Optimality Conditions for General Constrained Optimization

Yinyu Ye
Department of Management Science and Engineering
Stanford University
Stanford, CA 94305, U.S.A.
http://www.stanford.edu/~yyye
Chapter 11.1-11.8

General Constrained Optimization

$$
\begin{array}{lll}
(G C O) & \min & f(\mathbf{x}) \\
& \text { s.t. } & \mathbf{h}(\mathbf{x})=\mathbf{0} \in R^{m} \\
& & \mathbf{c}(\mathbf{x}) \geq \mathbf{0} \in R^{p}
\end{array}
$$

We have dealt the cases when the feasible region is a convex polyhedron and/or the feasible can be represented by nonlinear convex cones intersect linear equality constraints.

We now study the case that the only assumption is that all functions are in C^{1}, and C^{2} later, either convex or nonconvex.

We again establish optimality conditions to qualify/verify any local optimizers. These conditions give us qualitative structures of (local) optimizers and lead to quantitative algorithms to numerically find a local optimizer or an KKT solution.

The main proof idea is that if $\overline{\mathrm{x}}$ is a local minimier of (GCO), then it must be a local minimizer of the problem where the constraints are linearlized using the First-Order Taylor expansion.

Hypersurface and Implicit Function Theorem

Consider the (intersection) of Hypersurfaces (vs. Hyperplanes):

$$
\left\{\mathbf{x} \in R^{n}: \mathbf{h}(\mathbf{x})=\mathbf{0} \in R^{m}, m \leq n\right\}
$$

When functions $h_{i}(\mathbf{x}) \mathbf{s}$ are C^{1} functions, we say the surface is smooth.
For a point $\overline{\mathbf{x}}$ on the surface, we call it a regular point if $\nabla \mathbf{h}(\overline{\mathbf{x}})$ have rank m or the rows, or the gradient vector of each $h_{i}(\cdot)$ at $\overline{\mathbf{x}}$, are linearly independent. For example, $(0 ; 0)$ is not a regular point of $\left\{\left(x_{1} ; x_{2}\right) \in R^{2}: x_{1}^{2}+\left(x_{2}-1\right)^{2}-1=0, x_{1}^{2}+\left(x_{2}+1\right)^{2}-1=0\right\}$.

Based on the Implicit Function Theorem (Appendix \mathbf{A} of the Text), if $\overline{\mathbf{x}}$ is a regular point and $m<n$, then for every $\mathbf{d} \in \mathcal{T}_{\overline{\mathbf{x}}}=\{\mathbf{z}: \nabla \mathbf{h}(\overline{\mathbf{x}}) \mathbf{z}=\mathbf{0}\}$ there exists a curve $\mathbf{x}(t)$ on the hypersurface, parametrized by a scalar t in a sufficiently small interval $\left[\begin{array}{cc}-a & a\end{array}\right]$, such that

$$
\mathbf{h}(\mathbf{x}(t))=\mathbf{0}, \quad \mathbf{x}(0)=\overline{\mathbf{x}}, \quad \dot{\mathbf{x}}(0)=\mathbf{d}
$$

$\mathcal{T}_{\overline{\mathrm{x}}}$ is called the tangent-space or tangent-plane of the constraints at $\overline{\mathrm{x}}$.

Figure 1: Tangent Plane on a Hypersurface at Point \mathbf{x}^{*}

First-Order Necessary Conditions for Constrained Optimization I

Lemma 1 Let $\overline{\mathrm{x}}$ be a feasible solution and a regular point of the hypersurface of

$$
\left\{\mathbf{x}: \mathbf{h}(\mathbf{x})=\mathbf{0}, c_{i}(\mathbf{x})=0, i \in \mathcal{A}_{\overline{\mathbf{x}}}\right\}
$$

where active-constraint set $\mathcal{A}_{\overline{\mathrm{x}}}=\left\{i: c_{i}(\overline{\mathbf{x}})=0\right\}$. If $\overline{\mathbf{x}}$ is a (local) minimizer of (GCO), then there must be no d to satisfy linear constraints:

