Mathematical Preliminaries

Yinyu Ye
Department of Management Science and Engineering
Stanford University
Stanford, CA 94305, U.S.A.
http://www.stanford.edu/~yyye
Appendices A, B, and C, Chapter 1

Mathematical Optimization/Programming (MP)

The class of mathematical optimization/programming problems considered in this course can all be expressed in the form

$$
\begin{array}{ll}
\text { (P) } \quad \text { minimize } & f(\mathbf{x}) \\
& \text { subject to } \\
\mathbf{x} \in \mathcal{X}
\end{array}
$$

where \mathcal{X} usually specified by constraints:

$$
\begin{aligned}
& c_{i}(\mathbf{x})=0 \quad i \in \mathcal{E} \\
& c_{i}(\mathbf{x}) \leq 0 \quad i \in \mathcal{I}
\end{aligned}
$$

Global and Local Optimizers

A global minimizer for (P) is a vector x^{*} such that

$$
\mathbf{x}^{*} \in \mathcal{X} \quad \text { and } \quad f\left(\mathbf{x}^{*}\right) \leq f(\mathbf{x}) \quad \forall \mathbf{x} \in \mathcal{X}
$$

Sometimes one has to settle for a local minimizer, that is, a vector $\overline{\mathrm{x}}$ such that

$$
\overline{\mathbf{x}} \in \mathcal{X} \quad \text { and } \quad f(\overline{\mathbf{x}}) \leq f(\mathbf{x}) \quad \forall \mathbf{x} \in \mathcal{X} \cap N(\bar{x})
$$

where $N(\overline{\mathbf{x}})$ is a neighborhood of $\overline{\mathbf{x}}$. Typically, $N(\overline{\mathbf{x}})=B_{\delta}(\overline{\mathbf{x}})$, an open ball centered at $\overline{\mathbf{x}}$ having suitably small radius $\delta>0$.

The value of the objective function f at a global minimizer or a local minimizer is also of interest. We call it the global minimum value or a local minimum value, respectively.

Important Terms

- decision variable/activity, data/parameter
- objective/goal/target
- constraint/limitation/requirement
- satisfied/violated
- feasible/allowable solutions
- optimal (feasible) solutions
- optimal value

Size and Complexity of Problems

- number of decision variables
- number of constraints
- bit size/number required to store the problem input data
- problem difficulty or complexity number
- algorithm complexity or convergence speed

Real n-Space; Euclidean Space

- $\mathcal{R}, \quad \mathcal{R}_{+}, \quad \operatorname{int} \mathcal{R}_{+}$
- $\mathcal{R}^{n}, \quad \mathcal{R}_{+}^{n}, \quad \operatorname{int} \mathcal{R}_{+}^{n}$
- $\mathbf{x} \geq \mathbf{y}$ means $x_{j} \geq y_{j}$ for $j=1,2, \ldots, n$
- 0: all zero vector; and e: all one vector
- Column vector:

$$
\mathbf{x}=\left(x_{1} ; x_{2} ; \ldots ; x_{n}\right)
$$

and row vector:

$$
\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

- Inner-Product:

$$
\mathbf{x} \bullet \mathbf{y}:=\mathbf{x}^{T} \mathbf{y}=\sum_{j=1}^{n} x_{j} y_{j}
$$

- Vector norm: $\|\mathbf{x}\|_{2}=\sqrt{\mathbf{x}^{T} \mathbf{x}}, \quad\|\mathbf{x}\|_{\infty}=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{n}\right|\right\}$, in general, for $p \geq 1$

$$
\|\mathbf{x}\|_{p}=\left(\sum_{j=1}^{n}\left|x_{j}\right|^{p}\right)^{1 / p}
$$

(Quasi-norm when $0<p<1$.)

