Dual/Lagrangian Methods for Constrained Optimization

Yinyu Ye
Department of Management Science and Engineering
Stanford University

Stanford, CA 94305, U.S.A.

http://www.stanford.edu/~yyye Chapter 14.1-6

The Lagrangian Function and Method

We consider

$$f^* := \min f(\mathbf{x})$$
 s.t. $\mathbf{h}(\mathbf{x}) = \mathbf{0}, \ \mathbf{x} \in X.$ (1)

Recall that the Lagrangian function:

$$L(\mathbf{x}, \mathbf{y}) = f(\mathbf{x}) - \mathbf{y}^T \mathbf{h}(\mathbf{x}).$$

and the dual function:

$$\phi(\mathbf{y}) = \min_{\mathbf{x} \in X} L(\mathbf{x}, \mathbf{y}); \tag{2}$$

and the dual problem

$$(f^* \ge) \phi^* := \max \quad \phi(\mathbf{y}). \tag{3}$$

In many cases, one can find y^* of dual problem (3), a unconstrained optimization problem; then go ahead to find x^* using (2).

The Local Duality Theorem

Suppose x^* is a local minimizer, and consider the localized (convex) problem

$$f(\mathbf{x}^*) := \min \ f(\mathbf{x}) \quad \text{s.t.} \quad \mathbf{h}(\mathbf{x}) = \mathbf{0}, \ \mathbf{x} \in X, \ \|\mathbf{x} - \mathbf{x}^*\|^2 \le \epsilon.$$
 (4)

Then, the localized Lagrangian function:

$$L_{\mathbf{x}^*}(\mathbf{x}, \mathbf{y}, \mu(\leq 0)) = f(\mathbf{x}) - \mathbf{y}^T \mathbf{h}(\mathbf{x}) - \mu(\|\mathbf{x} - \mathbf{x}^*\|^2 - \epsilon).$$

and the localized dual function:

$$\phi_{\mathbf{x}^*}(\mathbf{y}, \mu) = \min_{\mathbf{x} \in X, \|\mathbf{x} - \mathbf{x}^*\|^2 \le \epsilon} L_{\mathbf{x}^*}(\mathbf{x}, \mathbf{y}, \mu); \tag{5}$$

and the localized dual problem

$$\max \quad \phi(\mathbf{y}, \mu \le 0). \tag{6}$$

Under certain constraint qualification and local convexity conditions, we must have $f(\mathbf{x}^*) = \phi(\mathbf{y}^*, \mu^* = 0)$ where the localization constraint becomes inactive.

The gradient and Hessian of ϕ

Let $\mathbf{x}(\mathbf{y})$ be a minimizer of (2). Then

$$\phi(\mathbf{y}) = f(\mathbf{x}(\mathbf{y})) - \mathbf{y}^T \mathbf{h}(\mathbf{x}(\mathbf{y}))$$

Thus,

$$\nabla \phi(\mathbf{y}) = \nabla f(\mathbf{x}(\mathbf{y}))^T \nabla \mathbf{x}(\mathbf{y}) - \mathbf{y}^T \nabla \mathbf{h}(\mathbf{x}(\mathbf{y})) \nabla \mathbf{x}(\mathbf{y}) - \mathbf{h}(\mathbf{x}(\mathbf{y}))$$

$$= (\nabla f(\mathbf{x}(\mathbf{y}))^T - \mathbf{y}^T \nabla \mathbf{h}(\mathbf{x}(\mathbf{y}))) \nabla \mathbf{x}(\mathbf{y}) - \mathbf{h}(\mathbf{x}(\mathbf{y}))$$

$$= -\mathbf{h}(\mathbf{x}(\mathbf{y})).$$

Similarly, we can derive

$$\nabla^2 \phi(\mathbf{y}) = -\nabla \mathbf{h}(\mathbf{x}(\mathbf{y})) \left(\nabla_{\mathbf{x}}^2 L(\mathbf{x}(\mathbf{y}), \mathbf{y}) \right)^{-1} \nabla \mathbf{h}(\mathbf{x}(\mathbf{y}))^T,$$

where $\nabla^2_{\mathbf{x}} L(\mathbf{x}(\mathbf{y}), \mathbf{y})$ is the Hessian of the Lagrangian function that is assumed to be positive definite at any (local) minimizer.