$$
\begin{align*}
\nabla f(\overline{\mathbf{x}}) \mathbf{d} & <0 \\
\nabla \mathbf{h}(\overline{\mathbf{x}}) \mathbf{d} & =\mathbf{0} \in R^{m} \tag{1}\\
\nabla c_{i}(\overline{\mathbf{x}}) \mathbf{d} & \geq 0, \forall i \in \mathcal{A}_{\overline{\mathbf{x}}}
\end{align*}
$$

This lemma was proved when constraints are linear in which case d is a feasible direction, but needs more work otherwise since there is no feasible direction when constraints are nonlinear.
$\overline{\mathrm{x}}$ being a regular point is often referred as a Constraint Qualification condition.

Proof

Suppose we have a $\overline{\mathbf{d}}$ satisfies all linear constraints. Then $\nabla f(\overline{\mathbf{x}}) \overline{\mathbf{d}}<0$ so that $\overline{\mathbf{d}}$ is a descent-direction vector. Denote the active-constraint set at $\overline{\mathrm{d}}$ among the linear inequalities in (1) by $\mathcal{A}_{\overline{\mathrm{x}}}^{d}\left(\subset \mathcal{A}_{\overline{\mathrm{x}}}\right)$. Then, $\overline{\mathrm{x}}$ remains a regular point of hypersurface of

$$
\left\{\mathbf{x}: \mathbf{h}(\mathbf{x})=\mathbf{0}, c_{i}(\mathbf{x})=0, i \in \mathcal{A}_{\overline{\mathbf{x}}}^{d}\right\} .
$$

Thus, there is a curve $\mathbf{x}(t)$ such that

$$
\mathbf{h}(\mathbf{x}(t))=\mathbf{0}, \quad c_{i}(\mathbf{x}(t))=0, i \in \mathcal{A}_{\overline{\mathbf{x}}}^{d}, \quad \mathbf{x}(0)=\overline{\mathbf{x}}, \quad \dot{\mathbf{x}}(0)=\overline{\mathbf{d}}
$$

for $t \in\left[\begin{array}{ll}0 & a\end{array}\right]$ of a sufficiently small positive constant a.
Also, $\nabla c_{i}(\overline{\mathbf{x}}) \overline{\mathbf{d}}>0, \forall i \notin \mathcal{A}_{\overline{\mathbf{x}}}^{d}$ but $i \in \mathcal{A}_{\overline{\mathbf{x}}} ;$ and $c_{i}(\overline{\mathbf{x}})>0, \forall i \notin \mathcal{A}_{\overline{\mathbf{x}}}$. Then, from Taylor's theorem, $c_{i}(\mathbf{x}(t))>0$ for all $i \notin \mathcal{A}_{\overline{\mathbf{x}}}^{d}$ so that $\mathbf{x}(t)$ is a feasible curve to the original (GCO) problem for $t \in\left[\begin{array}{ll}0 & a\end{array}\right]$. Thus, $\overline{\mathbf{x}}$ must be also a local minimizer among all local solutions on the curve $\mathbf{x}(t)$.
Let $\phi(t)=f(\mathbf{x}(t))$. Then, $t=0$ must be a local minimizer of $\phi(t)$ for $0 \leq t \leq a$ so that

$$
0 \leq \phi^{\prime}(0)=\nabla f(\mathbf{x}(0)) \dot{\mathbf{x}}(0)=\nabla f(\overline{\mathbf{x}}) \overline{\mathbf{d}}<0, \Rightarrow \text { a contradiction. }
$$

