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HQCQP: Homogeneous Case

Homogeneous Quadratically Constrained Quadratic Programming: Given symmetric matrices Q, A′
is,

find global optimal solution of the following optimization problem

z∗ := Maximize xTQx (= Q • (xxT ))

(HQCQP)

s.t. xTAix (≤,=,≥) bi, ∀i = 1, ...,m.

Note that if x∗ is a (global) optimal solution, so is −x∗.

Rank-Constrained SDP Formulation:

z∗ := MaximizeX∈Sn Q •X
s.t. Ai •X (≤,=,≥) bi, ∀i = 1, ...,m,

X ≽ 0, rank(X) = 1.

SDP Relaxation: remove the rank constraint.
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QCQP: General Case

Quadratically Constrained Quadratic Programming:

z∗ := Maximize xTQx+ 2qTx

(QCQP)

s.t. xTAix+ 2aTi x (≤,=,≥) bi, ∀i = 1, ...,m.

that can be homogenized by adding an auxiliary variable:

z∗ := Maximize xTQx+ 2xn+1q
Tx

(HQCQP)

s.t. xTAix+ 2xn+1a
T
i x (≤,=,≥) bi, ∀i = 1, ...,m,

x2
n+1 = 1.

GUROBI “solves” nonconvex QCQP by a “branching and cut” algorithm.
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QCQP SDP Relaxation

zSDP := Maximize

 Q q

qT 0

 •X

s.t.

 Ai ai

aTi 0

 •X = bi, ∀i = 1, ...,m, 0 0

0 1

 •X = 1,

X ≽ 0,

where X ∈ Sn+1.
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QCQP Application: Binary Least Squares

z∗ := Minimize ∥Ax− c∥2

(BLS)

s.t. xj(1− xj) = 0, ∀i = 1, ..., n.

In the following, we describe a general hybrid scheme to “solve” QCQP:

• Solve the SDP relaxation and construct a vector solution xSDP .

• Use xSDP as an initial solution to start an iterative optimization or local search solver/method, such

as SDM, to find a “local” optimal solution (probably near xSDP ).

If the original QCQP is a feasibility problem, then the optimization problem in the second step is a

nonconvex least-squares problem.
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Example I: Ball-Constrained Quadratic Optimization

z∗ := Maximize xTQx+ 2qTx

(BQP)

s.t. ∥x∥2 = 1.

(1)

Here, the given matrix Q ∈ Sn (the set of n-dimensional symmetric matrices), vector q ∈ Rn; and ∥.∥
is the Euclidean norm.

Let X ∈ Sn+1,

Q′ =

 Q q

qT 0

 , I1:n =

 I 0

0T 0

 , and In+1 =

 0 0

0T 1

 .

Then we can write its SDP relaxation...
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BQP SDP Relaxation

zSDP = Maximize Q′ •X
(SDP)

s.t. I1:n •X = 1,

In+1 •X = 1,

X ≽ 0.

The dual of (SDP) can be written as:

zSDP = Minimize y1 + y2

(DSDP)

s.t. y1I1:n + y2In+1 − S = Q′,

S ≽ 0.
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Exactness Result

X∗ is an optimal solution matrix to SDP if and only if there exist a feasible dual variables (y∗1 , y
∗
2) such

that

S∗ = y∗1I1:n + y∗2In+1 −Q′ ≽ 0

S∗ •X∗ = 0.

Observation: zSDP ≥ z∗.

Theorem 1 The SDP relaxation is exact for (BQP), meaning zSDP = z∗. Moreover, there is a rank-1

SDP solution X∗ = xxT such that

x∗ = x(1 : n)/xn+1

is an optimal solution to (BQP), where such a rank-one solution can be produced by the null-space

reduction in Lecture Note #5.

No need to continue the second iterative step!
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Example II: the Singular Value Problem

Given matrix A ∈ Rm×n, the singular value of the matrix is the optimization problem:

z∗ := Maximize yTAx

SVP

s.t. ∥x∥2 = 1,

∥y∥2 = 1.

(2)

Let Z ∈ Sn+m,

Q′ =

 0 AT

A 0

 , Ix =

 I1:n 0

0T 0

 , and Iy =

 0 0

0T I1:m

 .

Then we can write its SDP relaxation...
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SVP SDP Relaxation

zSDP = Maximize Q′ • Z
(SDP)

s.t. Ix • Z = 1,

Iy • Z = 1,

Z ≽ 0.

