Support-Size and Rank of CLP Solutions and Applications

Yinyu Ye
Department of Management Science and Engineering
Stanford University
Stanford, CA 94305, U.S.A.
http://www.stanford.edu/~yyye
Chapters 3.1-2, 6.4-5

$$
\begin{aligned}
& \text { LP Optimality Conditions and Solution Support }
\end{aligned}
$$

or

$$
\begin{aligned}
\mathbf{x} \cdot \cdot \mathbf{s} & =\mathbf{0} \\
A \mathbf{x} & =\mathbf{b} \\
-A^{T} \mathbf{y}-\mathbf{s} & =-\mathbf{c} .
\end{aligned}
$$

Let x^{*} and s^{*} be optimal solutions with zero duality gap. Then

$$
\left|\operatorname{supp}\left(\mathrm{x}^{*}\right)\right|+\left|\operatorname{supp}\left(\mathrm{s}^{*}\right)\right| \leq n .
$$

There are x^{*} and s^{*} such that the support sizes of x^{*} and s^{*} are maximal, respectively.
There are x^{*} and s^{*} such that the support size of x^{*} and s^{*} are minimal, respectively.
If there is \mathbf{s}^{*} such that $\left|\operatorname{supp}\left(\mathbf{s}^{*}\right)\right| \geq n-d$, then the support size for \mathbf{x}^{*} is at most d.

LP Strict Complementarity Theorem

Theorem 1 If $(L P)$ and (LD) are both feasible, then there exists a pair of strictly complementary solutions $\mathbf{x}^{*} \in \mathcal{F}_{p}$ and $\left(\mathbf{y}^{*}, \mathbf{s}^{*}\right) \in \mathcal{F}_{d}$ such that

$$
\mathbf{x}^{*} \cdot \mathbf{s}^{*}=\mathbf{0} \quad \text { and } \quad\left|\operatorname{supp}\left(\mathbf{x}^{*}\right)\right|+\left|\operatorname{supp}\left(\mathbf{s}^{*}\right)\right|=n
$$

Moreover, the supports

$$
P^{*}=\left\{j: x_{j}^{*}>0\right\} \quad \text { and } \quad Z^{*}=\left\{j: s_{j}^{*}>0\right\}
$$

are invariant for all strictly complementary solution pairs.
Given (LP) or (LD), the pair of P^{*} and Z^{*} is called the strict complementarity partition.
$\left\{\mathbf{x}: A_{P^{*}} \mathbf{x}_{P^{*}}=\mathbf{b}, \mathbf{x}_{P^{*}} \geq \mathbf{0}, \mathbf{x}_{Z^{*}}=\mathbf{0}\right\}$ is called the primal optimal face, and $\left\{\mathbf{y}: \mathbf{c}_{Z^{*}}-A_{Z^{*}}^{T} \mathbf{y} \geq \mathbf{0}, \mathbf{c}_{P^{*}}-A_{P^{*}}^{T} \mathbf{y}=\mathbf{0}\right\}$ is called the dual optimal face.
minimize $\quad 2 x_{1}+x_{2}+x_{3}$
subject to $\quad x_{1}+x_{2}+x_{3}=1,\left(x_{1}, x_{2}, x_{3}\right) \geq 0$,
where $P^{*}=\{2,3\} \quad$ and $\quad Z^{*}=\{1\}$.

Uniqueness Theorem for LP

Given an optimal solution x^{*}, how to certify the uniqueness of x^{*} ?
Theorem 2 An LP optimal solution x^{*} is unique if and only if the size of $\operatorname{supp}\left(\mathrm{x}^{*}\right)$ is maximal among all optimal solutions and the columns of $A_{\text {Supp (x*) }}$ are linear independent.

It is easy to see both conditions are necessary, since otherwise, one can find an optimal solution with a different support size. To see sufficiency, suppose there there is another optimal solution \mathbf{y}^{*} such that $\mathrm{x}^{*}-\mathrm{y}^{*} \neq \mathbf{0}$. We must have supp $\left(\mathrm{y}^{*}\right) \subset \operatorname{supp}\left(\mathrm{x}^{*}\right)$, since, otherwise, $\left(0.5 \mathrm{x}^{*}+0.5 \mathbf{y}^{*}\right)$ remains optimal and its support size is greater than that of x^{*} which is a contradiction. Then we see

$$
\mathbf{0}=A \mathrm{x}^{*}-A \mathbf{y}^{*}=A\left(\mathrm{x}^{*}-\mathrm{y}^{*}\right)=A_{\operatorname{supp}\left(\mathrm{x}^{*}\right)}\left(\mathrm{x}^{*}-\mathrm{y}^{*}\right)_{\operatorname{supp}\left(\mathrm{x}^{*}\right)}
$$

which implies that columns of $A_{\operatorname{supp}\left(\mathrm{x}^{*}\right)}$ are linearly dependent.
Corollary 1 If all optimal solutions of an LP has the same support size, then the optimal solution is unique.

Solution Rank for SDP

$$
\left.\begin{array}{rlrl}
C \bullet X-\mathbf{b}^{T} \mathbf{y} & =0 & X S & =\mathbf{0} \\
\mathcal{A} X & =\mathbf{b} & \mathcal{A} X & =\mathbf{b} \\
-\mathcal{A}^{T} \mathbf{y}-S & =-C, & \text { or } & -\mathcal{A}^{T} y-S
\end{array}\right)-C \text { - }
$$

Let X^{*} and S^{*} be optimal solutions with zero duality gap. Then

$$
\operatorname{rank}\left(X^{*}\right)+\operatorname{rank}\left(S^{*}\right) \leq n .
$$

Hint of the Proof: for any symmetric PSD matrix $P \in S^{n}$ with rank r, there is a factorization $P=V^{T} V$ where $V \in R^{r \times n}$ and columns of V are nonzero-vectors and orthogonal to each other.