First-Order Necessary Conditions for Constrained Optimization II

Theorem 1 (First-Order or KKT Optimality Condition) Let $\overline{\mathrm{x}}$ be a (local) minimizer of (GCO) and it is a regular point of $\left\{\mathbf{x}: \mathbf{h}(\mathbf{x})=\mathbf{0}, c_{i}(\mathbf{x})=0, i \in \mathcal{A}_{\overline{\mathbf{x}}}\right\}$. Then, for some multipliers $(\overline{\mathbf{y}}, \overline{\mathbf{s}} \geq \mathbf{0})$

$$
\begin{equation*}
\nabla f(\overline{\mathbf{x}})=\overline{\mathbf{y}}^{T} \nabla \mathbf{h}(\overline{\mathbf{x}})+\overline{\mathbf{s}}^{T} \nabla \mathbf{c}(\overline{\mathbf{x}}) \tag{2}
\end{equation*}
$$

and (complementarity slackness)

$$
\bar{s}_{i} c_{i}(\overline{\mathbf{x}})=0, \forall i
$$

The proof is again based on the Alternative System Theory or Farkas Lemma. The complementarity slackness condition is from that $c_{i}(\overline{\mathbf{x}})=0$ for all $i \in \mathcal{A}_{\overline{\mathrm{x}}}$, and for $i \notin \mathcal{A}_{\overline{\mathrm{x}}}$, we simply set $\bar{s}_{i}=0$.

A solution who satisfies these conditions is called an KKT point or solution of (GCO) - any local minimizer $\overline{\mathrm{x}}$, if it is also a regular point, must be an KKT solution; but the reverse may not be true.

KKT via the Lagrangian Function

It is more convenient to introduce the Lagrangian Function associated with generally constrained optimization:

$$
L(\mathbf{x}, \mathbf{y}, \mathbf{s})=f(\mathbf{x})-\mathbf{y}^{T} \mathbf{h}(\mathbf{x})-\mathbf{s}^{T} \mathbf{c}(\mathbf{x})
$$

where multipliers y of the equality constraints are "free" and $s \geq 0$ for the "greater or equal to" inequality constraints, so that the KKT condition (2) can be written as

$$
\nabla_{\mathbf{x}} L(\overline{\mathbf{x}}, \overline{\mathbf{y}}, \overline{\mathbf{s}})=\mathbf{0}
$$

Lagrangian Function can be viewed as a function aggregated the original objective function plus the penalized terms on constraint violations.

In theory, one can adjust the penalty multipliers $(\mathbf{y}, \mathrm{s} \geq \mathbf{0})$ to repeatedly solve the following so-called Lagrangian Relaxation Problem:

$$
(L R P) \min _{\mathbf{x}} L(\mathbf{x}, \mathbf{y}, \mathbf{s}) .
$$

Constraint Qualification and the KKT Theorem

One condition for a local minimizer $\overline{\mathbf{x}}$ that must always be an KKT solution is the constraint qualification: $\overline{\mathbf{x}}$ is a regular point of the constraints. Otherwise, a local minimizer may not be an KKT solution: Consider $\overline{\mathbf{x}}=(0 ; 0)$ of a convex nonlinearly-constrained problem

$$
\left.\min x_{1}, \quad \text { s.t. } \quad x_{1}^{2}+\left(x_{2}-1\right)^{2}-1 \leq 0, x_{1}^{2}+\left(x_{2}+1\right)^{2}-1 \leq 0\right\}
$$

On the other hand, even the regular point condition does not hold, the KKT theorem may still true:

$$
\left.\min x_{2}, \quad \text { s.t. } \quad x_{1}^{2}+\left(x_{2}-1\right)^{2}-1 \leq 0, x_{1}^{2}+\left(x_{2}+1\right)^{2}-1 \leq 0\right\}
$$

that is, $\overline{\mathbf{x}}=(0 ; 0)$ is an KKT solution of the latter problem.
Therefore, finding an KKT solution is a plausible way to find a local minimizer.