- \mathbf{A} set of vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}$ is said to be linearly dependent if there are multipliers $\lambda_{1}, \ldots, \lambda_{m}$, not all zero, the linear combination

$$
\sum_{i=1}^{m} \lambda_{i} \mathbf{a}_{i}=\mathbf{0}
$$

- A linearly independent set of vectors that span R^{n} is a basis.
- For a sequence $\mathrm{x}^{k} \in R^{n}, k=0,1, \ldots$, we say it is a contraction sequence if there is an $\mathrm{x}^{*} \in R^{n}$ and a scalar constant $0<\gamma<1$ such that

$$
\left\|\mathbf{x}^{k+1}-\mathbf{x}^{*}\right\| \leq \gamma\left\|\mathbf{x}^{k}-\mathbf{x}^{*}\right\|, \forall k \geq 0
$$

Matrices

- $A \in \mathcal{R}^{m \times n} ; \mathbf{a}_{i,}$, the i th row vector; $\mathbf{a}_{. j}$, the j th column vector; $a_{i j}$, the i, j th entry
- 0 : all zero matrix, and I : the identity matrix
- The null space $\mathcal{N}(A)$, the row space $\mathcal{R}\left(A^{T}\right)$, and they are orthogonal.
- $\operatorname{det}(A), \operatorname{tr}(A)$: the sum of the diagonal entries of A
- Inner Product:

$$
A \bullet B=\operatorname{tr} A^{T} B=\sum_{i, j} a_{i j} b_{i j}
$$

- The operator norm of matrix A :

$$
\|A\|^{2}:=\max _{0 \neq \mathbf{x} \in \mathcal{R}^{n}} \frac{\|A \mathbf{x}\|^{2}}{\|\mathbf{x}\|^{2}}
$$

The Frobenius norm of matrix A :

$$
\|A\|_{f}^{2}:=A \bullet A=\sum_{i, j} a_{i j}^{2}
$$

- Sometimes we use $X=\operatorname{diag}(\mathbf{x})$
- Eigenvalues and eigenvectors

$$
A \mathbf{v}=\lambda \cdot \mathbf{v}
$$

- Perron-Frobenius Theorem: a real square matrix with positive entries has a unique largest real eigenvalue and that the corresponding eigenvector can be chosen to have strictly positive components.
- Stochastic Matrices: $A \geq 0$ with $\mathbf{e}^{T} A=\mathbf{e}^{T}$ (Column-Stochastic), or $A \mathbf{e}=\mathbf{e}$ (Row-Stochastic), or Doubly-Stochastic if both. It has a unique largest real eigenvalue 1 and corresponding non-negative right or left eigenvector.

Symmetric Matrices

- \mathcal{S}^{n}
- The Frobenius norm:

$$
\|X\|_{f}=\sqrt{\operatorname{tr} X^{T} X}=\sqrt{X \bullet X}
$$

- Positive Definite (PD): $Q \succ \mathbf{0}$ iff $\mathbf{x}^{T} Q \mathbf{x}>0$, for all $\mathbf{x} \neq \mathbf{0}$. The sum of PD matrices is PD.
- Positive Semidefinite (PSD): $Q \succeq \mathbf{0}$ iff $\mathbf{x}^{T} Q \mathbf{x} \geq 0$, for all \mathbf{x}. The sum of PSD matrices is PSD.
- PSD matrices: $\mathcal{S}_{+}^{n}, \quad \operatorname{int} \mathcal{S}_{+}^{n}$ is the set of all positive definite matrices.

Affine Set

$S \subset R^{n}$ is affine if

$$
[\mathbf{x}, \mathbf{y} \in S \text { and } \alpha \in R] \Longrightarrow \alpha \mathbf{x}+(1-\alpha) \mathbf{y} \in S
$$

When \mathbf{x} and \mathbf{y} are two distinct points in R^{n} and α runs over R,

$$
\{\mathbf{z}: \mathbf{z}=\alpha \mathbf{x}+(1-\alpha) \mathbf{y}\}
$$

is the affine combination of x and y .
When $0 \leq \alpha \leq 1$, it is called the convex combination of \mathbf{x} and \mathbf{y}. More points?
For multipliers $\alpha \geq 0$ and for $\beta \geq 0$

$$
\{\mathbf{z}: \mathbf{z}=\alpha \mathbf{x}+\beta \mathbf{y}\}
$$

is called the conic combination of x and y .
It is called linear combination if both α and β are "free".