There are X^{*} and S^{*} such that the ranks of X^{*} and S^{*} are maximal, respectively.
There are X^{*} and S^{*} such that the ranks of X^{*} and S^{*} are minimal, respectively.
If there is S^{*} such that $\operatorname{rank}\left(S^{*}\right) \geq n-d$, then the maximal rank of X^{*} is at most d.

SDP Strict Complementarity?

Given a pair of SDP and (SDD) where the complementarity solution exist, is there a solution pair such that

$$
\begin{gathered}
\operatorname{rank}\left(X^{*}\right)+\operatorname{rank}\left(S^{*}\right)=n ? \\
C=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), A_{1}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right), A_{2}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 2
\end{array}\right)
\end{gathered}
$$

and

$$
\mathbf{b}=\binom{0}{0} ; K=\mathcal{S}_{+}^{3} .
$$

The maximal solution rank of either the primal or dual is one.

Uniqueness Theorem for SDP

Given an SDP optimal and complementary solution X^{*}, how to certify the uniqueness of X^{*} ?
Theorem 3 An SDP optimal and complementary solution X^{*} is unique if and only if the rank of X^{*} is maximal among all optimal solutions and $V^{*} A_{i}\left(V^{*}\right)^{T}, i=1, \ldots, m$, are linearly independent, where $X^{*}=\left(V^{*}\right)^{T} V^{*}, V^{*} \in \mathcal{R}^{r \times n}$, and r is the rank of X^{*}.

It is easy to see why the rank of X^{*} being maximal is necessary.
Note that for any optimal dual slack matrix S^{*}, we have $S^{*} \bullet\left(V^{*}\right)^{T} V^{*}=0$ which implies that $S^{*}\left(V^{*}\right)^{T}=\mathbf{0}$. Consider any matrix

$$
X=\left(V^{*}\right)^{T} U V^{*}
$$

where $U \in \mathcal{S}_{+}^{r}$ and

$$
b_{i}=A_{i} \bullet\left(V^{*}\right)^{T} U V^{*}=V^{*} A_{i}\left(V^{*}\right)^{T} \bullet U, i=1, \ldots, m
$$

One can see that X remains an optimal SDP solutions for any such $U \in \mathcal{S}_{+}^{r}$, since it makes X feasible and remain complementary to any optimal dual slack matrix. If $V^{*} A_{i}\left(V^{*}\right)^{T}, i=1, \ldots, m$, are not
linearly independent, then one can find

$$
V^{*} A_{i}\left(V^{*}\right)^{T} \bullet W=0, \quad i=1, \ldots, m, \mathbf{0} \neq W \in \mathcal{S}^{r}
$$

Now consider

$$
X(\alpha)=\left(V^{*}\right)^{T}(I+\alpha \cdot W) V^{*}
$$

and then we can choose $\alpha \neq 0$ such that $X(\alpha) \succeq 0$ is another optimal solution.
To see sufficiency, suppose there there is another optimal solution Y^{*} such that $X^{*}-Y^{*} \neq 0$. We must have $Y^{*}=\left(V^{*}\right)^{T} U V^{*}$ for some $I \neq U \in \mathcal{S}_{+}^{r}$. Then we see

$$
V^{*} A_{i}\left(V^{*}\right)^{T} \bullet(I-U)=0, \quad i=1, \ldots, m
$$

contradicts that they are linear independent.
Corollary 2 If all optimal solutions of an SDP has the same rank, then the optimal solution is unique.

Recall Sensor Localization Problem (SNL)

Given $\mathbf{a}_{k} \in \mathbf{R}^{d}, d_{i j} \in N_{x}$, and $\hat{d}_{k j} \in N_{a}$, find $\mathbf{x}_{i} \in \mathbf{R}^{d}$ such that

$$
\begin{aligned}
& \left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}=d_{i j}^{2}, \forall(i, j) \in N_{x}, i<j \\
& \left\|\mathbf{a}_{k}-\mathbf{x}_{j}\right\|^{2}=\hat{d}_{k j}^{2}, \forall(k, j) \in N_{a}
\end{aligned}
$$

$(i j)((k j))$ connects points \mathbf{x}_{i} and $\mathbf{x}_{j}\left(\mathbf{a}_{k}\right.$ and $\left.\mathbf{x}_{j}\right)$ with an edge whose Euclidean length is $d_{i j}\left(\hat{d}_{k j}\right)$. Does the system have a localization or realization of all x_{j} 's? Is the localization unique? Is there a certification for the solution to make it reliable or trustworthy? Is the system partially localizable with certification?

Matrix Representation

Let $X=\left[\mathbf{x}_{1} \mathbf{x}_{2} \ldots \mathbf{x}_{n}\right]$ be the $d \times n$ matrix that needs to be determined and \mathbf{e}_{j} be the vector of all zero except 1 at the j th position. Then

$$
\mathbf{x}_{i}-\mathbf{x}_{j}=X\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right) \quad \text { and } \quad \mathbf{a}_{k}-\mathbf{x}_{j}=[I \quad X]\left(\mathbf{a}_{k} ;-\mathbf{e}_{j}\right)
$$

so that

$$
\begin{gathered}
\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}=\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)^{T} X^{T} X\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right) \\
\left\|\mathbf{a}_{k}-\mathbf{x}_{j}\right\|^{2}=\left(\mathbf{a}_{k} ;-\mathbf{e}_{j}\right)^{T}\left[\begin{array}{ll}
I & X
\end{array}\right]^{T}\left[\begin{array}{ll}
I & X
\end{array}\right]\left(\mathbf{a}_{k} ;-\mathbf{e}_{j}\right)= \\
\left(\mathbf{a}_{k} ;-\mathbf{e}_{j}\right)^{T}\left(\begin{array}{cc}
I & X \\
X^{T} & X^{T} X
\end{array}\right)\left(\mathbf{a}_{k} ;-\mathbf{e}_{j}\right)
\end{gathered}
$$