Summary Theorem of KKT Conditions for GCO

We now consider optimality conditions for problems having three types of inequalities:

$$
\begin{array}{ll}
\min & f(\mathbf{x}) \tag{GCO}\\
\text { s.t. } & c_{i}(\mathbf{x}) \quad(\leq,=, \geq) \quad 0, i=1, \ldots, m, \quad(\text { Original Problem Constraints (OPC)) }
\end{array}
$$

For any feasible point x of (GCO) define the active constraint set by $\mathcal{A}_{\mathbf{x}}=\left\{i: c_{i}(\mathbf{x})=0\right\}$.
Let $\overline{\mathrm{x}}$ be a local minimizer for (GCO) and $\overline{\mathrm{x}}$ is a regular point on the hypersurface of the active constraints Then there exist multipliers $\overline{\mathrm{y}}$ such that

$$
\begin{array}{rclr}
\nabla f(\overline{\mathbf{x}}) & = & \overline{\mathbf{y}}^{T} \nabla \mathbf{c}(\overline{\mathbf{x}}) & \text { (Lagrangian Derivative Conditions (LDC)) } \\
\bar{y}_{i} & \left(\leq,^{\prime} \text { free }, \geq\right) & 0, i=1, \ldots, m, & \text { (Multiplier Sign Constraints (MSC)) } \\
\bar{y}_{i} c_{i}(\overline{\mathbf{x}}) & = & 0, & \text { (Complementarity Slackness Conditions (CSC)). }
\end{array}
$$

The complete First-Order KKT Conditions consist of these four parts!

Recall SOCP Relaxation of Sensor Network Localization

Given $\mathbf{a}_{k} \in \mathbf{R}^{2}$ and Euclidean distances $d_{k}, k=1,2,3$, find $\mathbf{x} \in \mathbf{R}^{2}$ such that

$$
\begin{align*}
\min _{\mathbf{x}} & \mathbf{0}^{T} \mathbf{x} \\
\text { s.t. } & \left\|\mathbf{x}-\mathbf{a}_{k}\right\|^{2}-d_{k}^{2} \leq 0, k=1,2,3 \\
L(\mathbf{x}, \mathbf{y})= & \mathbf{0}^{T} \mathbf{x}-\sum_{k=1}^{3} y_{k}\left(\left\|\mathbf{x}-\mathbf{a}_{k}\right\|^{2}-d_{k}^{2}\right), \\
\mathbf{0} & =\sum_{k=1}^{3} y_{k}\left(\mathbf{x}-\mathbf{a}_{k}\right) \tag{LDC}\\
y_{k} & \leq 0, k=1,2,3, \tag{MSC}\\
y_{k}\left(\left\|\mathbf{x}-\mathbf{a}_{k}\right\|^{2}-d_{k}^{2}\right) & =0 . \tag{CSC}
\end{align*}
$$

Arrow-Debreu's Exchange Market with Linear Economy

Each trader i, equipped with a good bundle vector \mathbf{w}_{i}, trade with others to maximize its individual utility function. The equilibrium price is an assignment of prices to goods so as when every producer sells his/her own good bundle and buys a maximal bundle of goods then the market clears. Thus, trader i 's optimization problem, for given prices $p_{j}, j \in G$, is

$$
\begin{array}{cc}
\text { maximize } & \mathbf{u}_{i}^{T} \mathbf{x}_{i}:=\sum_{j \in P} u_{i j} x_{i j} \\
\text { subject to } & \mathbf{p}^{T} \mathbf{x}_{i}:=\sum_{j \in P} p_{j} x_{i j} \leq \mathbf{p}^{T} \mathbf{w}_{i} \\
& x_{i j} \geq 0, \quad \forall j
\end{array}
$$