Convex Set

- Ω is said to be a convex set if for every $\mathbf{x}^{1}, \mathbf{x}^{2} \in \Omega$ and every real number $\alpha \in[0,1]$, the point $\alpha \mathbf{x}^{1}+(1-\alpha) \mathbf{x}^{2} \in \Omega$.
- Ball and Ellipsoid: for given $\mathbf{y} \in \mathcal{R}^{n}$ and positive definite matrix Q :
$E(\mathbf{y}, Q)=\left\{\mathbf{x}:(\mathbf{x}-\mathbf{y})^{T} Q(\mathbf{x}-\mathbf{y}) \leq 1\right\}$.
- The intersection of convex sets is convex, the sum-set of convex sets is convex, the scaled-set of a convext set is convex
- The convex hull of a set Ω is the intersection of all convex sets containing Ω. Given column-points of A, the convex hull is $\left\{\mathbf{z}=A \mathbf{x}: \mathbf{e}^{T} \mathbf{x}=1, \mathbf{x} \geq \mathbf{0}\right\}$.
SVM Claim: two point sets are separable by a plane if any only if their convex hulls are separable.
- An extreme point in a convex set is a point that cannot be expressed as a convex combination of other two distinct points of the set.
- A set is polyhedral if it has finitely many extreme points; $\{\mathrm{x}: A \mathrm{x}=\mathrm{b}, \mathrm{x} \geq 0\}$ and $\{\mathrm{x}: A \mathrm{x} \leq \mathrm{b}\}$ are convex polyhedral.

Cone and Convex Cone

- A set C is a cone if $\mathrm{x} \in C$ implies $\alpha \mathbf{x} \in C$ for all $\alpha>0$
- The intersection of cones is a cone
- A convex cone is a cone and also a convex set
- A pointed cone is a cone that does not contain a line
- Dual:

$$
C^{*}:=\{\mathbf{y}: \mathbf{x} \bullet \mathbf{y} \geq 0 \quad \text { for all } \mathbf{x} \in C\}
$$

Theorem 1 The dual is always a closed convex cone, and the dual of the dual is the closure of convex hall of C.

Cone Examples

- Example 1: The n-dimensional non-negative orthant, $\mathcal{R}_{+}^{n}=\left\{\mathbf{x} \in \mathcal{R}^{n}: \mathbf{x} \geq \mathbf{0}\right\}$, is a convex cone. Its dual is itself.
- Example 2: The set of all PSD matrices in $\mathcal{S}^{n}, \mathcal{S}_{+}^{n}$, is a convex cone, called the PSD matrix cone. Its dual is itself.
- Example 3: The set $\left\{(t ; \mathbf{x}) \in \mathcal{R}^{n+1}: t \geq\|\mathbf{x}\|_{p}\right\}$ for a $p \geq 1$ is a convex cone in \mathcal{R}^{n+1}, called the p -order cone. Its dual is the q -order cone with $\frac{1}{p}+\frac{1}{q}=1$.
- The dual of the second-order cone $(p=2)$ is itself.

Polyhedral Convex Cones

- A cone C is (convex) polyhedral if C can be represented by

$$
C=\{\mathbf{x}: A \mathbf{x} \leq \mathbf{0}\}
$$

or

$$
C=\{A \mathbf{x}: \mathbf{x} \geq \mathbf{0}\}
$$

for some matrix A.

Figure 1: Polyhedral and nonpolyhedral cones.

- The non-negative orthant is a polyhedral cone, and neither the PSD matrix cone nor the second-order cone is polyhedral.

