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1 Optimization over Convex Cones

We consider the following optimization problem in the non-nagative cone:

Minimize f(x)

Subject To x ≥ 0.
(1)

Here we assume that f(x) is a convex or non-convex function in x ∈ Rn and the minimizer x∗ is attainable.

Furthermore, we make a standard Lipschitz assumption such that

f(x + d)− f(x) ≤ ∇f(x)T d+
β

2
‖d‖2,

where positive β is the Lipschitz parameter.

Note that any linear feasibility problem,

Ax = b;

x ≥ 0.

can be formulated as the model with f(x) = 1
2‖Ax − b‖2 and β would be the largest eigenvalue of matrix

ATA.

The dual linear programming feasibility problem can be casted as

ATy + s = c;

x ≥ 0.

Substitute y = (AAT )−1A(c− s), then it becomes

(I −AT (AAT )−1A)(s− c) = 0;

s ≥ 0.

can be casted as f(s) = 1
2 (I −AT (AAT )−1A)(c− s) and the Lipschitz parameter is 1.
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2 Steepest-Descent Affine-Scaling Interior-Point Algorithm

Let an iterate solution xk > 0. Then, we can scale it to e, the vector of all ones, by

x′ = (Xk)−1x

whereXk is the diagonal matrix of vector xk. This is called Affine Scaling, which preserves the non-negativity.

Consider the function in the scaled space:

f ′(x′) = f(Xkx′) and ∇f ′(x′) = Xk∇f(Xkx′).

The new SDM iterate in the scaled space would be

x′(α) = e− αk∇f ′(e) = e− αXk∇f(xk)

and the one in the original space is

x(α) = xk − α(Xk)2∇f(xk),

for some step-size α.

If function f is β-Lipschitz, then so is f ′ with β‖xk‖2∞:

f ′(x′)− f ′(y′)−∇f ′(y′)(x′ − y′) = f(Xkx′)− f(Xky′)−∇f(Xky′)Xk(x′ − y′)

≤ β
2 ‖X

k(x′ − y′)‖2

≤ β‖xk‖2∞
2 ‖(x′ − y′)‖2.

In order to keep each iterate in the interior the non-negative cone, our selection would be

αk = min{ 1

β‖xk‖2∞
,

1

2‖Xk∇f(xk)‖
}.

Question 1: Show that the step-size strategy would keep the next iterate positive.

(In practice, one can start α = 1
β‖xk‖2∞

. If the new iterate is not positive, then let α := α/2 till the new

iterate to be positive.)

Question 2: Show that, assigning xk+1 = x(αk) > 0 one has

f(xk+1 − f(xk) ≤ −1

2β‖xk‖2∞
‖Xk∇f(xk)‖2

or

f(xk+1 − f(xk) ≤ −1

4
‖Xk∇f(xk)‖.

What is the convergence speed of the problem?
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3 Steepest-Descent Potential Reduction Interior-Point Algorithm

We now consider the problem with the logarithmic barrier function:

φ(x) = f(x)− µ
∑
j

ln(xj),

where µ is a fixed positive constant, and we assume that the potential value is bounded below by φ∗. Let us

start from x0 = e, the vector of all ones, and generate a sequence of points xk > 0, k = 1, ...,, whose potential

value is strictly decreased. We now describe a first order steepest descent potential reduction algorithm.

Note that the gradient vector of the potential function of x > 0 is

∇φ(x) = ∇f(x)− µX−1e.

Thus, the first-order optimality condition is

X∇f(x) = µe, ∇f(x) > 0, x > 0.

The following lemma is well known in the literature of interior-point algorithms:

Lemma 1. Let xk > 0 and ‖(Xk)−1d‖∞ ≤ δ < 1. Then

−
∑
j

ln(xkj + dj) +
∑
j

ln(xkj ) ≤ −eT (Xk)−1d +
1

2(1− δ)
‖(Xk)−1d‖2.

Again for any given xk > 0,

f(xk + d)− f(xk) ≤ ∇f(xk)Td + β
2 ‖d‖

2

= ∇f(xk)T d+ β
2 ‖(X

k)(Xk)−1d‖2

≤ ∇f(xk)Td +
β‖xk‖2∞

2 ‖(Xk)−1d‖2.