Then, the equilibrium price vector is the one such that there are maximizers $\mathbf{x}(\mathbf{p})_{i} \mathbf{s}$

$$
\sum_{i} x(\mathbf{p})_{i j}=\sum_{i} w_{i j}, \forall j
$$

Example of Arrow-Debreu's Model

Traders 1, 2 have good bundle

$$
\mathbf{w}_{1}=\binom{1}{0}, \quad \mathbf{w}_{2}=\binom{0}{1}
$$

Their optimization problems for given prices p_{x}, p_{y} are:

$$
\begin{aligned}
\max & 2 x_{1}+y_{1} & \max & 3 x_{2}+y_{2} \\
\mathrm{s.t.} & p_{x} \cdot x_{1}+p_{y} \cdot y_{1} \leq p_{x}, & \text { s.t. } & p_{x} \cdot x_{2}+p_{y} \cdot y_{2} \leq p_{y} \\
& x_{1}, y_{1} \geq 0 & & x_{2}, y_{2} \geq 0
\end{aligned}
$$

One can normalize the prices p such that one of them equals 1 . This would be one of the problems in HW2.

Equilibrium conditions of the Arrow-Debreu market

Similarly, the necessary and sufficient equilibrium conditions of the Arrow-Debreu market are

$$
\begin{array}{cl}
p_{j} \geq u_{i j} \cdot \frac{\mathbf{p}^{T} \mathbf{w}_{i}}{\mathbf{u}_{i}^{T} \mathbf{x}_{i}} \cdot, & \forall i, j \\
\sum_{i} x_{i j}=\sum_{i} w_{i j} & \forall j \\
p_{j}>0, \mathbf{x}_{i} \geq \mathbf{0}, & \forall i, j
\end{array}
$$

where the budget for trader i is replaced by $\mathbf{p}^{T} \mathbf{w}_{i}$. Again, the nonlinear inequality can be rewritten as

$$
\log \left(\mathbf{u}_{i}^{T} \mathbf{x}_{i}\right)+\log \left(p_{j}\right)-\log \left(\mathbf{p}^{T} \mathbf{w}_{i}\right) \geq \log \left(u_{i j}\right), \forall i, j, u_{i j}>0
$$

Let $y_{j}=\log \left(p_{j}\right)$ or $p_{j}=e^{y_{j}}$ for all j. Then, these inequalities become

$$
\log \left(\mathbf{u}_{i}^{T} \mathbf{x}_{i}\right)+y_{j}-\log \left(\sum_{j} w_{i j} e^{y_{j}}\right) \geq \log \left(u_{i j}\right), \forall i, j, u_{i j}>0
$$

Note that the function on the left is concave in \mathbf{x}_{i} and y_{j}.
Theorem 2 The equilibrium set of the Arrow-Debreu Market is convex in allocations and the logarithmic of prices.

Exchange Markets with Other Economies

Cobb-Douglas Utility:

$$
u_{i}\left(\mathbf{x}_{i}\right)=\prod_{j \in G} x_{i j}^{u_{i j}}, x_{i j} \geq 0
$$

Leontief Utility:

$$
u_{i}\left(\mathbf{x}_{i}\right)=\min _{j \in G}\left\{\frac{x_{i j}}{u_{i j}}, x_{i j} \geq 0 .\right\}
$$

Again, the equilibrium price vector is the one such that there are maximizers to clear the market.

Example of Geometric Optimization

Consider the Geometric Optimization Problem

$$
\begin{aligned}
\min _{\mathbf{x}} & \sum_{i=1}^{m}\left(a_{i} \prod_{j=1}^{n} x_{j}^{u_{i j}}\right) \\
\mathrm{s.t.} & \prod_{j=1}^{n} x_{j}^{c_{k j}}=b_{k}, k=1, \ldots, K \\
& x_{j}>0, \forall j
\end{aligned}
$$

where the coefficients $a_{i} \geq 0 \forall i$ and $b_{k}>0 \forall k$.

$$
\begin{array}{rl}
\min _{x, y, z} & x y+y z+z x \\
\text { s.t. } & x y z=1 \\
& (x, y, x)>\mathbf{0}
\end{array}
$$

