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Mathematical Optimization/Programming (MP)

The class of mathematical optimization/programming problems considered in this course can all be

expressed in the form

(P) minimize f(x)

subject to x ∈ X

where X usually specified by constraints:

ci(x) = 0 i ∈ E
ci(x) ≤ 0 i ∈ I.
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Global and Local Optimizers

A global minimizer for (P) is a vector x∗ such that

x∗ ∈ X and f(x∗) ≤ f(x) ∀x ∈ X .

Sometimes one has to settle for a local minimizer, that is, a vector x̄ such that

x̄ ∈ X and f(x̄) ≤ f(x) ∀x ∈ X ∩N(x̄)

where N(x̄) is a neighborhood of x̄. Typically, N(x̄) = Bδ(x̄), an open ball centered at x̄ having

suitably small radius δ > 0.

The value of the objective function f at a global minimizer or a local minimizer is also of interest. We call it

the global minimum value or a local minimum value, respectively.
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Important Terms

• decision variable/activity, data/parameter

• objective/goal/target

• constraint/limitation/requirement

• satisfied/violated

• feasible/allowable solutions

• optimal (feasible) solutions

• optimal value
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Size and Complexity of Problems

• number of decision variables

• number of constraints

• bit size/number required to store the problem input data

• problem difficulty or complexity number

• algorithm complexity or convergence speed
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Real n-Space; Euclidean Space

• R, R+, intR+

• Rn, Rn
+, intRn

+

• x ≥ y means xj ≥ yj for j = 1, 2, ..., n

• 0: all zero vector; and e: all one vector

• Column vector:

x = (x1;x2; . . . ;xn)

and row vector:

x = (x1, x2, . . . , xn)

• Inner-Product:

x • y := xTy =
n∑

j=1

xjyj
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• Vector norm: ∥x∥2 =
√
xTx, ∥x∥∞ = max{|x1|, |x2|, ..., |xn|}, in general, for p ≥ 1

∥x∥p =

 n∑
j=1

|xj |p
1/p

(Quasi-norm when 0 < p < 1.)

• A set of vectors a1, ...,am is said to be linearly dependent if there are multipliers λ1, ..., λm, not all

zero, the linear combination
m∑
i=1

λiai = 0

• A linearly independent set of vectors that span Rn is a basis.

• For a sequence xk ∈ Rn, k = 0, 1, ..., we say it is a contraction sequence if there is an x∗ ∈ Rn

and a scalar constant 0 < γ < 1 such that

∥xk+1 − x∗∥ ≤ γ∥xk − x∗∥, ∀k ≥ 0.
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Matrices

• A ∈ Rm×n; ai., the ith row vector; a.j , the jth column vector; aij , the i, jth entry

• 0: all zero matrix, and I : the identity matrix

• The null space N (A), the row space R(AT ), and they are orthogonal.

• det(A), tr(A): the sum of the diagonal entries of A

• Inner Product:

A •B = trATB =
∑
i,j

aijbij

• The operator norm of matrix A:

∥A∥2 := max
0̸=x∈Rn

∥Ax∥2

∥x∥2
The Frobenius norm of matrix A:

∥A∥2f := A •A =
∑
i,j

a2ij
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• Sometimes we use X = diag(x)

• Eigenvalues and eigenvectors

Av = λ · v

• Perron-Frobenius Theorem: a real square matrix with positive entries has a unique largest real

eigenvalue and that the corresponding eigenvector can be chosen to have strictly positive components.

• Stochastic Matrices: A ≥ 0 with eTA = eT (Column-Stochastic), or Ae = e (Row-Stochastic), or

Doubly-Stochastic if both. It has a unique largest real eigenvalue 1 and corresponding non-negative

right or left eigenvector.
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Symmetric Matrices

• Sn

• The Frobenius norm:

∥X∥f =
√

trXTX =
√
X •X

• Positive Definite (PD): Q ≻ 0 iff xTQx > 0, for all x ̸= 0. The sum of PD matrices is PD.

• Positive Semidefinite (PSD): Q ≽ 0 iff xTQx ≥ 0, for all x. The sum of PSD matrices is PSD.

• PSD matrices: Sn
+, intSn

+ is the set of all positive definite matrices.
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Affine Set

S ⊂ Rn is affine if

[x,y ∈ S and α ∈ R ] =⇒ αx+ (1− α)y ∈ S.

When x and y are two distinct points in Rn and α runs over R ,

{z : z = αx+ (1− α)y}

is the affine combination of x and y.

When 0 ≤ α ≤ 1, it is called the convex combination of x and y. More points?

For multipliers α ≥ 0 and for β ≥ 0

{z : z = αx+ βy},

is called the conic combination of x and y.

It is called linear combination if both α and β are “free”.
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Convex Set

• Ω is said to be a convex set if for every x1,x2 ∈ Ω and every real number α ∈ [0, 1], the point

αx1 + (1− α)x2 ∈ Ω.

• Ball and Ellipsoid: for given y ∈ Rn and positive definite matrix Q:

E(y, Q) = {x : (x− y)TQ(x− y) ≤ 1}.

• The intersection of convex sets is convex, the sum-set of convex sets is convex, the scaled-set of a

convext set is convex

• The convex hull of a set Ω is the intersection of all convex sets containing Ω. Given column-points of

A, the convex hull is {z = Ax : eTx = 1,x ≥ 0}.