Or, equivalently,

$$
\begin{aligned}
& \left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)^{T} Y\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)=d_{i j}^{2}, \forall i, j \in N_{x}, i<j \\
& \left(\mathbf{a}_{k} ;-\mathbf{e}_{j}\right)^{T}\left(\begin{array}{cc}
I & X \\
X^{T} & Y
\end{array}\right)\left(\mathbf{a}_{k} ;-\mathbf{e}_{j}\right)=\hat{d}_{k j}^{2}, \forall k, j \in N_{a} \\
& Y=X^{T} X
\end{aligned}
$$

SDP Relaxation

Change

$$
Y=X^{T} X
$$

to

$$
Y \succeq X^{T} X
$$

This matrix inequality is equivalent to

$$
\left(\begin{array}{cc}
I & X \\
X^{T} & Y
\end{array}\right) \succeq \mathbf{0} .
$$

This matrix has rank at least d; if it's d, then $Y=X^{T} X$, and the converse is also true.

SDP Standard Form

$$
Z=\left(\begin{array}{cc}
I & X \\
X^{T} & Y
\end{array}\right)
$$

Find a symmetric matrix $Z \in \mathbf{R}^{(d+n) \times(d+n)}$ such that

$$
\begin{aligned}
& Z_{1: d, 1: d}=I \\
& \left(\mathbf{0} ; \mathbf{e}_{i}-\mathbf{e}_{j}\right)\left(\mathbf{0} ; \mathbf{e}_{i}-\mathbf{e}_{j}\right)^{T} \bullet Z=d_{i j}^{2}, \forall i, j \in N_{x}, i<j \\
& \left(\mathbf{a}_{k} ;-\mathbf{e}_{j}\right)\left(\mathbf{a}_{k} ;-\mathbf{e}_{j}\right)^{T} \bullet Z=\hat{d}_{k j}^{2}, \forall k, j \in N_{a} \\
& Z \succeq \mathbf{0}
\end{aligned}
$$

If every sensor point is connected, directly or indirectly, to an anchor point, then the solution set must be bounded.

Sensor Localization SDP Relaxation in 2D

$$
\begin{aligned}
& (1 ; 0 ; \mathbf{0})(1 ; 0 ; \mathbf{0})^{T} \bullet Z=1, \\
& (0 ; 1 ; \mathbf{0})(0 ; 1 ; \mathbf{0})^{T} \bullet Z=1, \\
& (1 ; 1 ; \mathbf{0})(1 ; 1 ; \mathbf{0})^{T} \bullet Z=2, \\
& \left(\mathbf{0} ; \mathbf{e}_{i}-\mathbf{e}_{j}\right)\left(\mathbf{0} ; \mathbf{e}_{i}-\mathbf{e}_{j}\right)^{T} \bullet Z=d_{i j}^{2}, \forall i, j \in N_{x}, i<j, \\
& \left(\mathbf{a}_{k} ;-\mathbf{e}_{j}\right)\left(\mathbf{a}_{k} ;-\mathbf{e}_{j}\right)^{T} \bullet Z=\hat{d}_{k j}^{2}, \forall k, j \in N_{a}, \\
& Z \succeq \mathbf{0} .
\end{aligned}
$$

$$
\bar{Z}=\left(\begin{array}{cc}
I & \bar{X} \\
\bar{X}^{T} & \bar{X}^{T} \bar{X}
\end{array}\right)=(I, \bar{X})^{T}(I, \bar{X})
$$

is a feasible rank-2 solution for the relaxation, where $\bar{X}=\left[\overline{\mathbf{x}}_{1} \overline{\mathbf{x}}_{2} \ldots \overline{\mathbf{x}}_{n}\right]$ and $\overline{\mathbf{x}}_{j}$ is the true location of sensor j.

The Dual of the SDP Relaxation in 2D

$$
\begin{array}{ll}
\min & w_{1}+w_{2}+2 w_{3}+\sum_{i<j \in N_{x}} w_{i j} d_{i j}^{2}+\sum_{k, j \in N_{a}} \hat{w}_{k j} \hat{d}_{k j}^{2} \\
\text { s.t. } & w_{1}(1 ; 0 ; \mathbf{0})(1 ; 0 ; \mathbf{0})^{T}+w_{2}(0 ; 1 ; \mathbf{0})(0 ; 1 ; \mathbf{0})^{T}+w_{3}(1 ; 1 ; \mathbf{0})(1 ; 1 ; \mathbf{0})^{T}+ \\
& \sum_{i<j \in N_{x}} w_{i j}\left(\mathbf{0} ; \mathbf{e}_{i}-\mathbf{e}_{j}\right)\left(\mathbf{0} ; \mathbf{e}_{i}-\mathbf{e}_{j}\right)^{T}+\sum_{k, j \in N_{a}} \hat{w}_{k j}\left(\mathbf{a}_{k} ;-e_{j}\right)\left(\mathbf{a}_{k} ;-\mathbf{e}_{j}\right)^{T} \succeq \mathbf{0}
\end{array}
$$

$w_{i j}$ and $\hat{w}_{k j}$: tensional forces on edge $i j$; dual objective is the potential energy of the network.
Since the primal is feasible, the minimal value of the dual is not less than 0 . Note that all 0 is an minimal solution for the dual. Thus, there is no duality gap.

