s3 + s4 = 9, si ≥ 0, i = 1, 2, 3, 4.

The objective is a nonlinear function, but its gradient vector ∇WDl(s,dl), ∇WDm(s,dm) and

∇WDr(s,dr) are shadow prices of the three sub-transportation problems –popularly used in Hierarchy

Optimization.
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The Wasserstein Barycenter (Mean) Problem in Data Science

What is the “mean or consensus” image from a set of images/distributions:
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Figure 3: Mean picture constructed from the (a) Euclidean mean after re-centering images (b) Euclidean

mean (c) Wasserstein Barycenter (self recenter, resize and rotate)

Euclidean Mean/Center:

x =
1

n

n∑
i=1

ai, or min
x

n∑
i=1

∥x− ai∥22,

which is an unconstrained optimization, or least-squares, problem
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Max-Flow Problem

Given a directed graph with nodes 1, ...,m and edges A, where node 1 is called source and node m is

called the sink, and each edge (i, j) has a flow rate capacity kij . The Max-Flow problem is to find the

largest possible flow rate from source to sink.

Let xij be the flow rate from node i to node j. Then the problem can be formulated as

maximize xm1

subject to
∑

j:(j,1)∈A xj1 −
∑

j:(1,j)∈A x1j + xm1 = 0,∑
j:(j,i)∈A xji −

∑
j:(i,j)∈A xij = 0, ∀i = 2, ...,m− 1,∑

j:(j,m)∈A xjm −
∑

j:(m,j)∈A xmj − xm1 = 0,

0 ≤ xij ≤ kij , ∀(i, j) ∈ A.
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Prediction Market I: World Cup Information Market

Order: #1 #2 #3 #4 #5

Argentina 1 0 1 1 0

Brazil 1 0 0 1 1

Italy 1 0 1 1 0

Germany 0 1 0 1 1

France 0 0 1 0 0

Bidding Prize:π 0.75 0.35 0.4 0.95 0.75

Quantity limit:q 10 5 10 10 5

Order fill:x x1 x2 x3 x4 x5
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Prediction Market II: Call Auction Mechanism

Given m potential states that are mutually exclusive and exactly one of them will be realized at the maturity.

An order is a bet on one or a combination of states, with a price limit (the maximum price the participant is

willing to pay for one unit of the order) and a quantity limit (the maximum number of units or shares the

participant is willing to accept).

A contract on an order is a paper agreement so that on maturity it is worth a notional $1 dollar if the order

includes the winning state and worth $0 otherwise.

There are n orders submitted now.
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Prediction Market III: Input Order Data

The ith order is given as (ai· ∈ Rm
+ , πi ∈ R+, qi ∈ R+): ai· is the betting indication row vector

where each component is either 1 or 0

ai· = (ai1, ai2, ..., aim)

where 1 is winning state and 0 is non-winning state; πi is the price limit for one unit of such a contract,

and qi is the maximum number of contract units the better like to buy.
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Prediction Market IV: Output Order-Fill Decisions

Let xi be the number of units or shares awarded to the ith order. Then, the ith bidder will pay the amount

πi · xi and the total amount collected would be πTx =
∑

i πi · xi.

If the jth state is the winning state, then the auction organizer need to pay the winning bidders(
n∑

i=1

aijxi

)
= aT·jx

where column vector

a·j = (a1j ; a2j ; ...; anj)

The question is, how to decide x ∈ Rn, that is, how to fill the orders.
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Prediction Market V: Worst-Case Profit Maximization

max πTx−maxj{aT·jx}
s.t. x ≤ q,

x ≥ 0.

max πTx−max(ATx)

s.t. x ≤ q,

x ≥ 0.

This is NOT a linear program.
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Prediction Market VI: LP Representation

However, the problem can be rewritten as

max πTx− y

s.t. ATx− e · y ≤ 0,

x ≤ q,

x ≥ 0,

where e is the vector of all ones. This is a linear program.

max πTx− y

s.t. ATx− e · y + s0 = 0,

x+ s = q,

(x, s0, s) ≥ 0, y free,
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Graph Realization and Sensor Network Localization

Given a graph G = (V,E) and sets of non–negative weights, say {dij : (i, j) ∈ E}, the goal is to

compute a realization of G in the Euclidean space Rd for a given low dimension d, where the distance

information is preserved.

More precisely: given anchors ak ∈ Rd, dij ∈ Nx, and d̂kj ∈ Na, find xi ∈ Rd such that

∥xi − xj∥2 = d2ij , ∀ (i, j) ∈ Nx, i < j,

∥ak − xj∥2 = d̂2kj , ∀ (k, j) ∈ Na.

This is a set of Quadratic Equations, which can be represented as an optimization problem:

min
xi∀i

∑
(i,j)∈Nx

(∥xi − xj∥2 − d2ij)
2 +

∑
(k,j)∈Na

(∥ak − xj∥2 − d̂2kj)
2.

Does the system have a localization or realization of all xj ’s? Is the localization unique? Is there a

certification for the solution to make it reliable or trustworthy? Is the system partially localizable with a

certification?

