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KKT Optimality Condition Illustration in One-Dimension
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Figure 1: Global and Local Minimizers of One-Variable Function in Interval [a e]
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A differentiable function f of one variable defined on an interval F = [a e]. If an interior-point x̄ is a

local/global minimizer, then f ′(x̄) = 0; if the left-end-point x̄ = a is a local minimizer, then f ′(a) ≥ 0; if

the right-end-point x̄ = e is a local minimizer, then f ′(e) ≤ 0. first-order necessary condition (FONC)

summarizes the three cases by a unified set of optimality/complementarity slackness conditions:

a ≤ x ≤ e, f ′(x) = ya + ye, ya ≥ 0, ye ≤ 0, ya(x− a) = 0, ye(x− e) = 0.

If f ′(x̄) = 0, then it is also necessary that f(x) is locally convex at x̄ for it being a local minimizer.

How to tell the function is locally convex at the solution? It is necessary f ′′(x̄) ≥ 0, which is called the

second-order necessary condition (SONC), which we would explored further.

These conditions are still not, in general, sufficient. It does not distinguish between local minimizers, local

maximizers, or saddle points.

If the second-order sufficient condition (SOSC): f ′′(x̄) > 0, is satisfied or the function is strictly locally

convex, then x̄ is a local minimizer.

Thus, if the function is convex everywhere, the first-order necessary condition is already sufficient.
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Second-Order Optimality Condition for Unconstrained Optimization

Theorem 1 (First-Order Necessary Condition) Let f(x) be a C1 function where x ∈ Rn. Then, if x̄ is a

minimizer, it is necessarily ∇f(x̄) = 0.

Theorem 2 (Second-Order Necessary Condition) Let f(x) be a C2 function where x ∈ Rn. Then, if x̄

is a minimizer, it is necessarily

∇f(x̄) = 0 and ∇2f(x̄) ≽ 0.

Furthermore, if ∇2f(x̄) ≻ 0, then the condition becomes sufficient.

The proofs would be based on 2nd-order Taylor’s expansion at x̄ such that if these conditions are not

satisfied, then one would be find a descent-direction d and a small constant ᾱ > 0 such that

f(x̄+ αd) < f(x̄), ∀0 < α ≤ ᾱ.

For example, if ∇f(x̄) = 0 and ∇2f(x̄) ̸≽ 0, the eigenvector of a negative eigenvalue of the

Hessian would be a descent direction from x̄.

Again, they may still not be sufficient, e.g., f(x) = x3.
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General Optimization Problems

Let the problem have the general mathematical programming (MP) form

(P)
min f(x)

s.t. x ∈ F .

In all forms of mathematical programming, a feasible solution of a given problem is a vector that satisfies

the constraints of the problem, that is, in F .

First question: How does one recognize or certify an optimal solution to a generally constrained and

objectived optimization problem?

Answer: Optimality Condition Theory.
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Descent Direction

Let f be a differentiable function on Rn. If point x̄ ∈ Rn and there exists a vector d such that

∇f(x̄)d < 0,

then there exists a scalar τ̄ > 0 such that

f(x̄+ τd) < f(x̄) for all τ ∈ (0, τ̄).

The vector d (above) is called a descent direction at x̄. If ∇f(x̄) ̸= 0, then ∇f(x̄) is the direction of

steepest ascent and −∇f(x̄) is the direction of steepest descent at x̄.

Denote by Dd
x̄ the set of descent directions at x̄, that is,

Dd
x̄ = {d ∈ Rn : ∇f(x̄)d < 0}.
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Feasible Direction

At feasible point x̄, a feasible direction is

Df
x̄ := {d ∈ Rn : d ̸= 0, x̄+ λd ∈ F for all small λ > 0}.

Linear Constraint Examples:

F = Rn ⇒ Df = Rn.

F = {x : Ax = b} ⇒ Df = {d : Ad = 0}.

F = {x : Ax ≥ b} ⇒ Df = {d : Aid ≥ 0, ∀i ∈ A(x̄)},

where the active or binding constraint set A(x̄) := {i : Aix̄ = bi}.
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Optimality Conditions

Optimality Conditions: given a feasible solution or point x̄, what are the necessary conditions for x̄ to be a

local optimizer?