The Toy Example

minimize
$$(x_1-1)^2 + (x_2-1)^2$$
 subject to
$$x_1 + 2x_2 - 1 = 0, \quad 2x_1 + x_2 - 1 = 0.$$

$$L(\mathbf{x},\mathbf{y}) = (x_1-1)^2 + (x_2-1)^2 - y_1(x_1 + 2x_2 - 1) - y_2(2x_1 + x_2 - 1).$$

$$x_1 = 0.5y_1 + y_2 + 1, \quad x_2 = y_1 + 0.5y_2 + 1.$$

$$\phi(\mathbf{y}) = -1.25y_1^2 - 1.25y_2^2 - 2y_1y_2 - 2y_1 - 2y_2.$$

$$\nabla \phi(\mathbf{y}) = \begin{pmatrix} 2.5y_1 + 2y_2 + 2 \\ 2y_1 + 2.5y_2 + 2 \end{pmatrix},$$

$$\nabla^2 \phi(\mathbf{y}) = -\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}^T = -\begin{pmatrix} 2.5 & 2 \\ 2 & 2.5 \end{pmatrix}$$

The Fisher Example

minimize
$$-5\log(2x_1+x_2)-8\log(3x_3+x_4)$$

subject to
$$x_1 + x_3 = 1$$
, $x_2 + x_4 = 1$, $\mathbf{x} \ge \mathbf{0}$.

$$L(\mathbf{x}(\geq \mathbf{0}), \mathbf{y}) = -5\log(2x_1 + x_2) - 8\log(3x_3 + x_4) - y_1(x_1 + x_3 - 1) - y_2(x_2 + x_4 - 1).$$

Start from $\mathbf{y}^0 > \mathbf{0}$, at the kth step, compute \mathbf{x}^{k+1} from

$$\mathbf{x}^{k+1} = \arg\min_{\mathbf{x} \ge \mathbf{0}} L(\mathbf{x}(\ge \mathbf{0}), \mathbf{y}^k),$$

then let

$$\mathbf{y}^{k+1} = \mathbf{y}^k - \frac{1}{\beta} (A\mathbf{x}^{k+1} - \mathbf{b}).$$

The Augmented Lagrangian Function

In both theory and practice, we actually consider an augmented Lagrangian function (ALF)

$$L_a(\mathbf{x}, \mathbf{y}) = f(\mathbf{x}) - \mathbf{y}^T \mathbf{h}(\mathbf{x}) + \frac{\beta}{2} ||\mathbf{h}(\mathbf{x})||^2,$$

which corresponds to an equivalent problem of (1):

$$f^* := \min \quad f(\mathbf{x}) + \frac{\beta}{2} \|\mathbf{h}(\mathbf{x})\|^2 \quad \text{ s.t.} \quad \mathbf{h}(\mathbf{x}) = \mathbf{0}, \ \mathbf{x} \in X.$$

Note that, although at feasibility the additional square term in objective is redundant, it helps to improve strict convexity of the Lagrangian function.

For the Fisher example:

$$L_a(\mathbf{x}(\geq \mathbf{0}), \mathbf{y})$$

$$= -5\log(2x_1 + x_2) - 8\log(3x_3 + x_4) - y_1(x_1 + x_3 - 1) - y_2(x_2 + x_4 - 1)$$

$$+ \frac{\beta}{2}((x_1 + x_3 - 1)^2 + (x_2 + x_4 - 1)^2).$$

The Augmented Lagrangian Dual

Now the dual function:

$$\phi_a(\mathbf{y}) = \min_{\mathbf{x} \in X} L_a(\mathbf{x}, \mathbf{y}); \tag{7}$$

and the dual problem

$$(f^* \ge) \phi_a^* := \max \quad \phi_a(\mathbf{y}). \tag{8}$$

Note that the dual function approximately satisfies $\frac{1}{\beta}$ -Lipschitz condition (see Chapter 14 of L&Y).

