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General Constrained Optimization

(GCO) min f(x)

s.t. h(x) = 0 ∈ Rm,

c(x) ≥ 0 ∈ Rp.

We have dealt the cases when the feasible region is a convex polyhedron and/or the feasible can be

represented by nonlinear convex cones intersect linear equality constraints.

We now study the case that the only assumption is that all functions are in C1, and C2 later, either convex

or nonconvex.

We again establish optimality conditions to qualify/verify any local optimizers. These conditions give us

qualitative structures of (local) optimizers and lead to quantitative algorithms to numerically find a local

optimizer or an KKT solution.

The main proof idea is that if x̄ is a local minimier of (GCO), then it must be a local minimizer of the

problem where the constraints are linearlized using the First-Order Taylor expansion.
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Hypersurface and Implicit Function Theorem

Consider the (intersection) of Hypersurfaces (vs. Hyperplanes):

{x ∈ Rn : h(x) = 0 ∈ Rm, m ≤ n}

When functions hi(x)s are C1 functions, we say the surface is smooth.

For a point x̄ on the surface, we call it a regular point if ∇h(x̄) have rank m or the rows, or the gradient

vector of each hi(·) at x̄, are linearly independent. For example, (0; 0) is not a regular point of

{(x1; x2) ∈ R2 : x2
1 + (x2 − 1)2 − 1 = 0, x2

1 + (x2 + 1)2 − 1 = 0}.

Based on the Implicit Function Theorem (Appendix A of the Text), if x̄ is a regular point and m < n, then

for every d ∈ Tx̄ = {z : ∇h(x̄)z = 0} there exists a curve x(t) on the hypersurface, parametrized by

a scalar t in a sufficiently small interval [−a a], such that

h(x(t)) = 0, x(0) = x̄, ẋ(0) = d.

Tx̄ is called the tangent-space or tangent-plane of the constraints at x̄.
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Figure 1: Tangent Plane on a Hypersurface at Point x∗
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First-Order Necessary Conditions for Constrained Optimization I

Lemma 1 Let x̄ be a feasible solution and a regular point of the hypersurface of

{x : h(x) = 0, ci(x) = 0, i ∈ Ax̄}

where active-constraint set Ax̄ = {i : ci(x̄) = 0}. If x̄ is a (local) minimizer of (GCO), then there must

be no d to satisfy linear constraints:

∇f(x̄)d < 0

∇h(x̄)d = 0 ∈ Rm,

∇ci(x̄)d ≥ 0, ∀i ∈ Ax̄.

(1)

This lemma was proved when constraints are linear in which case d is a feasible direction, but needs more

work otherwise since there is no feasible direction when constraints are nonlinear.

x̄ being a regular point is often referred as a Constraint Qualification condition.
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Proof

Suppose we have a d̄ satisfies all linear constraints. Then ∇f(x̄)d̄ < 0 so that d̄ is a descent-direction

vector. Denote the active-constraint set at d̄ among the linear inequalities in (1) by Ad
x̄ (⊂ Ax̄). Then, x̄

remains a regular point of hypersurface of

{x : h(x) = 0, ci(x) = 0, i ∈ Ad
x̄}.

Thus, there is a curve x(t) such that

h(x(t)) = 0, ci(x(t)) = 0, i ∈ Ad
x̄, x(0) = x̄, ẋ(0) = d̄,

for t ∈ [0 a] of a sufficiently small positive constant a.

Also, ∇ci(x̄)d̄ > 0, ∀i ̸∈ Ad
x̄ but i ∈ Ax̄; and ci(x̄) > 0, ∀i ̸∈ Ax̄. Then, from Taylor’s theorem,

ci(x(t)) > 0 for all i ̸∈ Ad
x̄ so that x(t) is a feasible curve to the original (GCO) problem for t ∈ [0 a].

Thus, x̄ must be also a local minimizer among all local solutions on the curve x(t).

Let ϕ(t) = f(x(t)). Then, t = 0 must be a local minimizer of ϕ(t) for 0 ≤ t ≤ a so that

0 ≤ ϕ′(0) = ∇f(x(0))ẋ(0) = ∇f(x̄)d̄ < 0, ⇒ a contradiction.
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First-Order Necessary Conditions for Constrained Optimization II

Theorem 1 (First-Order or KKT Optimality Condition) Let x̄ be a (local) minimizer of (GCO) and it is a

regular point of {x : h(x) = 0, ci(x) = 0, i ∈ Ax̄}. Then, for some multipliers (ȳ, s̄ ≥ 0)

∇f(x̄) = ȳT∇h(x̄) + s̄T∇c(x̄) (2)

and (complementarity slackness)

s̄ici(x̄) = 0, ∀i.