Are these conditions sufficient?

A general answer would be: there exists no direction at x̄ that is both descent and feasible. Or the

intersection of Dd
x̄ and Df

x̄ must be empty.

In what follows, we consider optimality conditions for Linearly Constrained Optimization Problems (LCOP).

8



CME307/MS&E311: Optimization Lecture Note #06

Unconstrained Problems

Consider the unconstrained problem, where f is differentiable on Rn,

(UP)
min f(x)

s.t. x ∈ Rn.

Df
x̄ = Rn, so that Dd

x̄ = {d ∈ Rn : ∇f(x̄)d < 0} = ∅:

Theorem 3 Let x̄ be a (local) minimizer of (UP). If the functions f is continuously differentiable at x̄, then

∇f(x̄) = 0.

This condition is also sufficient for global optimality if f is a convex function.
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Linear Equality-Constrained Problems

Consider the linear equality-constrained problem, where f is differentiable on Rn,

(LEP)
min f(x)

s.t. Ax = b.

Theorem 4 (the Lagrange Theorem) Let x̄ be a (local) minimizer of (LEP). If the functions f is

continuously differentiable at x̄, then

∇f(x̄) = ȳTA

for some ȳ = (ȳ1; . . . ; ȳm) ∈ Rm, which are called Lagrange or dual multipliers. This condition is also

sufficient for global optimality if f is a convex function.

The geometric interpretation: the objective gradient vector is perpendicular to or the objective level set

tangents the constraint hyperplanes.

Let v(b) be the minimal value function of b of (LEP). Then ∇v(b) = ȳ.
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Proof

Consider feasible direction space

F = {x : Ax = b} ⇒ Df
x̄ = {d : Ad = 0}.

If x̄ is a local optimizer, then the intersection of the descent and feasible direction sets at x̄ must be empty

or

Ad = 0, ∇f(x̄)d ̸= 0

has no feasible solution for d. By the Alternative System Theorem it must be true that its alternative

system has a solution, that is, there is ȳ ∈ Rn such that

∇f(x̄) = ȳTA =
m∑
i=1

ȳiAi.
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Example: The Objective Contour Tangential to the Constraint Hyperplane

Consider the problem

minimize (x1 − 1)2 + (x2 − 1)2

subject to x1 + x2 = 1.

x̄ =

(
1

2
;
1

2

)
.
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x1

x2

Figure 2: The Objective Contour Tangents the Constraint Hyperplane
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The Barrier Optimization

Consider the problem

min −
∑n

j=1 log xj

s.t. Ax = b,

x ≥ 0

The non-negativity constraint can be removed if the feasible region has an ”interior”, that is, there is a

feasible solution such that x > 0. Thus, if a minimizer x̄ exists, then x̄ > 0 and

−eT X̄−1 = ȳTA =
m∑
i=1

ȳiAi.
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Linear Inequality-Constrained Problems

Let us now consider the inequality-constrained problem

(LIP)
min f(x)

s.t. Ax ≥ b.

Theorem 5 (the KKT Theorem) Let x̄ be a (local) minimizer of (LIP). If the functions f is continuously

differentiable at x̄, then

∇f(x̄) = ȳTA, ȳ ≥ 0

for some ȳ = (ȳ1; . . . ; ȳm) ∈ Rm, which are called Lagrange or dual multipliers, and

ȳi = 0, if i ̸∈ A(x̄). These conditions are also sufficient for global optimality if f is a convex function.

The geometric interpretation: the objective gradient vector is in the cone generated by the normal

directions of the active-constraint hyperplanes.
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Proof

F = {x : Ax ≥ b} ⇒ Df
x̄ = {d : Aid ≥ 0, ∀i ∈ A(x̄)},

or

Df
x̄ = {d : Ād ≥ 0},

where Ā corresponds to those active constraints. If x̄ is a local optimizer, then the intersection of the

descent and feasible direction sets at x̄ must be empty or

Ād ≥ 0, ∇f(x̄)d < 0

has no feasible solution. By the Alternative System Theorem it must be true that its alternative system has

a solution, that is, there is ȳ ≥ 0 such that

∇f(x̄) = ȳT Ā =
∑

i∈A(x̄)