It can be relaxed to SOCP (change “=” to “≤”) or SDP.
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Figure 4: 50-node 2-D Sensor Localization.
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Matrix Representation of SNL and SDP Relaxation

Let X = [x1 x2 ... xn] be the d× n matrix that needs to be determined and ej be the vector of all zero

except 1 at the jth position. Then

xi − xj = X(ei − ej) and ak − xj = [I X](ak;−ej)

so that

∥xi − xj∥2 = (ei − ej)
TXTX(ei − ej)

∥ak − xj∥2 = (ak;−ej)
T [I X]T [I X](ak;−ej) =

(ak;−ej)
T

 I X

XT XTX

 (ak;−ej).
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Or, equivalently,

(ei − ej)
TY (ei − ej) = d2ij , ∀ i, j ∈ Nx, i < j,

(ak;−ej)
T

 I X

XT Y

 (ak;−ej) = d̂2kj , ∀ k, j ∈ Na,

Y = XTX.

Relax Y = XTX to Y ≽ XTX , which is equivalent to matrix inequality: I X

XT Y

 ≽ 0.

This matrix has rank at least d; if it’s d, then Y = XTX , and the converse is also true.

The problem is now an SDP problem: when the SDP relaxation is exact?

Algorithm: Convex relaxation first and steepest-descent-search second strategy?

37



CME307/MS&E311: Optimization Lecture Note #01

Stochastic Optimization and Learning

In real world, we most often do

mimimizex∈X EFξ
[h(x, ξ)] (1)

where ξ represents random variables with the joint distribution Fξ .

• Pros: In many cases, the expected value is a good measure of performance

• Cons: One has to know the exact distribution of ξ to perform the stochastic optimization so that we

most frequently use sample distribution. Then, deviant from the assumed distribution may result in

sub-optimal solutions. Even know the distribution, the solution/decision is generically risky.
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Learning with Noises/Distortions

Goodfellow et al. [2014]
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Deep-Learning on Neural-Network I

The input vector is denoted by x and the output vector of layer l is denoted by yl. The edge-weights of

layer l are denoted by wl
i,j where the relation of input-output is

ylj = max{0, wl
0,j +

∑
i

wl
i,jy

l−1
j }, ∀j, l = 1, ..., L.

where the formula is called ReLU operator/function and y0 = x.
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Deep-Learning on Neural-Network II

The Deep-Learning is to use massive sample images/inputs x to optimize/train (or learn edge-weights

wl
i,j such that a (classification) sample-average error function is minimized. In other words, for this

example, the outputs of images/inputs of Panda and Gibbon are distinguishable/separable, or they belong

to different regions in the output space.

When all weights are determined, then the last-layer output vector of the neural-network, denoted by

yL(x), is a vector function/mapping of an input vector x.

The neural network verification, for this example, is to find the smallest distortion of a given typical Panda

image such that its output is in the output-region of normal Gibbon images, that is,

minimizex ∥x− x̂∥2

subject to yL(x) ∈ a (convex) region outside of yL(x̂).
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A Neural-Network Verification Optimization Problem

The problem can be represented as a constrained problem:

minimize{x,yl} ∥x− x̂∥2

subject to yL ∈ a (convex) region outside of yL(x̂),

ylj = max{0, wl
0,j +

∑
i w

l
i,jy

l−1
j }, ∀j, l = 1, ..., L

y0 = x.

Convex Relaxation(?):

minimize{x,yl} ∥x− x̂∥2

subject to yL ∈ a (convex) region outside of y(x̂),

ylj ≥ wl
0,j +

∑
i w

l
i,jy

l−1
j , ∀j, l = 1, ..., L

ylj ≥ 0, ∀j, l = 1, ..., L

y0 = x.
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A Neural-Network Verification Decision Problem

A related problem would be a regularized problem where yL(x) is in a (convex) polyhedral region outside

of yL(x̂)?

Linearly-Constrained Quadratic Minimization Problem:

minimize{x,yl} ∥x− x̂∥2 + µ
∑

l

∑
j y

l
j(y

l
j − wl

0,j −
∑

i w
l
i,jy

l−1
j )

subject to yL ∈ a (convex) polyhedral region outside of y(x̂),

ylj ≥ wl
0,j +

∑
i w

l
i,jy

l−1
j , ∀j, l = 1, ..., L

ylj ≥ 0, ∀j, l = 1, ..., L

y0 = x.

The is a linearly constrained quadratic optimization problem.

Is the objective function convex?
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Distributionally Robust Optimization and Learning

On the other hand: Why does error occur? Believing that the sample distribution is the true distribution...

In practice, although the exact distribution of the random variables may not be known, people usually know

certain observed samples or training data and other statistical information. Thus, we can consider an

enlarged distribution set D that confidently containing the sample distribution, and do

minimizex∈X maxFξ∈D EFξ
[h(x, ξ)] (2)

In DRO, we consider a set of distributions D and choose one to minimize the expected value for the worst

distribution in D. When choosing D, we need to consider the following:

• Tractability

• Practical (Statistical) Meanings

• Performance (the potential loss comparing to the benchmark cases)

This is a nonlinear Saddle-Point Min-Max optimization/zero-sum-game problem
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Reinforcement Learning: Markov Decision/Game Process

• RL/MDPs provide a mathematical framework for modeling sequential decision-making in situations

where outcomes are partly random and partly under the control of a decision maker.