The proof is again based on the Alternative System Theory or Farkas Lemma. The complementarity

slackness condition is from that ci(x̄) = 0 for all i ∈ Ax̄, and for i ̸∈ Ax̄, we simply set s̄i = 0.

A solution who satisfies these conditions is called an KKT point or solution of (GCO) – any local minimizer

x̄, if it is also a regular point, must be an KKT solution; but the reverse may not be true.
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KKT via the Lagrangian Function

It is more convenient to introduce the Lagrangian Function associated with generally constrained

optimization:

L(x,y, s) = f(x)− yTh(x)− sT c(x),

where multipliers y of the equality constraints are “free” and s ≥ 0 for the “greater or equal to” inequality

constraints, so that the KKT condition (2) can be written as

∇xL(x̄, ȳ, s̄) = 0.

Lagrangian Function can be viewed as a function aggregated the original objective function plus the

penalized terms on constraint violations.

In theory, one can adjust the penalty multipliers (y, s ≥ 0) to repeatedly solve the following so-called

Lagrangian Relaxation Problem:

(LRP ) minx L(x,y, s).
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Constraint Qualification and the KKT Theorem

One condition for a local minimizer x̄ that must always be an KKT solution is the constraint qualification: x̄

is a regular point of the constraints. Otherwise, a local minimizer may not be an KKT solution: Consider

x̄ = (0; 0) of a convex nonlinearly-constrained problem

min x1, s.t. x2
1 + (x2 − 1)2 − 1 ≤ 0, x2

1 + (x2 + 1)2 − 1 ≤ 0}.

On the other hand, even the regular point condition does not hold, the KKT theorem may still true:

min x2, s.t. x2
1 + (x2 − 1)2 − 1 ≤ 0, x2

1 + (x2 + 1)2 − 1 ≤ 0},

that is, x̄ = (0; 0) is an KKT solution of the latter problem.

Therefore, finding an KKT solution is a plausible way to find a local minimizer.
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Summary Theorem of KKT Conditions for GCO

We now consider optimality conditions for problems having three types of inequalities:

(GCO)
min f(x)

s.t. ci(x) (≤,=,≥) 0, i = 1, ...,m, (Original Problem Constraints (OPC))

For any feasible point x of (GCO) define the active constraint set by Ax = {i : ci(x) = 0}.

Let x̄ be a local minimizer for (GCO) and x̄ is a regular point on the hypersurface of the active constraints

Then there exist multipliers ȳ such that

∇f(x̄) = ȳT∇c(x̄) (Lagrangian Derivative Conditions (LDC))

ȳi (≤,′ free′,≥) 0, i = 1, ...,m, (Multiplier Sign Constraints (MSC))

ȳici(x̄) = 0, (Complementarity Slackness Conditions (CSC)).

The complete First-Order KKT Conditions consist of these four parts!
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Recall SOCP Relaxation of Sensor Network Localization

Given ak ∈ R2 and Euclidean distances dk, k = 1, 2, 3, find x ∈ R2 such that

minx 0Tx,

s.t. ∥x− ak∥2 − d2k ≤ 0, k = 1, 2, 3,

L(x,y) = 0Tx−
3∑

k=1

yk(∥x− ak∥2 − d2k),

0 =
∑3

k=1 yk(x− ak) (LDC)

yk ≤ 0, k = 1, 2, 3, (MSC)

yk(∥x− ak∥2 − d2k) = 0. (CSC).
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Arrow-Debreu’s Exchange Market with Linear Economy

Each trader i, equipped with a good bundle vector wi, trade with others to maximize its individual utility

function. The equilibrium price is an assignment of prices to goods so as when every producer sells

his/her own good bundle and buys a maximal bundle of goods then the market clears. Thus, trader i’s

optimization problem, for given prices pj , j ∈ G, is

maximize uT
i xi :=

∑
j∈P uijxij

subject to pTxi :=
∑

j∈P pjxij ≤ pTwi,

xij ≥ 0, ∀j,

Then, the equilibrium price vector is the one such that there are maximizers x(p)is∑
i

x(p)ij =
∑
i

wij , ∀j.
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Example of Arrow-Debreu’s Model

Traders 1, 2 have good bundle

w1 =

 1

0

 , w2 =

 0

1

 .