For the convex optimization case, say h(x) = Ax - b, we have

$$\nabla^2 L_a(\mathbf{x}, \mathbf{y}) = \nabla^2 f(\mathbf{x}) + \beta (A^T A).$$

The Augmented Lagrangian Method

The augmented Lagrangian method (ALM) is:

Start from any $(\mathbf{x}^0 \in X, \mathbf{y}^0)$, we compute a new iterate pair

$$\mathbf{x}^{k+1} = \arg\min_{\mathbf{x} \in X} L_a(\mathbf{x}, \mathbf{y}^k), \text{ and } \mathbf{y}^{k+1} = \mathbf{y}^k - \beta \mathbf{h}(\mathbf{x}^{k+1}).$$

The calculation of \mathbf{x} is used to compute the gradient vector of $\phi_a(\mathbf{y})$, which is a steepest ascent direction.

The method converges just like the SDM, because the dual function satisfies $\frac{1}{\beta}$ -Lipschitz condition.

Other SDM strategies may be adapted to update y (the BB, ASDM, Conjugate, Quasi-Newton ...).

Analysis of the Augmented Lagrangian Method

Consider the convex optimization case h(x) = Ax - b. Since x^{k+1} makes KKT condition:

$$\mathbf{0} = \nabla f(\mathbf{x}^{k+1}) - A^T \mathbf{y}^k + \beta A^T (A \mathbf{x}^{k+1} - \mathbf{b})$$

$$= \nabla f(\mathbf{x}^{k+1}) - A^T (\mathbf{y}^k - \beta (A \mathbf{x}^{k+1} - \mathbf{b}))$$

$$= \nabla f(\mathbf{x}^{k+1}) - A^T \mathbf{y}^{k+1},$$

we only need to be concerned about whether or not $||A\mathbf{x}^k - \mathbf{b}||$ converges to zero and how fast it converges. First, from the convexity of $f(\mathbf{x})$, we have

$$\mathbf{0} \leq (\nabla f(\mathbf{x}^{k+1}) - \nabla f(\mathbf{x}^k))^T (\mathbf{x}^{k+1} - \mathbf{x}^k)$$

$$= (-A^T \mathbf{y}^{k+1} + A^T \mathbf{y}^k)^T (\mathbf{x}^{k+1} - \mathbf{x}^k)$$

$$= (\mathbf{y}^{k+1} - \mathbf{y}^k)^T (A\mathbf{x}^{k+1} - A\mathbf{x}^k)$$

$$= -\beta (A\mathbf{x}^{k+1} - \mathbf{b})(A\mathbf{x}^{k+1} - \mathbf{b} - (A\mathbf{x}^k - \mathbf{b})),$$

which implies that $||A\mathbf{x}^{k+1} - \mathbf{b}|| \le ||A\mathbf{x}^k - \mathbf{b}||$, that is, the error is non-increasing.

Again, from the convexity, we have

$$\mathbf{0} \leq (\nabla f(\mathbf{x}^{k+1}) - \nabla f(\mathbf{x}^{*}))^{T}(\mathbf{x}^{k+1} - \mathbf{x}^{*})
= (A^{T}\mathbf{y}^{k+1} - A^{T}\mathbf{y}^{*})^{T}(\mathbf{x}^{k+1} - \mathbf{x}^{*})
= (\mathbf{y}^{k+1} - \mathbf{y}^{*})^{T}(A\mathbf{x}^{k+1} - A\mathbf{x}^{*}) = (\mathbf{y}^{k+1} - \mathbf{y}^{*})^{T}(A\mathbf{x}^{k+1} - \mathbf{b})
= \frac{1}{\beta}(\mathbf{y}^{k+1} - \mathbf{y}^{*})^{T}(\mathbf{y}^{k} - \mathbf{y}^{k+1}).$$