Convexification of Geometric Optimization

Let $y_{j}=\log \left(x_{j}\right)$ so that $x_{j}=e^{y_{j}}$. Then the problem becomes

$$
\begin{aligned}
\min _{\mathbf{x}} & \sum_{i=1}^{m}\left(a_{i} e^{\sum_{j=1}^{n} u_{i j} y_{j}}\right) \\
\mathrm{s.t.} & \sum_{j=1}^{n} c_{k j} y_{j}=\log \left(b_{k}\right), k=1, \ldots, K \\
& y_{j} \text { free } \forall j .
\end{aligned}
$$

This is a convex objective function with linear constraints!

$$
\begin{aligned}
\min _{u, v, w} & e^{u+v}+e^{v+w}+e^{w+u} \\
\text { s.t. } & u+v+w=0 \\
& (u, v, w) \text { free. }
\end{aligned}
$$

Now the KKT solution suffices!

Second-Order Necessary Conditions for Constrained Optimization

Now in addition we assume all functions are in C^{2}, that is, twice continuously differentiable. Recall the tangent linear sub-space at $\overline{\mathrm{x}}$:

$$
T_{\overline{\mathbf{x}}}:=\left\{\mathbf{z}: \nabla \mathbf{h}(\overline{\mathbf{x}}) \mathbf{z}=\mathbf{0}, \nabla c_{i}(\overline{\mathbf{x}}) \mathbf{z}=0 \forall i \in \mathcal{A}_{\overline{\mathbf{x}}}\right\}
$$

Theorem 3 Let $\overline{\mathrm{x}}$ be a (local) minimizer of (GCO) and a regular point of hypersurface $\left\{\mathbf{x}: \mathbf{h}(\mathbf{x})=0, c_{i}(\mathbf{x})=0, i \in \mathcal{A}_{\overline{\mathbf{x}}}\right\}$, and let $\overline{\mathbf{y}}, \overline{\mathbf{s}}$ denote Lagrange multipliers such that $(\overline{\mathbf{x}}, \overline{\mathbf{y}}, \overline{\mathbf{s}})$ satisfies the (first-order) KKT conditions of (GCO). Then, it is necessary to have

$$
\mathbf{d}^{T} \nabla_{\mathbf{x}}^{2} L(\overline{\mathbf{x}}, \overline{\mathbf{y}}, \overline{\mathbf{s}}) \mathbf{d} \geq 0 \quad \forall \mathbf{d} \in T_{\overline{\mathbf{x}}}
$$

The Hessian of the Lagrangian function need to be positive semidefinite on the tangent-space.

Proof

The proof reduces to one-dimensional case by considering the objective function $\phi(t)=f(\mathbf{x}(t))$ for the feasible curve $\mathbf{x}(t)$ on the surface of ALL active constraints. Since 0 is a (local) minimizer of $\phi(t)$ in an interval $[-a a]$ for a sufficiently small $a>0$, we must have $\phi^{\prime}(0)=0$ so that

$$
0 \leq\left.\phi^{\prime \prime}(t)\right|_{t=0}=\dot{\mathbf{x}}(0)^{T} \nabla^{2} f(\overline{\mathbf{x}}) \dot{\mathbf{x}}(0)+\nabla f(\overline{\mathbf{x}}) \ddot{\mathbf{x}}(0)=\mathbf{d}^{T} \nabla^{2} f(\overline{\mathbf{x}}) \mathbf{d}+\nabla f(\overline{\mathbf{x}}) \ddot{\mathbf{x}}(0)
$$