Duality Theorem for SNL

Theorem 4 Let \bar{Z} be a feasible solution for SDP and \bar{U} be an optimal slack matrix of the dual. Then,

1. complementarity condition holds: $\bar{Z} \bullet \bar{U}=0$ or $\bar{Z} \bar{U}=\mathbf{0}$;
2. $\operatorname{Rank}(\bar{Z})+\operatorname{Rank}(\bar{U}) \leq 2+n$;
3. $\operatorname{Rank}(\bar{Z}) \geq 2$ and $\operatorname{Rank}(\bar{U}) \leq n$.

An immediate result from the theorem is the following:
Corollary 3 If an optimal dual slack matrix has rank n, then every solution of the SDP has rank 2 so that the solution is unique, that is, the SDP relaxation solves the original problem exactly.

Theoretical Analyses on Sensor Network Localization

A sensor network is 2 -universally-localizable (UL) if there is a unique localization in \mathbf{R}^{2} and there is no $x_{j} \in \mathbf{R}^{h}, j=1, \ldots, n$, where $h>2$, such that

$$
\begin{aligned}
& \left\|x_{i}-x_{j}\right\|^{2}=d_{i j}^{2}, \forall i, j \in N_{x}, i<j \\
& \left\|\left(a_{k} ; \mathbf{0}\right)-x_{j}\right\|^{2}=\hat{d}_{k j}^{2}, \forall k, j \in N_{a}
\end{aligned}
$$

The latter says that the problem cannot be localized in a higher dimension space where anchor points are simply augmented to $\left(a_{k} ; \mathbf{0}\right) \in \mathbf{R}^{h}, k=1, \ldots, m$.

Theorem 5 The SDP relaxation is exact for all universally-localizable networks.

Figure 1: One sensor-Two anchors: Not Universally Localizable

Figure 2: Two sensor-Three anchors: Universally Localizable

Figure 3: Two sensor-Three anchors: Universally Localizable (but not Strongly)

Figure 4: Two sensor-Three anchors: Not Universally Localizable

Figure 5: Two sensor-Three anchors: Universally Localizable

Universally-Localizable Problems (ULP)

Theorem 6 The following SNL problems are Universally-Localizable:

- If every edge length is specified, then the sensor network is 2-universally-localizable (Schoenberg 1942).
- There is a sensor network (trilateral graph), with $O(n)$ edge lengths specified, that is 2-universally-localizable (So 2007).
- If one sensor with its edge lengths to at least three anchors (in general positions) specified, then it is 2-universally-localizable (So and Y 2005).

ULPs can be localized in polynomial time

Theorem 7 (So and Y 2005) The following statements are equivalent:

1. The sensor network is 2 -universally-localizable;
2. The max-rank solution of the SDP relaxation has rank 2;
3. The solution matrix has $Y=X^{T} X$ or $\operatorname{Tr}\left(Y-X^{T} X\right)=0$.

When an optimal dual (stress) slack matrix has rank n, then the problem is 2 -strongly-localizable-problem (SLP). This is a sub-class of ULP.

Example: if one sensor with its edge lengths to three anchors (in general positions) are specified, then it is 2-strongly-localizable.

One-Sensor Three-Anchor Example

Given three anchors $\mathbf{a}_{k} \in \mathbf{R}^{2}, k=1,2,3$, who are not co-linear, and the three (exact) Euclidean distances, d_{k}, from a sensor to the three anchors, find the sensor position $\mathbf{x} \in \mathbf{R}^{2}$ such that

$$
\left\|\mathbf{a}_{k}-\mathbf{x}\right\|^{2}=d_{k}^{2}, k=1,2,3
$$

Denote by $\overline{\mathrm{x}}$ the true position of the sensor that is the position we like to compute.
Does the system of multivariate quadratic equations have a solution? Is the solution unique even it has?

Convex Relaxation: SOCP

Relax " $=$ " to " \leq "): find x such that $\left\|\mathbf{a}_{k}-\mathbf{x}\right\| \leq d_{k}, k=1,2,3$.

$$
\begin{array}{rlll}
\max & \mathbf{0}^{T} \mathbf{x} & & \\
\text { s.t. } & & \delta_{1} & =d_{1} \\
\mathbf{x}+ & \mathbf{s}_{1} & =\mathbf{a}_{1} \\
\delta_{2} & =d_{2} \\
& & =\mathbf{a}_{2} \\
\mathbf{x}+ & \mathbf{s}_{2} & =d_{3} \\
\delta_{3} & =\mathbf{a}_{3} \\
\mathbf{x}+\quad \mathbf{s}_{3} & & =S O C P, k=1,2,3
\end{array}
$$

This problem is in the standard SOCP dual form.

Convex Relaxation: SDP

Since $\mathbf{a}_{k}-\mathbf{x}=[I \mathbf{x}]\left(\mathbf{a}_{k} ;-1\right)(I$ here is a 2×2 identity matrix $)$ so that

The original three quadratic equations can be written as

$$
\begin{aligned}
& \left(\mathbf{a}_{k} ;-1\right)\left(\mathbf{a}_{k} ;-1\right)^{T} \bullet\left(\begin{array}{cc}
I & \mathbf{x} \\
\mathbf{x}^{T} & y
\end{array}\right)=d_{k}^{2}, \forall k, j \in N_{a} \\
& y=\mathbf{x}^{T} \mathbf{x}
\end{aligned}
$$

Relax $y=\mathbf{x}^{T} \mathbf{x}$ to $y \succeq \mathbf{x}^{T} \mathbf{x}$, which is equivalent to matrix positive semi-definiteness:

$$
\left(\begin{array}{cc}
I & \mathbf{x} \\
\mathbf{x}^{T} & y
\end{array}\right) \succeq \mathbf{0}
$$

Denote this matrix by Z. Then the relaxed problem can be written as SDP in the standard form.