Thus, from the positivity of the cross product, we have

$$\|\mathbf{y}^{k} - \mathbf{y}^{*}\|^{2} = \|\mathbf{y}^{k} - \mathbf{y}^{k+1} + \mathbf{y}^{k+1} - \mathbf{y}^{*}\|^{2}$$

$$\geq \|\mathbf{y}^{k} - \mathbf{y}^{k+1}\|^{2} + \|\mathbf{y}^{k+1} - \mathbf{y}^{*}\|^{2}$$

$$= \beta \|A\mathbf{x}^{k+1} - \mathbf{b}\|^{2} + \|\mathbf{y}^{k+1} - \mathbf{y}^{*}\|^{2}.$$

Sum up from 0 to k of the inequality we have

$$\|\mathbf{y}^{0} - \mathbf{y}^{*}\|^{2} \geq \|\mathbf{y}^{k+1} - \mathbf{y}^{*}\|^{2} + \beta \sum_{l=0}^{k} \|A\mathbf{x}^{l+1} - \mathbf{b}\|^{2}$$
$$\geq \beta \sum_{l=0}^{k} \|A\mathbf{x}^{l+1} - \mathbf{b}\|^{2}$$
$$\geq (k+1)\beta \|A\mathbf{x}^{k+1} - \mathbf{b}\|^{2}.$$

Two-Block Alternating Direction Method with Multipliers

For the ADMM method, we consider structured problem

min
$$f_1(\mathbf{x}_1) + f_2(\mathbf{x}_2)$$
 s.t. $A_1\mathbf{x}_1 + A_2\mathbf{x}_2 = \mathbf{b}, \ \mathbf{x}_1 \in X_1, \ \mathbf{x}_2 \in X_2.$

Consider

$$L(\mathbf{x}_1, \mathbf{x}_2, \mathbf{y}) = f_1(\mathbf{x}_1) + f_2(\mathbf{x}_2) - \mathbf{y}^T (A_1 \mathbf{x}_1 + A_2 \mathbf{x}_2 - \mathbf{b}) + \frac{\beta}{2} ||A_1 \mathbf{x}_1 + A_2 \mathbf{x}_2 - \mathbf{b}||^2.$$

Then, for any given $(\mathbf{x}_1^k, \mathbf{x}_2^k, \mathbf{y}^k)$, we compute a new iterate

$$\mathbf{x}_{1}^{k+1} = \arg\min_{\mathbf{x}_{1} \in X_{1}} L(\mathbf{x}_{1}, \mathbf{x}_{2}^{k}, \mathbf{y}^{k}),$$

$$\mathbf{x}_{2}^{k+1} = \arg\min_{\mathbf{x}_{2} \in X_{2}} L(\mathbf{x}_{1}^{k+1}, \mathbf{x}_{2}, \mathbf{y}^{k}),$$

$$\mathbf{y}^{k+1} = \mathbf{y}^{k} - \beta(A_{1}\mathbf{x}_{1}^{k+1} + A_{2}\mathbf{x}_{2}^{k+1} - \mathbf{b}).$$

Again, we can prove that the iterates converge with the same speed.

The ADMM method resembles the Block Coordinate Descent (BCD) Method ...

Direct Application of ADMM to Linear Programming I

Consider the standard-form LP

$$\begin{array}{lll} \text{minimize}_{\mathbf{x}} & \mathbf{c}^T\mathbf{x} & \text{minimize}_{(\mathbf{x}_1,x_2)} & \mathbf{c}^T\mathbf{x}_1 \\ & \text{s.t.} & A\mathbf{x} = \mathbf{b}, & \Rightarrow & \text{s.t.} & A\mathbf{x}_1 = \mathbf{b}, \\ & \mathbf{x} \geq \mathbf{0}. & & \mathbf{x}_1 - \mathbf{x}_2 = \mathbf{0}, \ \mathbf{x}_2 \geq \mathbf{0}. \end{array}$$

$$L(\mathbf{x}_1, \mathbf{x}_2, \mathbf{y}) = \mathbf{c}^T \mathbf{x}_1 - \mathbf{y}^T (A\mathbf{x}_1 - \mathbf{b}) - \mathbf{s}^T (\mathbf{x}_1 - \mathbf{x}_2) + \frac{\beta}{2} (\|A\mathbf{x}_1 - \mathbf{b}\|^2 + \|\mathbf{x}_1 - \mathbf{x}_2\|^2).$$

where y and s are the multiplier vectors of first and second equality constraints in the reformulation.