The dual of (SDP) can be written as:

Minimize y1 + y2

(DSDP)

s.t. y1Ix + y2Iy − S = Q′,

S ≽ 0.
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Exactness Result

Theorem 2 The SDP relaxation is exact for (SVP), meaning zSDP = z∗. Moreover, there is a rank-1

SDP solution Z∗ = (x∗;y∗)(x∗;y∗)T such that x∗ and y∗ is an optimal solution to (SVP), where such

a rank-one solution can be produced by the null-space reduction in Lecture Note #5.

No need to continue the second iterative step!
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Example III: Statistical Regret Sum Minimization

Consider a fractional optimization problem

min(α∈Rp,β∈Rd)

∑n
i=1

(yi−xT
i β)2

zT
i
α

s.t.
∑p

j=1 αj = 1, αj ≥ 0 ∀j = 1, ..., p.

Here, given data zi is a non-negative and non-zero vector for all i.

For each term
(yi−xT

i β)2

zT
i
α

, one may introduce three scalar variables (γi, σi, qi) and reformulates the

problem as a CLP.
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A CLP Reformulation

min(α∈Rp,β∈Rd,γ,σ,q)

∑n
i=1 γi

s.t.
∑p

j=1 αj = 1, αj ≥ 0, ∀j,
zTi α− qi = 0, ∀i,
xT
i β − σi = yi, ∀i, γi σi

σi qi

 ≽ 0, ∀i.

This is a standard (dual) conic linear optimization problem with a product of many 2× 2 positive

semi-definite matrix cones, and a non-negative cones on α.
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Validation of the Reformulation

The positive semi-definiteness of the 2× 2 matrix means γiqi ≥ σ2
i . γi ≥ 0, qi ≥ 0 so that

γi ≥
σ2
i

qi
=

(yi − xT
i β)

2

zTi α
.

Since γi is a upper bound variable on each term, minimizing
∑

i γi would make the bound tight so that it

is equivalent to minimizing ∑
i

(yi − xT
i β)

2

zTi α
.

The new formulation has 2n+ 1 equality constraints with two-block structures (one involving (α,q) and

the other (β, σ)). One may add more linear constraints to link α and β, and it becomes a standard conic

linear optimization problem.
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Standard Dual CLP Form

max(α∈Rp,β∈Rd,γ∈Rn) −
∑n

i=1 γi

s.t.

 −γi xT
i β

xT
i β −zTi α

 ≼

 0 yi

yi 0

 , ∀i,

∑p
j=1 αj ≤ 1,

−αj ≤ 0, ∀j.
Note that the left-hand-side of the matrix inequality can be written as

p∑
j=1

αj

 0 0

0 −zij

+
d∑

j=1

βj

 0 xij

xij 0

+ γi

 −1 0

0 0

 .

It would be solved by a standard conic linear programming solvers.

Exactness Result: the CLP relaxation is exact and no need for the second iterative step.
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Example IV: Binary Quadratic Maximization

(BQM) z∗ := Maximize xTQx

subject to (xj)
2 = 1, j = 1, ..., n.

where Q is positive semidefinite.

Even if the original Q is not psd, when can still formulate an equivalent problem by

Q := Q+ |λ| · I ≽ 0

where λ is the minimal eigenvalue of Q.

16



CME307/MS&E311: Optimization Lecture Note #15

Semidefinite Relaxation for (BQM)

zSDP := Maimize Q •X
s.t. Ij •X = 1, j = 1, ..., n,

X ≽ 0.

zSDP = Minimize eTy

s.t. Diag(y) ≽ Q.
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Approximation Ratio by Randomized Rank-Reduction

Let X̄ be an optimal matrix solution of the SDP relaxation, and let random vector

u ∈ N(0, X̄) and x̂ = Sign(u)

where Sign(x) =

 1 if x ≥ 0

−1 otherwise
. Clearly, x̂ is binary, and

E[x̂TQx̂] = Q • E[x̂x̂T ] = Q • 2

π
arcsin[X̄] ≥ 2

π
Q • X̄.

Theorem 3 For solving (BQM), we have an approximation ratio 2
π , that is, one can find a feasible solution

x̂ such that

E[x̂TQx̂] ≥ 2

π
zSDP ≥ 2

π
z∗.

One can start from x̂ and apply any binary QP solver in the second iterative step.
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Example V: SNL

Given a graph G = (V,E) and sets of non–negative weights, say {dij : (i, j) ∈ E}, the goal is to

compute a realization of G in the Euclidean space Rd for a given low dimension d, where the distance

information is preserved.