SDP Standard Form

$\max \quad 0 \bullet Z$

$$
\begin{array}{ll}
\text { s.t. } & (1 ; 0 ; 0)(1 ; 0 ; 0)^{T} \bullet Z=1 \\
& (0 ; 1 ; 0)(0 ; 1 ; 0)^{T} \bullet Z=1 \\
& (1 ; 1 ; 0)(1 ; 1 ; 0)^{T} \bullet Z=2 \\
& \left(\mathbf{a}_{k} ;-1\right)\left(\mathbf{a}_{k} ;-1\right)^{T} \bullet Z=d_{k}^{2}, \text { for } k=1,2,3, \\
& Z \succeq \mathbf{0}
\end{array}
$$

Note than Z has rank at least 2 ; if it's 2 , then $y=\mathbf{x}^{T} \mathbf{x}$, and the converse is also true. In particular, unknown

$$
\bar{Z}=\left(\begin{array}{cc}
I & \overline{\mathbf{x}} \\
\overline{\mathbf{x}}^{T} & \overline{\mathbf{x}}^{T} \overline{\mathbf{x}}
\end{array}\right)=(I, \overline{\mathbf{x}})^{T}(I, \overline{\mathbf{x}})
$$

is a rank-2 solution for the relaxation.
If we can prove the optimal dual matrix has a rank-1 solution, then the max-rank of any primal matrix solution would be 2 (and it is unique).

The Dual of SDP

Assign the dual variables to

$$
\begin{aligned}
& (1 ; 0 ; 0)(1 ; 0 ; 0)^{T} \bullet Z=1,\left(w_{1}\right) \\
& (0 ; 1 ; 0)(0 ; 1 ; 0)^{T} \bullet Z=1,\left(w_{2}\right) \\
& (1 ; 1 ; 0)(1 ; 1 ; 0)^{T} \bullet Z=2,\left(w_{3}\right) \\
& \left(\mathbf{a}_{k} ;-1\right)\left(\mathbf{a}_{k} ;-1\right)^{T} \bullet Z=d_{k}^{2},\left(\lambda_{k}\right) \text { for } k=1,2,3
\end{aligned}
$$

The Dual would be

$$
\begin{aligned}
& \min \\
& \text { s.t. } \quad\left(\begin{array}{cc}
w_{1}+w_{2}+2 w_{3}+\sum_{k=1}^{3} \lambda_{k} d_{k}^{2} \\
\left(\begin{array}{cc}
w_{1}+w_{3} & w_{3} \\
w_{3} & w_{2}+w_{3} \\
-\left(\sum_{k=1}^{3} \lambda_{k} \mathbf{a}_{k}\right)^{T} & \sum_{k=1}^{3} \lambda_{k} \mathbf{a}_{k} \mathbf{a}_{k}^{T}
\end{array}-\sum_{k=1}^{3} \lambda_{k} \mathbf{a}_{k}\right. \\
& \lambda_{k}
\end{array}\right) \succeq \mathbf{0} .
\end{aligned}
$$

Does the dual has a rank-1 slack matrix, S, with zero-objective value?

An Optimal Dual Slack Matrix

If we choose $(w ., \lambda$.)'s such that

$$
\bar{S}=(-\overline{\mathbf{x}} ; 1)(-\overline{\mathbf{x}} ; 1)^{T}
$$

then, $\bar{S} \succeq 0$ and $\bar{S} \bullet \bar{Z}=0$ so that \bar{S} is an optimal slack matrix for the dual and its rank is 1 .
We only need to consider choosing λ.'s such that

$$
\begin{array}{ccc}
\sum_{k=1}^{3} \lambda_{k} \mathbf{a}_{k}=\overline{\mathbf{x}} & \text { or } & \sum_{k=1}^{3} \lambda_{k}\left(\mathbf{a}_{k}-\overline{\mathbf{x}}\right)=\mathbf{0} \\
\sum_{k=1}^{3} \lambda_{k}=1 . & \sum_{k=1}^{3} \lambda_{k}=1
\end{array}
$$

This system always has an unique solution as long as \mathbf{a}_{k} 's are not co-linear.
Then we choose (unique) w.'s such that

$$
\left(\begin{array}{cc}
w_{1}+w_{3} & w_{3} \\
w_{3} & w_{2}+w_{3}
\end{array}\right)=\overline{\mathbf{x}}_{1} \overline{\mathbf{x}}_{1}^{T}-\sum_{k=1}^{3} \lambda_{k} \mathbf{a}_{k} \mathbf{a}_{k}^{T}
$$

Dual Interpretation

λ_{k} 's are nontrivial stresses/forces the edges between \mathbf{a}_{k} and solution \mathbf{x}, respectively, and all stresses are balanced or at the equilibrium state.

Even if \mathbf{a}_{k} is co-linear, the system

$$
\begin{gathered}
\sum_{k=1}^{3} \lambda_{k}\left(\mathbf{a}_{k}-\overline{\mathbf{x}}\right)=\mathbf{0} \\
\sum_{k=1}^{3} \lambda_{k}=1
\end{gathered}
$$

may still have a solution λ.?

Figure 6: Dual Stresses - A 3-D Toy; provided by Anstreicher

Figure 7: Dual Stresses - A Needle Tower; provided by Anstreicher

Rank-Reduction for SDP

In most applications, we may not be lucky and need an effort to search a rank-minimal SDP solution for SDP:

$$
\begin{array}{lll}
(S D P) & \min & C \bullet X \\
& \text { subject to } & A_{i} \bullet X=b_{i}, i=1,2, \ldots, m, X \succeq 0
\end{array}
$$

where $C, A_{i} \in \mathcal{S}^{n}$.
Or simply for the SDP feasibility problem:

$$
\text { Solve } \quad A_{i} \bullet X=b_{i}, i=1,2, \ldots, m, X \succeq 0
$$

A Bound on Support/Rank

Theorem 8 (Carathéodory's theorem)

- If there is a minimizer for $(L P)$, then there is a minimizer of $(L P)$ whose support size r satisfying $r \leq m$.
- If there is a minimizer for (SDP), then there is a minimizer of (SDP) whose rank r satisfying $\frac{r(r+1)}{2} \leq m$. Moreover, such a solution can be find in polynomial time.