The advantage of such splitting reformulation is that the update of either x_1 or x_2 has a simple close form solution.

Direct Application of ADMM to Dual Linear Programming I

Consider the dual LP

$$\begin{aligned} & \mathsf{maximize_{(y,s)}} & & \mathbf{b}^T\mathbf{y} \\ & \text{s.t.} & & A^T\mathbf{y} + \mathbf{s} = \mathbf{c}, \ \mathbf{s} \geq \mathbf{0}. \end{aligned}$$

The augmented Lagrangian function would be

$$L(\mathbf{y}, \mathbf{s}, \mathbf{x}) = -\mathbf{b}^T \mathbf{y} - \mathbf{x}^T (A^T \mathbf{y} + \mathbf{s} - \mathbf{c}) + \frac{\beta}{2} ||A^T \mathbf{y} + \mathbf{s} - \mathbf{c}||^2,$$

where β is a positive parameter, and ${\bf x}$ is the multiplier vector.

Direct Application of ADMM to Dual Linear Programming II

The ADMM for the dual is straightforward: starting from any y^0 , $s^0 \ge 0$, and multiplier x^0 ,

• Update variable y:

$$\mathbf{y}^{k+1} = \arg\min_{\mathbf{y}} L(\mathbf{y}, \mathbf{s}^k, \mathbf{x}^k);$$

Update slack variable s:

$$\mathbf{s}^{k+1} = \arg\min_{\mathbf{s} \ge \mathbf{0}} L(\mathbf{y}^{k+1}, \mathbf{s}, \mathbf{x}^k);$$

Update multipliers x:

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \beta (A^T \mathbf{y}^{k+1} + \mathbf{s}^{k+1} - \mathbf{c}).$$

Note that the updates of y is a least-squares problem with constant matrix, and the update of s has a simple close form. (Also note that x would be non-positive at the end, since we changed maximization to minimization of the dual.)

To split y into multi blocks and update cyclically in random order?

Matlab demo

ADMM for Solving the Fisher Example

minimize
$$-5\log(2x_1+x_2)-8\log(3x_3+x_3)$$
 subject to $x_1+x_3=1, \quad x_2+x_4=1, \quad \mathbf{x} \geq \mathbf{0}.$ minimize $-5\log(u_1)-8\log(u_2)$ subject to $x_1+x_3-1=0, \quad x_2+x_4-1=0, \\ 2x_1+x_2-u_1=0, \quad 3x_3+x_4-u_2=0, \\ \mathbf{x}-\mathbf{s}=\mathbf{0}, \quad \mathbf{s} \geq \mathbf{0}.$

$$L(\mathbf{x}, \mathbf{u}, \mathbf{s}(\geq \mathbf{0}), \mathbf{y}) = -5\log(u_1) - 8\log(u_2) - y_1(x_1 + x_3 - 1) - y_2(x_2 + x_4 - 1)$$

$$-y_3(2x_1 + x_2 - u_1) - y_4(3x_3 + x_4 - u_2) - \mathbf{y}_{5:8}^T(\mathbf{x} - \mathbf{s}) +$$

$$\frac{\beta}{2}[(x_1 + x_3 - 1)^2 + (x_2 + x_4 - 1)^2 + (2x_1 + x_2 - u_1)^2 + (3x_3 + x_4 - u_2)^2 + ||\mathbf{x} - \mathbf{s}||^2].$$

Let the first block primal variables be x and the second be (u, s). Then start from y^0 repeat the ADMM steps. Note that all primal variables have close-form solutions.

ADMM for SNL

Recall that SNL can be represented as a quartic polynomial minimization and it is a nonconvex problem.