More precisely: given anchors ak ∈ Rd, dij ∈ Nx, and d̂kj ∈ Na, find xi ∈ Rd such that

∥xi − xj∥2 = d2ij , ∀ (i, j) ∈ Nx, i < j,

∥ak − xj∥2 = d̂2kj , ∀ (k, j) ∈ Na,

This is a QCQP feasibility problem.
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Matrix Representation and SDP Relaxation

Let X = [x1 x2 ... xn] be the d× n matrix that needs to be determined and ej be the vector of all zero

except 1 at the jth position. The SDP relaxation is also an SDP feasibility problem:

(ei − ej)
T (ei − ej) • Y = d2ij , ∀ i, j ∈ Nx, i < j,

(ak;−ej)
T (ak;−ej) •

 I X

XT Y

 = d̂2kj , ∀ k, j ∈ Na,

Y ≽ XTX.

First-Step: Solve the SDP feasibility problem and let XSDP be the position solution of the optimal matrix

solution. If the problem is “anchor-free”, let XSDP be the eigenvectors of Y SDP corresponding to the d

largest eigenvalues.

Second-Step: Using XSDP as the initial solution and apply SDM in minimizing nonlinear least-squares

function:

min
X

∑
(i<j,j)∈Nx

(∥xi − xj∥2 − d2ij)
2 +

∑
(k,j)∈Na

(∥ak − xj∥2 − d̂2kj)
2.
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Example VI: The Kissing Number Problem

Given a unit ball centered at the origin in dimension d, the maximum number of other unit balls can touch

or kiss the centered unit-ball?

The Kissing Problem as a QCQP: Given n unit-balls, could we find their center locations for all of them

such that the following problem is feasible:

∥xi − xj∥2 ≥ 4, ∀1 ≤ i ̸= j ≤ n,

∥xi∥2 = 4, ∀i
xi ∈ Rd

Equivalent SDP relaxation:

(ei − ej)
TY (ei − ej) ≥ 4, ∀i ̸= j,

eTi Y ei = 4, ∀i
Y ≽ 0; (Rank(Y ) = d)
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Figure 1: Kissing Localization in 2D
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Optimization Algorithm Summaries and Remarks

• Optimization algorithms tend to be iterative procedures. Starting from a given point x0, they generate

a sequence {xk} of iterates (or trial solutions) that converge to a “solution” – or at least they are

designed to be so.

• We study algorithms that produce iterates according to

– well determined rules–Deterministic Algorithm

– random selection process–Randomized Algorithm.

The rules to be followed and the procedures that can be applied depend to a large extent on the

characteristics of the problem to be solved.

• Most algorithms Descent Direction in nature, but some of them may not monotonically decrease the

objective and more “strategic”, such as the BB stepsize in SDM or the potential-reduction algorithm for

LP.

• Algorithm convergence and speed

– Finite versus infinite convergence. For some classes of optimization problems there are algorithms
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that obtain an exact solution—or detect the unboundedness–in a finite number of iterations.

– Polynomial-time versus exponential-time. The solution time grows, in the worst-case, as a function

of problem sizes (number of variables, constraints, accuracy, etc.).

– Convergence order and rate.

• Algorithm Classes: Depending on information of the problem being used to create a new iterate, we

have

(a) Zero-order algorithms. Popular when the gradient and Hessian information are difficult to obtain,

e.g., no explicit function forms are given, functions are not differentiable, etc.

Golden-Section Method for one-dimensional search - linear convergence rate 0.618

(b) First-order algorithms. Most popular now-days, suitable for large scale data optimization with low

accuracy requirement, e.g., Machine Learning, Statistical Predictions...

Bi-Section Method for one-dimensional search - linear convergence rate 0.5

(c) Second-order algorithms. Popular for optimization problems with high accuracy need, e.g., some

scientific computing, etc.

Newton’s method: superior local quadratic (order-two) convergence, but may fail globally.

Most algorithm analyses are based on solving various Lipschitz conditions/constants.
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All algorithms allow some inexactness in numerical computation.

• Algorithm customization becomes a trend, that is, general-purpose algorithms needs to be adapted by

exploiting specific problem structures and domain knowledges/heuristics where Machine Learning

could play an important role.

• Algorithm for LP (even with integer variables) are matured and algorithms for most convex optimization

are well understood now, but search for the global optimal solution of general nonconvex optimization

remains illusive, most of which are in computation classes such as NP-Complete, NP-Hard, PPAD,

#P-Hard, etc.. Common approaches:

– Starting from multiple initial solutions

– Adding randomness/inexactness to escape local trap

– Solving convex relaxation (if you have one), then applying a nonconvex solver to refine the solution

obtained from the relaxation.
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