How Sharp is the Rank Bound? The rank bound is sharp: consider $n=4$ and the SDP problem:

$$
\begin{aligned}
\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)^{T} \cdot X & =1, \forall i<j=1,2,3,4 \\
X & \succeq 0
\end{aligned}
$$

Applications: Finding the extreme eigenvalue of a symmetric matrix and the singular value of any matrix are convex optimization!

The Null-Space Support-Reduction for LP

1. Start at any feasible solution \mathbf{x}^{0} and, without loss of generality, assume $\mathbf{x}^{0}>\mathbf{0}$, and let $k=0$ and $A^{0}=A$.
2. Find any $A^{k} \mathbf{d}=\mathbf{0}, \mathbf{d} \neq 0$, and let $\mathbf{x}^{k+1}=\mathbf{x}^{k}+\alpha \mathbf{d}$ where α is chosen such as $\mathbf{x}^{k+1} \geq 0$ and at least one of x^{k+1} equals 0 .
3. Eliminate the the variable(s) in x^{k+1} and column(s) in A^{k} corresponding to $x_{j}^{k+1}=0$, and let the new narrower matrix be A^{k+1}.
4. Set $k=k+1$ and return to step 2 .

This process is called rounding, or purification, procedure in linear programming.

I. The Null-Space Rank-Reduction: A Constructive Proof

Let X^{*} be an optimal solution. Then, if the rank of X^{*}, r, satisfies the inequality, we need do nothing. Thus, we assume $r(r+1) / 2>m$, and let

$$
V^{T} V=X^{*}, \quad V \in R^{r \times n}
$$

Then consider

$$
\begin{array}{ll}
\text { Minimize } & V C V^{T} \bullet U \\
\text { Subject to } & V A_{i} V^{T} \bullet U=b_{i}, i=1, \ldots, m \tag{1}\\
& U \succeq 0
\end{array}
$$

Note that $V C V^{T}, V A_{i} V^{T}$ s and U are $r \times r$ symmetric matrices and, in particular,

$$
V C V^{T} \bullet I=C \bullet V^{T} V=C \bullet X^{*}=z^{*}
$$

Moreover, for any feasible solution of (1) one can construct a feasible matrix solution for (??) using

$$
\begin{equation*}
X(U)=V^{T} U V \quad \text { and } \quad C \bullet X(U)=V C V^{T} \bullet U \tag{2}
\end{equation*}
$$

Thus, the minimal value of (1) is also z^{*}, and $U=I$ is a minimizer of (1).
Now we show that any feasible solution U to (1) is a minimizer for (1); thereby $X(U)$ of (2) is a minimizer for the original SDP. Consider the dual of (1)

$$
z^{*}:=\quad \text { Maximize } \quad \mathbf{b}^{T} \mathbf{y}=\sum_{i=1}^{m} b_{i} y_{i}
$$

$$
\begin{equation*}
\text { Subject to } \quad V C V^{T} \succeq \sum_{i=1}^{m} y_{i} V A_{i} V^{T} \tag{3}
\end{equation*}
$$

Let \mathbf{y}^{*} be a dual maximizer. Since $U=I$ is an interior optimizer for the primal, the strong duality condition holds, i.e.,

$$
I \bullet\left(V C V^{T}-\sum_{i=1}^{m} y_{i}^{*} V A_{i} V^{T}\right)=0
$$

so that we have

$$
V C V^{T}-\sum_{i=1}^{m} y_{i}^{*} V A_{i} V^{T}=\mathbf{0}
$$

Then, any feasible solution of (1) satisfies the strong duality condition so that it must be also optimal.
Consider the system of homogeneous linear equations

$$
V A_{i} V^{T} \bullet W=0, i=1, \ldots, m
$$

where W is a $r \times r$ symmetric matrices (does not need to be definite). This system has $r(r+1) / 2$ real number variables and m equations. Thus, as long as $r(r+1) / 2>m$, we must be able to find a symmetric matrix $W \neq 0$ to satisfy all m equations. Without loss of generality, let W be either indefinite or negative semidefinite (if it is positive semidefinite, we take $-W$ as W), that is, W has at least one negative eigenvalue, and consider

$$
U(\alpha)=I+\alpha W
$$

Choosing $\alpha^{*}=1 /|\bar{\lambda}|$ where $\bar{\lambda}$ is the least eigenvalue of W, we have

$$
U\left(\alpha^{*}\right) \succeq \mathbf{0}
$$

and it has at least one 0 eigenvalue or rank $\left(U\left(\alpha^{*}\right)\right)<r$, and

$$
V A_{i} V^{T} \bullet U\left(\alpha^{*}\right)=V A_{i} V^{T} \bullet\left(I+\alpha^{*} W\right)=V A_{i} V^{T} \bullet I=b_{i}, i=1, \ldots, m
$$

That is, $U\left(\alpha^{*}\right)$ is a feasible and so it is an optimal solution for (1). Then,

$$
X\left(U\left(\alpha^{*}\right)\right)=V^{T} U\left(\alpha^{*}\right) V
$$

is a new minimizer for (1), and $\operatorname{rank}\left(X\left(U\left(\alpha^{*}\right)\right)\right)<r$.
This process can be repeated till the system of homogeneous linear equations has only all zero solution, which is necessarily given by $r(r+1) / 2 \leq m$. The total number of such reduction steps is bounded by $n-1$ and each step uses no more than $O\left(m^{2} n\right)$ arithmetic operations and finds the least eigenvalue of W, which is a polynomial time.