Applying the variable-splitting, it becomes constrained bi-convex minimization problem

$$\min_{\mathbf{x}_i, \mathbf{z}_i} \quad \sum_{(i,j) \in N_x} ((\mathbf{x}_i - \mathbf{x}_j)^T (\mathbf{z}_i - \mathbf{z}_j) - d_{ij}^2)^2 + \sum_{(k,j) \in N_a} ((\mathbf{a}_k - \mathbf{x}_j)^T (\mathbf{a}_k - \mathbf{z}_j) - \hat{d}_{kj}^2)^2$$
s.t. $\mathbf{x}_i = \mathbf{z}_i, \ \forall i.$

The augmented Lagrangian function would be

$$L_{a}(\mathbf{x}_{i}, \mathbf{z}_{i}, \mathbf{y}_{i})$$

$$= \sum_{(i,j)\in N_{x}} ((\mathbf{x}_{i} - \mathbf{x}_{j})^{T} (\mathbf{z}_{i} - \mathbf{z}_{j}) - d_{ij}^{2})^{2} + \sum_{(k,j)\in N_{a}} ((\mathbf{a}_{k} - \mathbf{x}_{j})^{T} (\mathbf{a}_{k} - \mathbf{z}_{j}) - \hat{d}_{kj}^{2})^{2} - \sum_{i} \mathbf{y}_{i}^{T} (\mathbf{x}_{i} - \mathbf{z}_{i}) + \frac{\beta}{2} \sum_{i} ||\mathbf{x}_{i} - \mathbf{z}_{i}||^{2}.$$

Then one can treat x_i 's as the first block of variables and z_i 's the second block, and apply ADMM.

Minimizer x's of the Lagrangian function, when z_i , y_i 's are fixed, is the solution of a strongly convex quadratic minimization.

The ADMM with Three Blocks?

What about ADMM for

min
$$f_1(\mathbf{x}_1) + f_2(\mathbf{x}_2) + f_3(\mathbf{x}_3)$$
 s.t. $A_1\mathbf{x}_1 + A_2\mathbf{x}_2 + A_3\mathbf{x}_3 = \mathbf{b}$,

where the Lagrangian function

$$L(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{y}) = f_1(\mathbf{x}_1) + f_2(\mathbf{x}_2) + f_3(\mathbf{x}_3) - \mathbf{y}^T (A_1 \mathbf{x}_1 + A_2 \mathbf{x}_2 + A_3 \mathbf{x}_3 - \mathbf{b}) + \frac{\beta}{2} ||A_1 \mathbf{x}_1 + A_2 \mathbf{x}_2 + A_3 \mathbf{x}_3 - \mathbf{b}||^2.$$

Then, for any given $(\mathbf{x}_1^k, \mathbf{x}_2^k, \mathbf{x}_3^k, \mathbf{y}^k)$, we compute a new iterate

$$\mathbf{x}_{1}^{k+1} = \arg\min_{\mathbf{x}_{1}} L(\mathbf{x}_{1}, \mathbf{x}_{2}^{k}, \mathbf{x}_{3}^{k}, \mathbf{y}^{k}),$$

$$\mathbf{x}_{2}^{k+1} = \arg\min_{\mathbf{x}_{2}} L(\mathbf{x}_{1}^{k+1}, \mathbf{x}_{2}, \mathbf{x}_{3}^{k}, \mathbf{y}^{k}),$$

$$\mathbf{x}_{3}^{k+1} = \arg\min_{\mathbf{x}_{3}} L(\mathbf{x}_{1}^{k+1}, \mathbf{x}_{2}^{k+1}, \mathbf{x}_{3}, \mathbf{y}^{k}),$$

$$\mathbf{y}^{k+1} = \mathbf{y}^{k} - \beta(A_{1}\mathbf{x}^{k+1} + A_{2}\mathbf{x}_{2}^{k+1} + A_{3}\mathbf{x}_{3}^{k+1} - \mathbf{b}).$$

Does it Converge?