Real Functions

- Continuous functions
- Weierstrass theorem: a continuous function f defined on a compact set (bounded and closed) $\Omega \subset \mathcal{R}^{n}$ has a minimizer in Ω.
- The gradient vector: $\nabla f(\mathbf{x})=\left\{\partial f / \partial x_{i}\right\}$, for $i=1, \ldots, n$.
- The Hessian matrix: $\nabla^{2} f(\mathbf{x})=\left\{\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right\}$ for $i=1, \ldots, n ; j=1, \ldots, n$.
- Vector function: $\mathbf{f}=\left(f_{1} ; f_{2} ; \ldots ; f_{m}\right)$
- The Jacobian matrix of f is

$$
\nabla \mathbf{f}(x)=\left(\begin{array}{c}
\nabla f_{1}(\mathbf{x}) \\
\cdots \\
\nabla f_{m}(\mathbf{x})
\end{array}\right)
$$

- The least upper bound or supremum of f over Ω

$$
\sup \{f(\mathbf{x}): \mathbf{x} \in \Omega\}
$$

and the greatest lower bound or infimum of f over Ω

$$
\inf \{f(\mathbf{x}): \mathbf{x} \in \Omega\}
$$

Convex Functions

- f is a (strongly) convex function iff for $0<\alpha<1$,

$$
f(\alpha \mathbf{x}+(1-\alpha) \mathbf{y})(<) \leq \alpha f(\mathbf{x})+(1-\alpha) f(\mathbf{y})
$$

- The sum of convex functions is a convex function; the max of convex functions is a convex function;
- The Composed function $f(\phi(\mathbf{x}))$ is convex if $\phi(\mathbf{x})$ is a convex and $f(\cdot)$ is convex\&non-decreasing.
- The (lower) level set of f is convex:

$$
L(z)=\{\mathbf{x}: \quad f(\mathbf{x}) \leq z\}
$$

- Convex set $\{(z ; \mathbf{x}): f(\mathbf{x}) \leq z\}$ is called the epigraph of f.
- $t f(\mathbf{x} / t)$ is a convex function of $(t ; \mathbf{x})$ for $t>0$ if $f(\cdot)$ is a convex function; it's homogeneous with degree 1 .

Convex Function Examples

- $\|\mathbf{x}\|_{p}$ for $p \geq 1$.

$$
\|\alpha \mathbf{x}+(1-\alpha) \mathbf{y}\|_{p} \leq\|\alpha \mathbf{x}\|_{p}+\|(1-\alpha) \mathbf{y}\|_{p} \leq \alpha\|\mathbf{x}\|_{p}+(1-\alpha)\|\mathbf{y}\|_{p}
$$

from the triangle inequality.

- Logistic function $\log \left(1+e^{\mathbf{a}^{T} \mathbf{x}+b}\right)$ is convex.
- $e^{x_{1}}+e^{x_{2}}+e^{x_{3}}$.
- $\log \left(e^{x_{1}}+e^{x_{2}}+e^{x_{3}}\right):$ we will prove it later.

Theorem 2 Every local minimizer is a global minimizer in minimizing a convex objective function over a convex feasible set. If the objective is strongly convex in the feasible set, the minimizer is unique.

Theorem 3 Every local minimizer is a boundary solution in minimizing a concave objective function (with non-zero gradient everywhere) over a convex feasible set. If the objective is strongly concave in the feasible set, every local minimizer must be an extreme solution.

Example: Proof of convex function

Consider the minimal-objective function of \mathbf{b} for fixed A and \mathbf{c} :

$$
\begin{aligned}
z(\mathbf{b}):=\text { minimize } & f(\mathbf{x}) \\
\text { subject to } & A \mathbf{x}=\mathbf{b} \\
& \mathbf{x} \geq \mathbf{0}
\end{aligned}
$$

where $f(\mathbf{x})$ is a convex function.
Show that $z(\mathbf{b})$ is a convex function in \mathbf{b}.