II. The Principle-Component or Eigenvalue Reduction

Let \bar{X} be an SDP solution with rank r and

$$
\bar{X}=\sum_{i=1}^{r} \lambda_{i} \mathbf{v}_{i} \mathbf{v}_{i}^{T}
$$

where

$$
\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}
$$

Then, let

$$
\hat{X}=\sum_{i=1}^{d} \lambda_{i} \mathbf{v}_{i} \mathbf{v}_{i}^{T}
$$

III. Continuous Randomized Reduction

Let \bar{X} be an SDP solution with rank r and

$$
\bar{X}=V V^{T}
$$

where $V \in R^{n \times r}$ is any factorization matrix of \bar{X}
Then, let random matrix

$$
R=\sum_{i=1}^{d} \xi_{i} \xi_{i}^{T}, \quad \xi_{i} \in N\left(\mathbf{0}, \frac{1}{d} I\right) ; \quad \text { or } \quad \xi_{i} \in \operatorname{Binary}\left(\mathbf{0}, \frac{1}{d} I\right)
$$

that is, each entry either 1 or -1 in the latter case. Then assign

$$
\hat{X}=V R V^{T}
$$

Note that $\left(V \xi_{i}\right)\left(V \xi_{i}\right)^{T} \in N\left(\mathbf{0}, \frac{1}{d} \bar{X}\right)$ and

$$
E[\hat{X}]=V E[R] V^{T}=V V^{T}=\bar{X}
$$

Approximate Low-Rank SDP Theorem

For simplicity, consider the SDP feasibility problem

$$
A_{i} \bullet X=b_{i} \quad i=1, \ldots, m, \quad X \succeq \mathbf{0}
$$

where A_{1}, \ldots, A_{m} are positive semidefinite matrices and scalars $\left(b_{1}, \ldots, b_{m}\right) \geq 0$.

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}=1 \\
& \left(\begin{array}{ll}
x_{1} & x_{2} \\
x_{2} & x_{3}
\end{array}\right) \succeq \mathbf{0}
\end{aligned}
$$

We try to find an approximate $\hat{X} \succeq 0$ of rank at most d :

$$
\beta(m, n, d) \cdot b_{i} \leq A_{i} \bullet \hat{X} \leq \alpha(m, n, d) \cdot b_{i} \quad \forall i=1, \ldots, m
$$

Here, $\alpha \geq 1$ and $\beta \in(0,1]$ are called the distortion factors. Clearly, the closer are both to 1 , the better.

The Main Theorem

Theorem 9 Let $r=\max \left\{\operatorname{rank}\left(A_{i}\right)\right\}$ and $\bar{X}=V V^{T}$ be a feasible solution. Then, for any $d \geq 1$, the randomly generated

$$
\begin{gathered}
\hat{X}=V\left[\sum_{i=1}^{d} \xi_{i} \xi_{i}^{T}\right] V^{T},
\end{gathered} \quad \xi_{i} \in N\left(\mathbf{0}, \frac{1}{d} I\right), \begin{array}{ll}
1+\frac{12 \ln (4 m r)}{d} & \text { for } 1 \leq d \leq 12 \ln (4 m r) \\
\alpha(m, n, d)= \begin{cases}1+\sqrt{\frac{12 \ln (4 m r)}{d}} & \text { for } d>12 \ln (4 m r)\end{cases}
\end{array}
$$

and

$$
\beta(m, n, d)= \begin{cases}\frac{1}{e(2 m)^{2 / d}} & \text { for } 1 \leq d \leq 4 \ln (2 m) \\ \max \left\{\frac{1}{e(2 m)^{2 / d}}, 1-\sqrt{\left.\frac{4 \ln (2 m)}{d}\right\}}\right. & \text { for } d>4 \ln (2 m)\end{cases}
$$

Some Remarks and Open Questions

- There is always a low-rank, or sparse, approximate SDP solution with respect to a bounded relative residual distortion. As the allowable rank increases, the distortion bounds become smaller and smaller.
- The lower distortion factor is independent of n and the rank of $A_{i} \mathbf{s}$.
- The factors can be improved if we only consider one-sided inequalities.
- This result contains as special cases several well-known results in the literature.
- Can the distortion upp bound be improved such that it's independent of rank of A_{i} ?
- Is there deterministic rank-reduction procedure? Choose the largest d eigenvalue component of X ?
- General symmetric A_{i} ?
- In practical applications, we see much smaller distortion, why?

IV. $\{-1,1\}$ Randomized Reduction

Let X be an SDP solution with rank r and

$$
X=V V^{T}
$$

Then, let random vector

$$
\mathbf{u} \in N(\mathbf{0}, I) \quad \text { and } \quad \hat{\mathbf{x}}=\operatorname{Sign}(V \mathbf{u})
$$

where

$$
\operatorname{Sign}(x)=\left\{\begin{array}{cl}
1 & \text { if } x \geq 0 \\
-1 & \text { otherwise }
\end{array}\right.
$$

Note that $V \mathbf{u} \in N(\mathbf{0}, X)$. It was proved by Sheppard (1900):

$$
\mathrm{E}\left[\hat{x}_{i} \hat{x}_{j}\right]=\frac{2}{\pi} \arcsin \left(\bar{X}_{i j}\right), \quad i, j=1,2, \ldots, n .
$$

Max-Cut Problem

This is the Max-Cut problem on an undirected graph $G=(V, E)$ with non-negative weights $w_{i j}$ for each edge in E (and $w_{i j}=0$ if $(i, j) \notin E$), which is the problem of partitioning the nodes of V into two sets S and $V \backslash S$ so that

$$
w(S):=\sum_{i \in S, j \in V \backslash S} w_{i j}
$$

is maximized. A problem of this type arises from many network planning, circuit design, and scheduling applications.