Let all active constraints (including the equality ones) be $\mathbf{h}(\mathbf{x})=0$ and differentiating equations $\bar{y}^{T} \mathbf{h}(\mathbf{x}(t))=\sum_{i} \bar{y}_{i} h_{i}(\mathbf{x}(t))=0$ twice, we obtain

$$
0=\dot{\mathbf{x}}(0)^{T}\left[\sum_{i} \bar{y}_{i} \nabla^{2} h_{i}(\overline{\mathbf{x}})\right] \dot{\mathbf{x}}(0)+\bar{y}^{T} \nabla \mathbf{h}(\overline{\mathbf{x}}) \ddot{\mathbf{x}}(0)=\mathbf{d}^{T}\left[\sum_{i} \bar{y}_{i} \nabla^{2} h_{i}(\overline{\mathbf{x}})\right] \mathbf{d}+\bar{y}^{T} \nabla \mathbf{h}(\overline{\mathbf{x}}) \ddot{\mathbf{x}}(0) .
$$

Let the second expression subtracted from the first one on both sides and use the FONC:

$$
\begin{aligned}
0 & \leq \mathbf{d}^{T} \nabla^{2} f(\overline{\mathbf{x}}) \mathbf{d}-\mathbf{d}^{T}\left[\sum_{i} \bar{y}_{i} \nabla^{2} h_{i}(\overline{\mathbf{x}})\right] \mathbf{d}+\nabla f(\overline{\mathbf{x}}) \ddot{\mathbf{x}}(0)-\bar{y}^{T} \nabla \mathbf{h}(\overline{\mathbf{x}}) \ddot{\mathbf{x}}(0) \\
& =\mathbf{d}^{T} \nabla^{2} f(\overline{\mathbf{x}}) \mathbf{d}-\mathbf{d}^{T}\left[\sum_{i} \bar{y}_{i} \nabla^{2} h_{i}(\overline{\mathbf{x}})\right] \mathbf{d} \\
& =\mathbf{d}^{T} \nabla_{\mathbf{x}}^{2} L(\overline{\mathbf{x}}, \overline{\mathbf{y}}, \overline{\mathbf{s}}) \mathbf{d} .
\end{aligned}
$$

Note that this inequality holds for every $\mathrm{d} \in T_{\overline{\mathrm{x}}}$.

Second-Order Sufficient Conditions for GCO

Theorem 4 Let $\overline{\mathbf{x}}$ be a regular point of (GCO) with equality constraints only and let $\overline{\mathbf{y}}$ be the Lagrange multipliers such that $(\overline{\mathbf{x}}, \overline{\mathbf{y}})$ satisfies the (first-order) KKT conditions of (GCO). Then, if in addition

$$
\mathbf{d}^{T} \nabla_{\mathbf{x}}^{2} L(\overline{\mathbf{x}}, \overline{\mathbf{y}}) \mathbf{d}>0 \quad \forall \mathbf{0} \neq \mathbf{d} \in T_{\overline{\mathbf{x}}}
$$

then $\overline{\mathrm{x}}$ is a local minimizer of (GCO).
See the proof in Chapter 11.5 of LY.
The SOSC for general (GCO) is proved in Chapter 11.8 of LY.

$$
\min \left(x_{1}\right)^{2}+\left(x_{2}\right)^{2} \quad \text { s.t. } \quad\left(x_{1}\right)^{2} / 4+\left(x_{2}\right)^{2}-1=0
$$

Figure 2: FONC and SONC for Constrained Minimization

$$
\begin{gathered}
L\left(x_{1}, x_{2}, y\right)=\left(x_{1}\right)^{2}+\left(x_{2}\right)^{2}-y\left(-\left(x_{1}\right)^{2} / 4-\left(x_{2}\right)^{2}+1\right), \\
\nabla_{x} L\left(x_{1}, x_{2}, y\right)=\left(2 x_{1}(1+y / 4), 2 x_{2}(1+y)\right), \\
\nabla_{x}^{2} L\left(x_{1}, x_{2}, y\right)=\left(\begin{array}{cc}
2(1+y / 4) & 0 \\
0 & 2(1+y)
\end{array}\right) \\
T_{\mathbf{x}}:=\left\{\left(z_{1}, z_{2}\right):\left(x_{1} / 4\right) z_{1}+x_{2} z_{2}=0\right\} .
\end{gathered}
$$