Not easy to analyze the convergence: the operator theory for the ADMM cannot be directly extended to the ADMM with three blocks, since the proof for two blocks breaks down for three blocks.

Existing results for convergence:

- Strong convexity; plus carefully select β in a specific range.
- ullet Other restricted conditions on the problem, and take a sufficiently smaller step-size factor $1>\gamma>0$ in dual update

$$\mathbf{y}^{k+1} = \mathbf{y}^k - \gamma \beta (A_1 \mathbf{x}_1^{k+1} + A_2 \mathbf{x}_2^{k+1} + A_3 \mathbf{x}_3^{k+1} - \mathbf{b}).$$

Various post correction steps, which are costly.

But, these did not answer the open question whether or not the direct extension of multi-block ADMM converges under the original simple convexity assumption.

The Direct Extension does Not Work

Theorem 1 There existing an example where the direct extension of ADMM of three blocks is not necessarily convergent for any choice of β . Moreover, for any randomly generated initial point, ADMM diverges with probability one.

The problem with unique solution $x^* = 0$:

min
$$0 \cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3$$
 s.t. $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \\ 1 & 2 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \mathbf{0},$

Does the smaller step-size ($1>\gamma>0$) dual update work? Answer: it remains divergent when solving

min
$$0 \cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3$$
 s.t. $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 + \gamma \\ 1 & 1 + \gamma & 1 + \gamma \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \mathbf{0},$

The Algorithmic Mapping is Not Contracting

The ADMM with $\beta=1$ is a linear matrix mapping

$$\begin{pmatrix} 3 & 0 & 0 & 0 & 0 & 0 \\ 4 & 6 & 0 & 0 & 0 & 0 \\ 5 & 7 & 9 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 2 & 2 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{x}^{k+1} \\ \mathbf{y}^{k+1} \end{pmatrix} = \begin{pmatrix} 0 & -4 & -5 & 1 & 1 & 1 \\ 0 & 0 & -7 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 & 2 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{x}^k \\ \mathbf{y}^k \end{pmatrix}.$$

which can be reduced to

$$\begin{pmatrix} x_2^{k+1} \\ x_3^{k+1} \\ \mathbf{y}^{k+1} \end{pmatrix} = M \begin{pmatrix} x_2^k \\ x_3^k \\ \mathbf{y}^k \end{pmatrix},$$

where

$$M = \frac{1}{162} \begin{pmatrix} 144 & -9 & -9 & -9 & 18 \\ 8 & 157 & -5 & 13 & -8 \\ 64 & 122 & 122 & -58 & -64 \\ 56 & -35 & -35 & 91 & -56 \\ -88 & -26 & -26 & -62 & 88 \end{pmatrix}.$$

But the spectral radius of the matrix, $\rho(M)=1.0087>1$, which implies that the mapping is not a contraction.

Multi-Block Problems and ADMM

In general, consider a convex optimization problem

$$\min_{\mathbf{x} \in R^N} \quad f_1(\mathbf{x}_1) + \ldots + f_n(\mathbf{x}_n),$$
s.t.
$$A\mathbf{x} := A_1\mathbf{x}_1 + \cdots + A_n\mathbf{x}_n = \mathbf{b},$$

$$\mathbf{x}_i \in \mathcal{X}_i \subset R^{d_i}, \ i = 1, \ldots, n.$$
(9)

$$L(\mathbf{x}_1, \dots, \mathbf{x}_n; \mathbf{y}) = \sum_i f_i(x_i) - \mathbf{y}^T \left(\sum_i A_i \mathbf{x}_i - \mathbf{b}\right) + \frac{\beta}{2} \|\sum_i A_i \mathbf{x}_i - \mathbf{b}\|^2$$