Their optimization problems for given prices px, py are:

max 2x1 + y1

s.t. px · x1 + py · y1 ≤ px,

x1, y1 ≥ 0

max 3x2 + y2

s.t. px · x2 + py · y2 ≤ py

x2, y2 ≥ 0.

One can normalize the prices p such that one of them equals 1. This would be one of the problems in

HW2.
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Equilibrium conditions of the Arrow-Debreu market

Similarly, the necessary and sufficient equilibrium conditions of the Arrow-Debreu market are

pj ≥ uij · pTwi

uT
i
xi

·, ∀i, j,∑
i xij =

∑
i wij ∀j,

pj > 0, xi ≥ 0, ∀i, j;

where the budget for trader i is replaced by pTwi. Again, the nonlinear inequality can be rewritten as

log(uT
i xi) + log(pj)− log(pTwi) ≥ log(uij), ∀i, j, uij > 0.

Let yj = log(pj) or pj = eyj for all j. Then, these inequalities become

log(uT
i xi) + yj − log(

∑
j

wije
yj ) ≥ log(uij), ∀i, j, uij > 0.

Note that the function on the left is concave in xi and yj .

Theorem 2 The equilibrium set of the Arrow-Debreu Market is convex in allocations and the logarithmic of

prices.
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Exchange Markets with Other Economies

Cobb-Douglas Utility:

ui(xi) =
∏
j∈G

x
uij

ij , xij ≥ 0.

Leontief Utility:

ui(xi) = min
j∈G

{xij

uij
, xij ≥ 0.}.

Again, the equilibrium price vector is the one such that there are maximizers to clear the market.
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Example of Geometric Optimization

Consider the Geometric Optimization Problem

minx
∑m

i=1

(
ai

∏n
j=1 x

uij

j

)
s.t.

∏n
j=1 x

ckj

j = bk, k = 1, ...,K

xj > 0, ∀j,

where the coefficients ai ≥ 0 ∀i and bk > 0 ∀k.

minx,y,z xy + yz + zx

s.t. xyz = 1

(x, y, x) > 0.
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Convexification of Geometric Optimization

Let yj = log(xj) so that xj = eyj . Then the problem becomes

minx
∑m

i=1

(
aie

∑n

j=1
uijyj

)
s.t.

∑n
j=1 ckjyj = log(bk), k = 1, ...,K

yj free ∀j.

This is a convex objective function with linear constraints!

minu,v,w eu+v + ev+w + ew+u

s.t. u+ v + w = 0

(u, v, w) free.

Now the KKT solution suffices!
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Second-Order Necessary Conditions for Constrained Optimization

Now in addition we assume all functions are in C2, that is, twice continuously differentiable. Recall the

tangent linear sub-space at x̄:

Tx̄ := {z : ∇h(x̄)z = 0, ∇ci(x̄)z = 0 ∀i ∈ Ax̄}.

Theorem 3 Let x̄ be a (local) minimizer of (GCO) and a regular point of hypersurface

{x : h(x) = 0, ci(x) = 0, i ∈ Ax̄}, and let ȳ, s̄ denote Lagrange multipliers such that (x̄, ȳ, s̄)

satisfies the (first-order) KKT conditions of (GCO). Then, it is necessary to have

dT ∇2
xL(x̄, ȳ, s̄)d ≥ 0 ∀ d ∈ Tx̄.

The Hessian of the Lagrangian function need to be positive semidefinite on the tangent-space.
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Proof

The proof reduces to one-dimensional case by considering the objective function ϕ(t) = f(x(t)) for the

feasible curve x(t) on the surface of ALL active constraints. Since 0 is a (local) minimizer of ϕ(t) in an

interval [−a a] for a sufficiently small a > 0, we must have ϕ′(0) = 0 so that

0 ≤ ϕ′′(t)|t=0 = ẋ(0)T∇2f(x̄)ẋ(0) +∇f(x̄)ẍ(0) = dT∇2f(x̄)d+∇f(x̄)ẍ(0).