Furthermore, if ‖(Xk)−1d‖∞ ≤ δ = 1/2 so that x+ = xk + d = Xk(e + (Xk)−1d) > 0. Then, applying the

above inequality and Lemma 1 we have

φ(x+)− φ(xk) ≤ ∇f(xk)Td +
β‖xk‖2∞

2 ‖(Xk)−1d‖2 + µ(−eT (Xk)−1d + ‖(Xk)−1d‖2)

= ∇φ(xk)Td +
β‖xk‖2∞+2µ

2 ‖(Xk)−1d‖2.

Now we let

dk = −αk(Xk)2∇φ(xk),

where

αk = min{ ‖X
k∇φ(xk)‖

β‖xk‖2∞ + 2µ
,

1

2‖Xk∇φ(xk)‖
}.

Now we have

∇φ(xk)Tdk = −αk‖Xk∇φ(xk)‖2,
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so that if xk+1 = xk + dk we have

φ(xk+1)− φ(xk) ≤ −min{ ‖X
k∇φ(xk)‖2

2(β‖xk‖2∞ + 2µ)
,
‖Xk∇φ(xk)‖

4
}.

Question 3: Show the following

Theorem 2. Let µ = ε and ‖xk‖∞ be bounded above by R for the iterative sequence. Then, in no more than

O(βR
2+2ε
ε2 (φ(x0)− φ∗)) iterations the steepest descent potential reduction algorithm generates a xk > 0 such

that ∇f(xk)Txk/n < 2ε and ∇f(xk) ≥ 0.

4 Affine-Scalling and Potential Reduction for SDP cone

Now consider the SDP cone where we solve for X ∈ Sn:

Minimize f(X)

Subject To X � 0,
(2)

We assume that f(X) is β-Lipschitz, that is, for any D ∈ Sn,

f(X +D)− f(X) ≤ ∇f(X) •D +
β

2
‖D‖2f ,

where ‖.‖f is the Frobenius norm.

For example, the sensor network localization problem can be casted as such a problem with

f(X) =
1

2
‖AX − b‖2

for given data Ai ∈ Sn for i = 1, ...,m, and b ∈ Rm. Recall that

AX =


A1 •X

...

Am •X

 and ATy =
∑
i=1

yiAi.

Note that ∇f(X) = AT (AX − b) which is also a symmetric matrix.

Let an iterate Xk � 0. Then we can scale it to I (the identity matrix) by

X ′ = (Xk)−1/2X(Xk)−1/2

Then,

f ′(X ′) = f((Xk)1/2X ′(Xk)1/2) and ∇f ′(I) = (Xk)1/2∇f(Xk)(Xk)1/2,

the new SDM iterate in the scaled space is

X ′(α) = I − α(Xk)1/2∇f(Xk)(Xk)1/2
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and in the original space

X(α) = Xk − αXk∇f(Xk)Xk,

for some step-size α.

The optimization with the logarithmic barrier function for SDP cone would be

φ(X) = f(X)− µ ln(det(X)),

where µ is the fixed positive constant, and we assume that the potential value is bounded below by φ∗. Note

that the gradient vector of the potential function of Xk � 0 is

∇φ(Xk) = ∇f(Xk)− µ(Xk)−1.

Question 4: Extend the two algorithms, the early described affine-scaling and potential reduction for the

non-negative cone, to solving problem over the SDP cone, starting from X0 = I and generating interior-point

matrices Xk � 0, k = 1, ...,. Produce similar results in Question 1, Question 2 and Question 3 for the

SDP cone case.

Question 5: Implement the algorithm and perform numerical tests to solve

f(X) =
1

2
‖AX − b‖2, s.t. X � 0.

Not that if a good step-size strategy is set, then no matrix inverse is never needed in computation which

would be suitable for solving large-scale SDP optimization problems. Furthermore, if each data matrix Ai

is rank-one, that is, Ai = aia
T
i (as in sensor network localization), XkAiX

k = Xkaia
T
i X

k so that you need

only compute a matrix-vector multiplication, Xkai, for each data matrix.

You may consider a one-time preconditioning of the problem to improve the Lipschitz constant. Let

M = AAT =


A1 •A1 ... A1 •Am
... ... ...

Am •A1 ... am •Am

 ,

land RTR = M−1. Then let

Āi = RAiR
T , i = 1, ...,m,

and b̄ = M−1b. Then you minimize

f(X) =
1

2
‖ĀX − b̄)‖2, s.t. X � 0,
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