• Markov game processes (MGPs) provide a mathematical slidework for modeling sequential

decision-making of two-person turn-based zero-sum game.

• MDGPs are useful for studying a wide range of optimization/game problems solved via dynamic

programming, where it was known at least as early as the 1950s (cf. Shapley 1953, Bellman 1957).

• Modern applications include dynamic planning under uncertainty, reinforcement learning, social

networking, and almost all other stochastic dynamic/sequential decision/game problems in

Mathematical, Physical, Management and Social Sciences.
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MDP Stationary Policy and Cost-to-Go Value

• An MDP problem is defined by a given number of states, indexed by i, where each state has a number

of actions, Ai, to take. Each action, say j ∈ Ai, is associtaed with an (immeidiate) cost cj of taking,

and a probability distribution pj to transfer to all possible states at the next time period.

• A stationary policy for the decision maker is a function π = {π1, π2, · · · , πm} that specifies an

action in each state, πi ∈ Ai, that the decision maker will take at any time period; which also lead to a

cost-to-go value for each state.

• The MDP is to find a stationary policy to minimize/maximize the expected discounted sum over the

infinite horizon with a discount factor 0 ≤ γ < 1:

∞∑
t=0

γtE[cπit (it, it+1)].

• If the states are partitioned into two sets, one is to minimize and the other is to maximize the

discounted sum, then the process becomes a two-person turn-based zero-sum stochastic game.

46



CME307/MS&E311: Optimization Lecture Note #01

An MDGP Toy Example: Maze Robot Runners (Simplified)

Actions are in red, blue and black; and all actions have zero cost except the state 4 to the exit/termination

state 5. Which actions to take from every state to minimize the total cost (called optimal policy)?
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Toy Example: Game Setting

States {0, 1, 2, 5} minimize, while States {3, 4} maximize.
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The Cost-to-Go Values of the States

Cost-to-go values on each state when actions in red are taken: the current policy is not optimal since there

are better actions to choose to minimize the cost.
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The Optimal Cost-to-Go Value Vector

Let y ∈ Rm represent the cost-to-go values of the m states, ith entry for ith state, of a given policy.

The MDP problem entails choosing an optimal policy where the corresponding cost-to-go value vector y∗

satisfying:

y∗i = min{cj + γpT
j y

∗, ∀j ∈ Ai}, ∀i,

with optimal policy

π∗
i = argmin{cj + γpT

j y
∗, ∀j ∈ Ai}, ∀i.

In the Game setting, the conditions becomes:

y∗i = min{cj + γpT
j y

∗, ∀j ∈ Ai}, ∀i ∈ I−,

and

y∗i = max{cj + γpT
j y

∗, ∀j ∈ Ai}, ∀i ∈ I+.

They both are fix-point or saddle-point optimization problems. The MDP problem can be cast as a linear

program; see next page.
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The Equivalent LP Formulation for MDP

This model can be reformulated as an LP:

maximizey
∑m

i=1 yi

subject to y1 − γpT
j y ≤ cj , j ∈ A1

...

yi − γpT
j y ≤ cj , j ∈ Ai

...

ym − γpT
j y ≤ cj , j ∈ Am.

Theorem 1 When y is maximized, there must be at least one inequality constraint in Ai that becomes

equal for every state i, that is, maximal y is a fixed point solution.
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The Maze Runner Example

The Fixed-Point formulation:

y0 = min{0 + γy1, 0 + γ(0.5y2 + 0.25y3 + 0.125y4 + 0.125y5)}
y1 = min{0 + γy2, 0 + γ(0.5y3 + 0.25y4 + 0.25y5)}
y2 = min{0 + γy3, 0 + γ(0.5y4 + 0.5y5)}
y3 = min{0 + γy4, 0 + γy5}
y4 = 1 + γy5

y5 = 0 (or y5 = 0 + γy5)

The LP formulation:

maximizey y0 + y1 + y2 + y3 + y4 + y5

subject to change each equality above into inequality
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The Interpretations of the LP Formulation

The LP variables y ∈ Rm represent the expected present cost-to-go values of the m states, respectively,

for a given policy.

The LP problem entails choosing variables in y, one for each state i, that maximize eTy so that it is the

fixed point

y∗i = min
j∈Ai

{cji + γpT
jiy}, ∀i,

with an optimal policy

π∗
i = argmin{cj + γpT

j y, j ∈ Ai}, ∀i.

It is well known that there exist a unique optimal stationary policy value vector y∗ where, for each state i,

y∗i is the minimum expected present cost that an individual in state i and its progeny can incur.
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States/Actions in the Tic-Tac-Toe Game
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Action Costs in the Tic-Tac-Toe Game
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