Let all active constraints (including the equality ones) be h(x) = 0 and differentiating equations

ȳTh(x(t)) =
∑

i ȳihi(x(t)) = 0 twice, we obtain

0 = ẋ(0)T [
∑
i

ȳi∇2hi(x̄)]ẋ(0) + ȳT∇h(x̄)ẍ(0) = dT [
∑
i

ȳi∇2hi(x̄)]d+ ȳT∇h(x̄)ẍ(0).

Let the second expression subtracted from the first one on both sides and use the FONC:

0 ≤ dT∇2f(x̄)d− dT [
∑

i ȳi∇2hi(x̄)]d+∇f(x̄)ẍ(0)− ȳT∇h(x̄)ẍ(0)

= dT∇2f(x̄)d− dT [
∑

i ȳi∇2hi(x̄)]d

= dT∇2
xL(x̄, ȳ, s̄)d.

Note that this inequality holds for every d ∈ Tx̄.
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Second-Order Sufficient Conditions for GCO

Theorem 4 Let x̄ be a regular point of (GCO) with equality constraints only and let ȳ be the Lagrange

multipliers such that (x̄, ȳ) satisfies the (first-order) KKT conditions of (GCO). Then, if in addition

dT ∇2
xL(x̄, ȳ)d > 0 ∀ 0 ̸= d ∈ Tx̄,

then x̄ is a local minimizer of (GCO).

See the proof in Chapter 11.5 of LY.

The SOSC for general (GCO) is proved in Chapter 11.8 of LY.
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min (x1)
2 + (x2)

2 s.t. (x1)
2/4 + (x2)

2 − 1 = 0

vv

v

Figure 2: FONC and SONC for Constrained Minimization
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L(x1, x2, y) = (x1)
2 + (x2)

2 − y(−(x1)
2/4− (x2)

2 + 1),

∇xL(x1, x2, y) = (2x1(1 + y/4), 2x2(1 + y)),

∇2
xL(x1, x2, y) =

 2(1 + y/4) 0

0 2(1 + y)


Tx := {(z1, z2) : (x1/4)z1 + x2z2 = 0}.

We see that there are two possible values for y: either −4 or −1, which lead to total four KKT points:
x1

x2

y

 =


2

0

−4

 ,


−2

0

−4

 ,


0

1

−1

 , and


0

−1

−1

 .
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Consider the first KKT point:

∇2
xL(2, 0,−4) =

 0 0

0 −6

 , Tx̄ = {(z1, z2) : z1 = 0}

Then the Hessian is not positive semidefinite on Tx̄ since

dT∇2
xL(2, 0,−4)d = −6d22 ≤ 0.

Consider the third KKT point:

∇2
xL(0, 1,−1) =

 3/2 0

0 0

 , Tx̄ = {(z1, z2) : z2 = 0}

Then the Hessian is positive definite on Tx̄ since

dT∇2
xL(0, 0,−1)d = (3/2)d21 > 0, ∀0 ̸= d ∈ Tx̄.

This would be sufficient for the third KKT solution to be a local minimizer.
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Test Positive Semidefiniteness in a Subspace

In the second-order test, we typically like to know whether or not

dTQd ≥ 0, ∀d, s.t. Ad = 0

for a given symmetric matrix Q and a rectangle matrix A. (In this case, the subspace is the null space of

matrix A.) This test itself might be a nonconvex optimization problem.

But it is known that d is in the null space of matrix A if and only if

d = (I −AT (AAT )−1A)u = PAu

for some vector u ∈ Rn, where PA is called the projection matrix of A. Thus, the test becomes whether

or not

uTPAQPAu ≥ 0, ∀u ∈ Rn,

that is, we just need to test positive semidefiniteness of PAQPA as usual.

24



CME307/MS&E311: Optimization Lecture Note #07

Spherical Constrained Nonconvex Quadratic Optimization

(SCQP ) min xTQx+ cTx

s.t. ∥x∥2 (≤,=) 1.

Theorem 5 The FONC and SONC, that is, the following conditions on x, together with the multiplier y,

∥x∥2 (≤,=) 1, (OPC)

2Qx+ c− 2yx = 0, (LDC)

y (≤,′ free′) 0, (MSC)

y(1− ∥x∥2) = 1, (CSC)

(Q− yI) ≽ 0, (SOC).

are necessary and sufficient for finding the global minimizer of (SCQP).
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