ȳiAi =
∑
i

ȳiAi,

when let ȳi = 0 for all i ̸∈ A(x̄). Then we prove the theorem.
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Example: The Gradient is in the Normal Cone of the Half Spaces

Consider the problem

min (x1 − 1)2 + (x2 − 1)2

s.t. −x1 − 2x2 ≥ −1,

−2x1 − x2 ≥ −1.

x̄ =

(
1

3
;
1

3

)
.
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x1

x2

Figure 3: The objective gradient in the normal cone of the half spaces
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Optimization with Mixed Linear Constraints

We now consider optimality conditions for problems having both inequality and equality constraints. These

can be denoted

(P)
min f(x)

s.t. aix (≤,=,≥) bi, i = 1, ...,m,

For any feasible point x̄ of (P) we have the sets

A(x̄) = {i : aix = bi}

Dd
x̄ = {d : ∇f(x̄)d < 0}.
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The KKT Theorem Summary

Theorem 6 Let x̄ be a local minimizer for (P). Then there exist multipliers ȳ such that

aix̄ (≤,=,≥) bi, i = 1, ...,m, (Original Problem Constraints (OPC))

∇f(x̄) = ȳTA (Lagrangian Multiplier Conditions (LMC))

ȳi (≤,′ free′,≥) 0, i = 1, ...,m, (Multiplier Sign Constraints (MSC))

ȳi = 0 if i ̸∈ A(x̄) (Complementarity Slackness Conditions (CSC)).

These conditions are also sufficient for global optimality if f is a convex function.

20



CME307/MS&E311: Optimization Lecture Note #06

When First-Order Optimality Conditions are Sufficient?

Theorem 7 If objective f is a locally convex function in the feasible direction space at the KKT solution x̄,

then the (first-order) KKT optimality conditions are sufficient for the local optimality at x̄.

A function is locally convex in a space D means that ϕ(α) := f(x̄+ αd) is a convex function of α in a

sufficiently small neighborhood of 0 for all d ∈ D.

Corollary 1 If f is differentiable convex function in the feasible region, then the (first-order) KKT optimality

conditions are sufficient for the global optimality for linearly constrained optimization.

Again, how to check convexity, say f(x) = x3?

• Hessian matrix is PSD in the feasible region.

• Epigraph is a convex set.
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LCOP Examples: Linear Optimization

(LP ) min cTx

s.t. Ax = b, x ≥ 0.

For any feasible x of (LP), it’s optimal if for some y, s

xjsj = 0, ∀j = 1, . . . , n

Ax = b

∇(cTx) = cT = yTA+ sT

x, s ≥ 0.

Here, y (shadow prices in LP) are Lagrange or dual multipliers of equality constraints, and s (reduced

gradient/costs in LP) are Lagrange or dual multipliers for x ≥ 0.
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LCOP Examples : Quadratic Optimization

(QP ) min xTQx− 2cTx

s.t. Ax = b, x ≥ 0.

Optimality Conditions:

xjsj = 0, ∀j = 1, . . . , n

Ax = b

2Qx− 2c−ATy − s = 0

x, s ≥ 0
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LCOP Examples: Linear Barrier Optimization

min f(x) = cTx− µ
n∑

j=1

log(xj), s.t. Ax = b, x ≥ 0.

for some fixed µ > 0. Assume that interior of the feasible region is not empty:

Ax = b

cj − µ
xj

− (yTA)j = 0, ∀j = 1, . . . , n

x > 0.

Let sj =
µ
xj

for all j (note that this s is not the s in the KKT condition of f(x)). Then

xjsj = µ, ∀j = 1, . . . , n,

Ax = b,

ATy + s = c,

(x, s) > 0.
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KKT Application: Fisher’s Equilibrium Prices

Player i ∈ B’s optimization problem for given prices pj , j ∈ G.

max uT
i xi :=

∑
j∈G uijxij

s.t. pTxi :=
∑

j∈G pjxij ≤ wi,

xij ≥ 0, ∀j,

Assume that the given amount of each good is s̄j . The equilibrium price vector is the one that for all

j ∈ G ∑
i∈B

x∗(p)ij = s̄j

where x∗(p) is a maximizer of the utility maximization problem for every buyer i.
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Example of Fisher’s Equilibrium Prices