We see that there are two possible values for y : either -4 or -1 , which lead to total four KKT points:

$$
\left(\begin{array}{c}
x_{1} \\
x_{2} \\
y
\end{array}\right)=\left(\begin{array}{c}
2 \\
0 \\
-4
\end{array}\right),\left(\begin{array}{c}
-2 \\
0 \\
-4
\end{array}\right),\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right), \text { and }\left(\begin{array}{c}
0 \\
-1 \\
-1
\end{array}\right) .
$$

Consider the first KKT point:

$$
\nabla_{x}^{2} L(2,0,-4)=\left(\begin{array}{cc}
0 & 0 \\
0 & -6
\end{array}\right), T_{\overline{\mathbf{x}}}=\left\{\left(z_{1}, z_{2}\right): z_{1}=0\right\}
$$

Then the Hessian is not positive semidefinite on $T_{\overline{\mathrm{x}}}$ since

$$
\mathbf{d}^{T} \nabla_{x}^{2} L(2,0,-4) \mathbf{d}=-6 d_{2}^{2} \leq 0
$$

Consider the third KKT point:

$$
\nabla_{x}^{2} L(0,1,-1)=\left(\begin{array}{cc}
3 / 2 & 0 \\
0 & 0
\end{array}\right), T_{\overline{\mathbf{x}}}=\left\{\left(z_{1}, z_{2}\right): z_{2}=0\right\}
$$

Then the Hessian is positive definite on $T_{\overline{\mathrm{x}}}$ since

$$
\mathbf{d}^{T} \nabla_{x}^{2} L(0,0,-1) \mathbf{d}=(3 / 2) d_{1}^{2}>0, \forall \mathbf{0} \neq \mathbf{d} \in T_{\overline{\mathbf{x}}} .
$$

This would be sufficient for the third KKT solution to be a local minimizer.

Test Positive Semidefiniteness in a Subspace

In the second-order test, we typically like to know whether or not

$$
\mathbf{d}^{T} Q \mathbf{d} \geq 0, \forall \mathbf{d}, \text { s.t. } A \mathbf{d}=\mathbf{0}
$$

for a given symmetric matrix Q and a rectangle matrix A. (In this case, the subspace is the null space of matrix A.) This test itself might be a nonconvex optimization problem.

But it is known that d is in the null space of matrix A if and only if

$$
\mathbf{d}=\left(I-A^{T}\left(A A^{T}\right)^{-1} A\right) \mathbf{u}=P_{A} \mathbf{u}
$$

for some vector $\mathbf{u} \in R^{n}$, where P_{A} is called the projection matrix of A. Thus, the test becomes whether or not

$$
\mathbf{u}^{T} P_{A} Q P_{A} \mathbf{u} \geq 0, \forall \mathbf{u} \in R^{n}
$$

that is, we just need to test positive semidefiniteness of $P_{A} Q P_{A}$ as usual.

Spherical Constrained Nonconvex Quadratic Optimization

$$
\begin{array}{lll}
(S C Q P) & \min & \mathbf{x}^{T} Q \mathbf{x}+\mathbf{c}^{T} \mathbf{x} \\
& \text { s.t. } & \|\mathbf{x}\|^{2}(\leq,=) 1
\end{array}
$$

Theorem 5 The FONC and SONC, that is, the following conditions on x , together with the multiplier y,

$$
\begin{array}{rcl}
\|\mathbf{x}\|^{2} & (\leq,=) & 1,(O P C) \\
2 Q \mathbf{x}+\mathbf{c}-2 y \mathbf{x} & = & \mathbf{0},(L D C) \\
y & \left(\leq,^{\prime} \text { free' }\right) & 0,(M S C) \\
y\left(1-\|\mathbf{x}\|^{2}\right) & = & 1,(C S C) \\
(Q-y I) & \succeq & \mathbf{0},(S O C) .
\end{array}
$$

are necessary and sufficient for finding the global minimizer of (SCQP).