Theorems on functions

Taylor's theorem or the mean-value theorem:
Theorem 4 Let $f \in C^{1}$ be in a region containing the line segment $[\mathbf{x}, \mathbf{y}]$. Then there is a $\alpha, 0 \leq \alpha \leq 1$, such that

$$
f(\mathbf{y})=f(\mathbf{x})+\nabla f(\alpha \mathbf{x}+(1-\alpha) \mathbf{y})(\mathbf{y}-\mathbf{x})
$$

Furthermore, if $f \in C^{2}$ then there is a $\alpha, 0 \leq \alpha \leq 1$, such that

$$
f(\mathbf{y})=f(\mathbf{x})+\nabla f(\mathbf{x})(\mathbf{y}-\mathbf{x})+(1 / 2)(\mathbf{y}-\mathbf{x})^{T} \nabla^{2} f(\alpha \mathbf{x}+(1-\alpha) \mathbf{y})(\mathbf{y}-\mathbf{x}) .
$$

Theorem 5 Let $f \in C^{1}$. Then f is convex over a convex set Ω if and only if

$$
f(\mathbf{y}) \geq f(\mathbf{x})+\nabla f(\mathbf{x})(\mathbf{y}-\mathbf{x})
$$

for all $\mathbf{x}, \mathrm{y} \in \Omega$.
Theorem 6 Let $f \in C^{2}$. Then f is convex over a convex set Ω if and only if the Hessian matrix of f is positive semi-definite throughout Ω.

Theorem 7 Suppose we have a set of m equations in n variables

$$
h_{i}(\mathbf{x})=0, i=1, \ldots, m
$$

where $h_{i} \in C^{p}$ for some $p \geq 1$. Then, a set of m variables can be expressed as implicit functions of the other $n-m$ variables in the neighborhood of a feasible point when the Jacobian matrix of the m functions is nonsingular.

Lipschitz Functions

The first-order β-Lipschitz function: there is a positive number β such that for any two points \mathbf{x} and \mathbf{y} :

$$
\begin{equation*}
\|\nabla f(\mathbf{x})-\nabla f(\mathbf{y})\| \leq \beta\|\mathbf{x}-\mathbf{y}\| \tag{1}
\end{equation*}
$$

This condition imples

$$
\left|f(\mathbf{x})-f(\mathbf{y})-\nabla f(\mathbf{y})^{T}(\mathbf{x}-\mathbf{y})\right| \leq \frac{\beta}{2}\|\mathbf{x}-\mathbf{y}\|^{2}
$$

The second-order β-Lipschitz function: there is a positive number β such that for any two points \mathbf{x} and \mathbf{y}

$$
\begin{equation*}
\left\|\nabla f(\mathbf{x})-\nabla f(\mathbf{y})-\nabla^{2} f(\mathbf{y})(\mathbf{x}-\mathbf{y})\right\| \leq \beta\|\mathbf{x}-\mathbf{y}\|^{2} \tag{2}
\end{equation*}
$$

This condition implies

$$
\left|f(\mathbf{x})-f(\mathbf{y})-\nabla f(\mathbf{y})^{T}(\mathbf{x}-\mathbf{y})-\frac{1}{2}(\mathbf{x}-\mathbf{y})^{T} \nabla^{2} f(\mathbf{y})(\mathbf{x}-\mathbf{y})\right| \leq \frac{\beta}{3}\|\mathbf{x}-\mathbf{y}\|^{3}
$$

Known Inequalities

- Cauchy-Schwarz: given $\mathbf{x}, \mathbf{y} \in \mathcal{R}^{n},\left|\mathbf{x}^{T} \mathbf{y}\right| \leq\|\mathbf{x}\|_{p}\|\mathbf{y}\|_{q}$, where $\frac{1}{p}+\frac{1}{q}=1$ and $p \geq 1$.
- Triangle: given $\mathbf{x}, \mathbf{y} \in \mathcal{R}^{n},\|\mathbf{x}+\mathbf{y}\|_{p} \leq\|\mathbf{x}\|_{p}+\|\mathbf{y}\|_{p}$ for $p \geq 1$.
- Arithmetic-geometric mean: given $\mathbf{x} \in \mathcal{R}_{+}^{n}$,

$$
\frac{\sum x_{j}}{n} \geq\left(\prod x_{j}\right)^{1 / n}
$$

System of linear equations

Given $A \in \mathcal{R}^{m \times n}$ and $\mathbf{b} \in \mathcal{R}^{m}$, the problem is to determine n unknowns from m linear equations:

$$
A \mathbf{x}=\mathbf{b}
$$

Theorem 8 Let $A \in \mathcal{R}^{m \times n}$ and $\mathrm{b} \in \mathcal{R}^{m}$. The system $\{\mathrm{x}: A \mathrm{x}=\mathrm{b}\}$ has a solution if and only if that $A^{T} \mathbf{y}=0$ and $\mathbf{b}^{T} \mathbf{y} \neq 0$ has no solution.