There two goods, x and y, each with 1 unit on the market. Buyer 1, 2’s optimization problems for given

prices px, py .

max 2x1 + y1

s.t. px · x1 + py · y1 ≤ 5,

x1, y1 ≥ 0;

max 3x2 + y2

s.t. px · x2 + py · y2 ≤ 8,

x2, y2 ≥ 0.

px =
26

3
, py =

13

3
, x1 =

1

13
, y1 = 1, x2 =

12

13
, y2 = 0
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Equilibrium Price Conditions

Player i ∈ B’s dual problem for given prices pj , j ∈ G.

min wiyi

s.t. pyi ≥ ui, yi ≥ 0

The necessary and sufficient conditions for an equilibrium point xi,p are:

pTxi = wi, xi ≥ 0, ∀i,
pjyi ≥ uij , yi ≥ 0, ∀i, j,

uT
i xi = wiyi, ∀i,∑
i xij = s̄j , ∀j.

or

pTxi = wi, xi ≥ 0, ∀i,
pj

uT
i xi

wi
≥ uij , ∀i, j,∑

i xij = s̄j , ∀j.
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Equilibrium Price Conditions continued

These conditions can be further simplified to∑
j s̄jpj =

∑
i wi, xi ≥ 0, ∀i,

pj ≥ uij
wi

uT
i
xi
, ∀i, j,∑

i xij = s̄j , ∀j.

since from the second inequality (after multiplying xij to both sides and take sum over j) we have

pTxi ≥ wi, ∀i.

Then, from the rest conditions∑
i

wi =
∑
j

s̄jpj =
∑
i

pTxi ≥
∑
i

wi.

Thus, these conditions imply pTxi = wi, ∀i.
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Equilibrium Price Property

If uij has at least one positive coefficient for every j, then we must have pj > 0 for every j at every

equilibrium. Moreover, The second inequality can be rewritten as

log(uT
i xi) + log(pj) ≥ log(wi) + log(uij), ∀i, j, uij > 0.

The function on the left is (strictly) concave in xi and pj . Thus,

Theorem 8 The equilibrium set of the Fisher Market is convex.
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Aggregated Social Optimization

max
∑

i∈B wi log(u
T
i xi)

s.t.
∑

i∈B xij = s̄j , ∀j ∈ G

xij ≥ 0, ∀i, j,

Theorem 9 (Eisenberg and Gale 1959) Optimal dual (Lagrange) multiplier vector of equality constraints is

an equilibrium price vector.

Proof: The optimality conditions of the social problem are identical to the equilibrium conditions.
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Aggregated Example

max 5 log(2x1 + y1) + 8 log(3x2 + y2)

s.t. x1 + x2 = 1,

y1 + y2 = 1,

x1, x2, y1, y2 ≥ 0.

Or

max 5 log(u1) + 8 log(u2)

s.t. 2x1 + y1 − u1 = 0,

3x2 + y2 − u2 = 0,

x1 + x2 = 1,

y1 + y2 = 1,

x1, x2, y1, y2 ≥ 0.
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Optimality Conditions of the Aggregated Problem

wi
uij

uT
i
xi

≤ pj , ∀i, j

wi
uijxij

uT
i
xi

= pjxij , ∀i, j (complementarity)∑
i xij = s̄j , ∀j
xi, p ≥ 0.

Let yi =
uT

i xi

wi
. Then, these conditions are identical to the equilibrium price conditions, since

yi =
uT
i xi

wi
≥ uij

pj
, ∀i, j.

Question: Is the price vector p unique when at least one uij > 0 among i ∈ B and uij > 0 among

j ∈ G.

32



CME307/MS&E311: Optimization Lecture Note #06

KKT Application: “Inverse” Learning

Suppose the market does not know the “private information” of each buyer, but can observe realized

activities xt
ij from each buyer and the market prices pt from various known supply date set

s̄t, t = 1, .., T . Could we learn the private information uij (partially) and wt
i from each buyer?

How should we formulate the learning problem?

Using Deep Learning?

Using KKT/Equilibrium conditions?
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