Figure 8: Illustration of the Max-Cut Problem

Max-Cut Formulation with Binary Quadratic Minimization

$$
w^{*}:=\text { Maximize } \quad w(\mathbf{x}):=\frac{1}{4} \sum_{i, j} w_{i j}\left(1-x_{i} x_{j}\right)
$$

(MC)

$$
\text { Subject to }\left(x_{j}\right)^{2}=1, j=1, \ldots, n \text {. }
$$

The Coin-Toss Method: Approximation Quality

Let each node be selected to one side, or \hat{x}_{j} be 1 , independently with probability .5 .
Or simply let random vector

$$
\mathbf{u} \in N(\mathbf{0}, I) \quad \text { and } \quad \hat{\mathbf{x}}=\operatorname{Sign}(\mathbf{u})
$$

We have

$$
\begin{aligned}
\mathrm{E}[w(\hat{\mathbf{x}})] & =\mathrm{E}\left[\frac{1}{4} \sum_{i, j} w_{i j}\left(1-x_{i} x_{j}\right)\right]=\frac{1}{4} \sum_{i, j} w_{i j}\left(1-\mathrm{E}\left[x_{i} x_{j}\right]\right) \\
& =\frac{1}{4} \sum_{i, j} w_{i j}=\frac{\text { weights of all edges }}{2} \geq \frac{1}{2} w^{*}
\end{aligned}
$$

Semidefinite Relaxation for (MC)

Let $X=\mathbf{x} \mathbf{x}^{T} \in S_{+}^{n}$. Then the problem can be rewritten as

$$
\begin{aligned}
z^{S D P}:= & \text { Maximize }
\end{aligned} \frac{\frac{1}{4} \sum_{i, j} w_{i j}\left(1-X_{i j}\right)}{} \begin{aligned}
\text { Subject to } & X_{i i}=1, \quad i=1, \ldots, n \\
& X \succeq \mathbf{0}, \operatorname{rank}(X)=1
\end{aligned}
$$

By removing the rank-one constraint, it leads to the SDP relaxation problem.
Let \bar{X} be an optimal solution for (SDP). Then, generate a random vector $\mathbf{u} \in N(0, \bar{X})$:

$$
\hat{\mathbf{x}}=\operatorname{Sign}(\mathbf{u}), \quad \mathrm{E}\left[\hat{x}_{i} \hat{x}_{j}\right]=\arcsin \left(\bar{X}_{i} j\right)
$$

Theorem 10 (Goemans and Williamson)

$$
\mathrm{E}[w(\hat{\mathbf{x}})] \geq .878 z^{S D P} \geq .878 w^{*}
$$

V. Objective-Guided Reduction

Construct a suitable objective for the SDP solution set

$$
\begin{array}{ll}
\text { Minimize } & R \bullet X \\
\text { Subject to } & A_{i} \bullet X=b_{i}, i=1, \ldots, m \\
& C \bullet X \leq \alpha \cdot z^{*} \\
& X \succeq \mathbf{0}
\end{array}
$$

where z^{*} is the minimal objective value of the SDP relaxation, and α is a tolerance factor.
The selection of matrix R is problem dependent. Examples include the L_{1} norm function, the tensegrity graph approach, etc.

Tensegrity (Tensional-Integrity) Objective for SNL: a Chain Graph

Anchor-free SNL: let \mathbf{e}_{i} be the unit vector (one for the i th entry and zeros for the else)

$$
\begin{aligned}
\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)^{T} \bullet X & =d_{i j}^{2}, \forall(i, j) \in E, i<j \\
X & \succeq 0
\end{aligned}
$$

For certain graphs, to select a subset edges to maximize and/or a subset of edges to minimize is guaranteed to finding the lowest rank SDP solution - Tensegrity Method.

The Chain Graph Example

Consider:

$$
\begin{array}{ll}
\max & \mathbf{e}_{3} \mathbf{e}_{3} \bullet X \\
\text { s.t. } & \mathbf{e}_{1} \mathbf{e}_{1}^{T} \bullet X=1 \\
& \left(\mathbf{e}_{1}-\mathbf{e}_{2}\right)\left(\mathbf{e}_{1}-\mathbf{e}_{2}\right)^{T} \bullet X=1 \\
& \left(\mathbf{e}_{2}-\mathbf{e}_{3}\right)\left(\mathbf{e}_{2}-\mathbf{e}_{3}\right)^{T} \bullet X=1 \\
& X \succeq \mathbf{0} \in \mathcal{S}^{3}
\end{array}
$$

where its maximal solution $X^{*}=(1 ; 2 ; 3)^{T}(1 ; 2 ; 3)$. The dual is

$$
\begin{array}{ll}
\min & y_{1}+y_{2}+y_{3} \\
\text { s.t. } & y_{1} \mathbf{e}_{1} \mathbf{e}_{1}^{T}+y_{2}\left(\mathbf{e}_{1}-\mathbf{e}_{2}\right)\left(\mathbf{e}_{1}-\mathbf{e}_{2}\right)^{T}+y_{3}\left(\mathbf{e}_{2}-\mathbf{e}_{3}\right)\left(\mathbf{e}_{2}-\mathbf{e}_{3}\right)^{T}-S=\mathbf{e}_{3} \mathbf{e}_{3} \\
& S \succeq \mathbf{0} \in \mathcal{S}^{3}
\end{array}
$$

The dual has a rank-two solution with $\left(y_{1}=3, y_{2}=3, y_{3}=3\right)$.

Applications

Figure 9: Dimension Reduction - Unfolding Scroll of Happiness

Figure 10: Molecular Conformation - 1F39(1534 atoms) with 85% of distances below 6 rA and 10% noise on upper and lower bounds