A vector \mathbf{y}, with $A^{T} \mathbf{y}=0$ and $\mathbf{b}^{T} \mathbf{y} \neq 0$, is called an infeasibility certificate for the system.
Alternative system pairs: $\{\mathbf{x}: A \mathbf{x}=\mathbf{b}\}$ and $\left\{\mathbf{y}: A^{T} \mathbf{y}=\mathbf{0}, \mathbf{b}^{T} \mathbf{y} \neq 0\right\}$.

Gaussian Elimination and LU Decomposition

$$
\begin{gathered}
\left(\begin{array}{cc}
a_{11} & A_{1} \\
0 & A^{\prime}
\end{array}\right)\binom{x_{1}}{x^{\prime}}=\binom{b_{1}}{b^{\prime}} \\
A=L\left(\begin{array}{ll}
U & C \\
0 & 0
\end{array}\right)
\end{gathered}
$$

The method runs in $O\left(n^{3}\right)$ time for n equations with n unknowns.

Linear least-squares problem

Given $A \in \mathcal{R}^{m \times n}$ and $\mathbf{c} \in \mathcal{R}^{n}$,

$$
\begin{array}{lll}
(L S) & \text { minimize } & \left\|A^{T} \mathbf{y}-\mathbf{c}\right\|^{2} \\
& \text { subject to } \quad \mathbf{y} \in \mathcal{R}^{m}, \quad \text { or } \\
(L S) & \text { minimize } \quad\|\mathbf{s}-\mathbf{c}\|^{2} \\
& \text { subject to } \quad \mathbf{s} \in \mathcal{R}\left(A^{T}\right) \\
& A A^{T} \mathbf{y}=A \mathbf{c}
\end{array}
$$

Choleski Decomposition:

$$
A A^{T}=L \Lambda L^{T}, \quad \text { and then solve } L \Lambda L^{T} \mathbf{y}=A \mathbf{c}
$$

Projections Matrices: $A^{T}\left(A A^{T}\right)^{-1} A$ and $I-A^{T}\left(A A^{T}\right)^{-1} A$

Solving ball-constrained linear problem

$$
\begin{array}{lll}
(B P) & \text { minimize } & \mathbf{c}^{T} \mathbf{x} \\
& \text { subject to } & A \mathbf{x}=\mathbf{0},\|\mathbf{x}\|^{2} \leq 1
\end{array}
$$

x^{*} minimizes (BP) if and only if there always exists a y such that they satisfy

$$
A A^{T} \mathbf{y}=A \mathbf{c},
$$

and if $\mathbf{c}-A^{T} \mathbf{y} \neq \mathbf{0}$ then

$$
\mathbf{x}^{*}=-\left(\mathbf{c}-A^{T} \mathbf{y}\right) /\left\|\mathbf{c}-A^{T} \mathbf{y}\right\|
$$

otherwise any feasible x is a minimal solution.

Solving ball-constrained linear problem

$$
\begin{array}{lll}
(B D) & \text { minimize } & \mathbf{b}^{T} \mathbf{y} \\
& \text { subject to } & \left\|A^{T} \mathbf{y}\right\|^{2} \leq 1
\end{array}
$$

The solution y^{*} for (BD) is given as follows: Solve

$$
A A^{T} \overline{\mathbf{y}}=\mathbf{b}
$$

and if $\overline{\mathbf{y}} \neq 0$ then set

$$
\mathbf{y}^{*}=-\overline{\mathbf{y}} /\left\|A^{T} \overline{\mathbf{y}}\right\| ;
$$

otherwise any feasible y is a solution.

