CME307/MS&E311 Suggested Course Project 1111 First-Order

Algorithms for Conic Optimization

(You don’t need to answer all the questions posted in the project)

February 21, 2017

1 Optimization over Convex Cones

We consider the following optimization problem in the non-nagative cone:
Minimize  f(x)
Subject To x > 0.

(1)

Here we assume that f(x) is a convex or non-convex function in x € R"™ and the minimizer x* is attainable.

Furthermore, we make a standard Lipschitz assumption such that
B
flx+d) = f(x) < VFx)Td+ Z[d]%,
where positive 3 is the Lipschitz parameter.

Note that any linear feasibility problem,

Ax = b;
x > 0.

can be formulated as the model with f(x) = 1||Ax — b||?> and 3 would be the largest eigenvalue of matrix

2
AT A.
The dual linear programming feasibility problem can be casted as
ATy +s=c;
x > 0.
Substitute y = (AAT)~tA(c — s), then it becomes
(I — AT(AAT)"1A)(s —c) = 0;
s > 0.

can be casted as f(s) = £(I — AT(AAT)"1A)(c — s) and the Lipschitz parameter is 1.



2 Steepest-Descent Affine-Scaling Interior-Point Algorithm

Let an iterate solution x* > 0. Then, we can scale it to e, the vector of all ones, by
x' = (X")"x

where X* is the diagonal matrix of vector x*. This is called Affine Scaling, which preserves the non-negativity.

Consider the function in the scaled space:
f'(x) = f(XFx) and Vf'(x)=XFVf(XX).
The new SDM iterate in the scaled space would be
x'(a) =e—apVf'(e) =e— aX Vf(xF)

and the one in the original space is

for some step-size a.
If function f is B-Lipschitz, then so is f with B||x*||%:
P& = f'y") = VI —y) = fX) - f(XFy) - VX FY)XP - y)
SIxE =y
xk 2
Bl 3 | ||(X' . y/)”z'
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In order to keep each iterate in the interior the non-negative cone, our selection would be

1 1 )
BlIx I3 2 XEVFx9)

o = min{

Question 1: Show that the step-size strategy would keep the next iterate positive.

(In practice, one can start o = W If the new iterate is not positive, then let « := /2 till the new

iterate to be positive.)

Question 2: Show that, assigning x**! = x(a*) > 0 one has

-1
FOT =165 < g XV IO

or

PO = f0) < HIXRT ().

What is the convergence speed of the problem?



3 Steepest-Descent Potential Reduction Interior-Point Algorithm

We now consider the problem with the logarithmic barrier function:
6(x) = f(x) = p ) _In(x;),
J

where p is a fixed positive constant, and we assume that the potential value is bounded below by ¢*. Let us

0

start from x° = e, the vector of all ones, and generate a sequence of points x* > 0, k = 1, ...,, whose potential

value is strictly decreased. We now describe a first order steepest descent potential reduction algorithm.

Note that the gradient vector of the potential function of x > 0 is
Vo(x) = VF(x) - pXe.
Thus, the first-order optimality condition is

XVf(x)=pe, Vf(x)>0, x>0.

The following lemma is well known in the literature of interior-point algorithms:

Lemma 1. Let x* > 0 and ||(X*)71d|l <6 < 1. Then

= Yo hn(e ) + 3 In(e) <~ (X) N+ g () al

Again for any given x* > 0,

fxF+d) - f(xF) < VFER)Td+ E|d]?

= V) Td+ §)[(XF)(XF) a1
< Vf(xk)Td + Bl\x;|\io H(Xk)*ld||2.
Furthermore, if ||[(X*)7!d|ls < 6 = 1/2 so that x* = x* + d = X*(e + (X*)~'d) > 0. Then, applying the
above inequality and Lemma 1 we have
xk’ 2 — — —
o(xt) = o(x) < VI d + ARGl (X)) N2+ (e (XF) T 4 || (xF) 1d)?)
xk 2 —
= Vo (xh)Td + AP (X ) a2,
Now we let
d* = —a*(X*)?Ve(x"),

where
[ X V(x| 1
BllxFIZ, +2u" 2| XEVO(xF)||

o = min{

1.
Now we have

Vo(x")Td" = —a®| X Ve (x")|?,



so that if x*t1 = x* + dF we have

[ X Ve (x")|? IIX’fV¢(X’“)II}
(BI<F(13s + 2p)” 4 '

S(x"H1) = o(x*) < —min{7

Question 3: Show the following

Theorem 2. Let i = ¢ and ||x*||o be bounded above by R for the iterative sequence. Then, in no more than
O(%W(XO) — ¢*)) iterations the steepest descent potential reduction algorithm generates a x* > 0 such

that V f(x*)Tx* /n < 2¢ and V f(x*) > 0.

4 Affine-Scalling and Potential Reduction for SDP cone

Now consider the SDP cone where we solve for X € S™:
Minimize  f(X)
Subject To X >0,
We assume that f(X) is S-Lipschitz, that is, for any D € S™,
F(X + D)~ (X) < VF(X) e D+ 2D},
where ||.|| 7 is the Frobenius norm.

For example, the sensor network localization problem can be casted as such a problem with
1 2
F(X) = 5] AX ~b]
for given data A; € S™ for i = 1,...,m, and b € R™. Recall that

Al o X
AX = and Aly = ZyiAi-
A, e X =t

Note that Vf(X) = AT(AX — b) which is also a symmetric matrix.
Let an iterate X* = 0. Then we can scale it to I (the identity matrix) by
X' = (Xk)71/2X(Xk)fl/2

Then,
FIX) = FXMYEXI(XR)V2) and V(1) = (XF)V2V F(XR)(XF)2,

the new SDM iterate in the scaled space is

X'(a) = I — o(X*)2V f(XF)(x*)1/?



and in the original space

X(a) = X" —aX*V (X" XF,
for some step-size a.

The optimization with the logarithmic barrier function for SDP cone would be

6(X) = F(X) — pln(det(X)),

where p is the fixed positive constant, and we assume that the potential value is bounded below by ¢*. Note

that the gradient vector of the potential function of X* > 0 is

Vo(XF) = V(X)) = p(X*)~1

Question 4: Extend the two algorithms, the early described affine-scaling and potential reduction for the
non-negative cone, to solving problem over the SDP cone, starting from X% = I and generating interior-point
matrices X* > 0, k = 1, ...,. Produce similar results in Question 1, Question 2 and Question 3 for the

SDP cone case.

Question 5: Implement the algorithm and perform numerical tests to solve
1 2
f(X)= §||AX —Db|%, st. X = 0.

Not that if a good step-size strategy is set, then no matrix inverse is never needed in computation which

would be suitable for solving large-scale SDP optimization problems. Furthermore, if each data matrix A;
T

is rank-one, that is, A; = a;al (as in sensor network localization), X*A; X* = X*a;aT X* so that you need

only compute a matrix-vector multiplication, X*a;, for each data matrix.

You may consider a one-time preconditioning of the problem to improve the Lipschitz constant. Let

A1 o A1 Al ° Am

land RTR = M~!. Then let

and b = M ~'b. Then you minimize

fFX) = %IIAX —b)|%, s.t. X =0,
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