The direct Cyclic Extension Multi-block ADMM:

$$\mathbf{x}_{1} \longleftarrow \arg\min_{\mathbf{x}_{1} \in \mathcal{X}_{1}} L(\mathbf{x}_{1}, \dots, \mathbf{x}_{n}; \mathbf{y}),$$

$$\vdots$$

$$\mathbf{x}_{n} \longleftarrow \arg\min_{\mathbf{x}_{n} \in \mathcal{X}_{n}} L(\mathbf{x}_{1}, \dots, \mathbf{x}_{n}; \mathbf{y}),$$

$$\mathbf{y} \longleftarrow \mathbf{y} - \beta(A\mathbf{x} - \mathbf{b}),$$

Randomly Permuted ADMM

Random-Permuted ADMM (RP-ADMM): in each round, draw a random permutation $\sigma = (\sigma(1), \dots, \sigma(n))$ of $\{1, \dots, n\}$, and use the

Update Order :
$$\mathbf{x}_{\sigma(1)} o \mathbf{x}_{\sigma(2)} o \ldots o \mathbf{x}_{\sigma(n)} o \mathbf{y}$$
.

- This is equivalent to a random sample without replacement so it costs nothing.
- Interpretation: Force "absolute fairness" among blocks.
- Simulation Test Result on solving linear equations: always converges!

Any theory behind the success?

We produced a positive result for ADMM on solving the system of linear equations.

Random Permuted ADMM for Linear Systems

Consider solving a nonsingular square system of linear equations ($f_i = 0, \forall i$).

$$\min_{\mathbf{x} \in R^N} 0,$$
s.t. $A_1 \mathbf{x}_1 + \dots + A_n \mathbf{x}_n = \mathbf{b}.$

RP-ADMM generates \mathbf{z}^k , an r.v., depending on

$$\boldsymbol{\xi}_k = (\sigma_1, \dots, \sigma_k), \quad \mathbf{z}^i = M_{\sigma_i} \mathbf{z}^{i-1}, \ i = 1, \dots, k,$$

where σ_i is the random permutation at i-th round.

Denote the expected iterate $\phi^k := E_{\pmb{\xi}_k}(\mathbf{z}^k)$

Theorem 2 The expected output converges to the unique solution of the linear system equations any integer $N \geq 1$.

Remark: Expected convergence \neq convergence, but is a strong evidence for convergence for solving most problems, e.g., when iterates are bounded.

The Average Mapping is a Contraction

• The update equation of RP-ADMM is

$$\mathbf{z}^{k+1} = M_{\sigma} \mathbf{z}^k,$$

where $M_{\sigma} \in R^{2N \times 2N}$ depend on σ .

• Define the expected update matrix as

$$M = E_{\sigma}(M_{\sigma}) = \frac{1}{n!} \sum_{\sigma} M_{\sigma}.$$

Theorem 3 The spectral radius of M, $\rho(M)$, is strictly less than 1 for any integer $N \geq 1$.

Remark: For A in the divergence example, $ho(M_\sigma)>1$ for any σ

- Averaging Helps, a lot.

RP-ADMM for Linear Constrained Convex **QP**

In general, consider a convex quadratic optimization problem

$$\min_{\mathbf{x} \in R^N} \quad \mathbf{c}_1^T \mathbf{x}_1 + \ldots + \mathbf{c}_n^T \mathbf{x}_n + \frac{1}{2} \mathbf{x}^T Q \mathbf{x},$$
s.t.
$$A\mathbf{x} := A_1 \mathbf{x}_1 + \cdots + A_n \mathbf{x}_n = \mathbf{b}.$$
(10)

Theorem 4 Under some technical assumptions, the expected output of randomly permuted ADMM converges to the solution of the original problem for any integer $N \geq 1$.

Extensions and Research Directions (Suggested Project #5?)

- Non-square system of linear equations "yes"
- Non-separable convex quadratic minimization with linear equality constraints "yes"
- Convergence w.h.p.??
- Generalize to inequality systems or convex optimization at large??
- Generalize to non-convex optimization??
- ADMM where, in every iteration, each block are randomly assembled without replacement??

Software Implementation Based on ADMM

SCS: http://www.stanford.edu/~boyd/cvx for CLP

ABIP: https://github.com/sepvar/ABIP for solving LP

RACQP: https://github.com/kmihic/RACQP for quadratic minimization with mixed continuous and integer decision variables.