SVM Claim: two point sets are separable by a plane if any only if their convex hulls are separable.

• An extreme point in a convex set is a point that cannot be expressed as a convex combination of other

two distinct points of the set.

• A set is polyhedral if it has finitely many extreme points; {x : Ax = b, x ≥ 0} and

{x : Ax ≤ b} are convex polyhedral.
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Cone and Convex Cone

• A set C is a cone if x ∈ C implies αx ∈ C for all α > 0

• The intersection of cones is a cone

• A convex cone is a cone and also a convex set

• A pointed cone is a cone that does not contain a line

• Dual:

C∗ := {y : x • y ≥ 0 for all x ∈ C}.

Theorem 1 The dual is always a closed convex cone, and the dual of the dual is the closure of convex hall

of C .
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Cone Examples

• Example 1: The n-dimensional non-negative orthant, Rn
+ = {x ∈ Rn : x ≥ 0}, is a convex cone.

Its dual is itself.

• Example 2: The set of all PSD matrices in Sn, Sn
+, is a convex cone, called the PSD matrix cone. Its

dual is itself.

• Example 3: The set {(t;x) ∈ Rn+1 : t ≥ ∥x∥p} for a p ≥ 1 is a convex cone in Rn+1, called the

p-order cone. Its dual is the q-order cone with 1
p + 1

q = 1.

• The dual of the second-order cone (p = 2) is itself.

14



CME307/MS&E311: Optimization Lecture Note #02

Polyhedral Convex Cones

• A cone C is (convex) polyhedral if C can be represented by

C = {x : Ax ≤ 0}

or

C = {Ax : x ≥ 0}

for some matrix A.
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Figure 1: Polyhedral and nonpolyhedral cones.

• The non-negative orthant is a polyhedral cone, and neither the PSD matrix cone nor the second-order

cone is polyhedral.
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Real Functions

• Continuous functions

• Weierstrass theorem: a continuous function f defined on a compact set (bounded and closed)

Ω ⊂ Rn has a minimizer in Ω.

• The gradient vector: ∇f(x) = {∂f/∂xi}, for i = 1, ..., n.

• The Hessian matrix: ∇2f(x) =
{

∂2f
∂xi∂xj

}
for i = 1, ..., n; j = 1, ..., n.

• Vector function: f = (f1; f2; ...; fm)

• The Jacobian matrix of f is

∇f(x) =


∇f1(x)

...

∇fm(x)

 .
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• The least upper bound or supremum of f over Ω

sup{f(x) : x ∈ Ω}

and the greatest lower bound or infimum of f over Ω

inf{f(x) : x ∈ Ω}
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Convex Functions

• f is a (strongly) convex function iff for 0 < α < 1,

f(αx+ (1− α)y)(<) ≤ αf(x) + (1− α)f(y).

• The sum of convex functions is a convex function; the max of convex functions is a convex function;

• The Composed function f(ϕ(x)) is convex if ϕ(x) is a convex and f(·) is convex&non-decreasing.

• The (lower) level set of f is convex:

L(z) = {x : f(x) ≤ z}.

• Convex set {(z;x) : f(x) ≤ z} is called the epigraph of f .

• tf(x/t) is a convex function of (t;x) for t > 0 if f(·) is a convex function; it’s homogeneous with

degree 1.
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Convex Function Examples

• ∥x∥p for p ≥ 1.

∥αx+ (1− α)y∥p ≤ ∥αx∥p + ∥(1− α)y∥p ≤ α∥x∥p + (1− α)∥y∥p,

from the triangle inequality.

• Logistic function log(1 + ea
Tx+b) is convex.

• ex1 + ex2 + ex3 .

• log(ex1 + ex2 + ex3): we will prove it later.

Theorem 2 Every local minimizer is a global minimizer in minimizing a convex objective function over a

convex feasible set. If the objective is strongly convex in the feasible set, the minimizer is unique.

Theorem 3 Every local minimizer is a boundary solution in minimizing a concave objective function (with

non-zero gradient everywhere) over a convex feasible set. If the objective is strongly concave in the

feasible set, every local minimizer must be an extreme solution.
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Example: Proof of convex function

Consider the minimal-objective function of b for fixed A and c:

z(b) := minimize f(x)

subject to Ax = b,

x ≥ 0,

where f(x) is a convex function.

Show that z(b) is a convex function in b.
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Theorems on functions

Taylor’s theorem or the mean-value theorem:

Theorem 4 Let f ∈ C1 be in a region containing the line segment [x,y]. Then there is a α, 0 ≤ α ≤ 1,

such that

f(y) = f(x) +∇f(αx+ (1− α)y)(y − x).

Furthermore, if f ∈ C2 then there is a α, 0 ≤ α ≤ 1, such that

f(y) = f(x) +∇f(x)(y − x) + (1/2)(y − x)T∇2f(αx+ (1− α)y)(y − x).

Theorem 5 Let f ∈ C1. Then f is convex over a convex set Ω if and only if

f(y) ≥ f(x) +∇f(x)(y − x)

for all x, y ∈ Ω.

Theorem 6 Let f ∈ C2. Then f is convex over a convex set Ω if and only if the Hessian matrix of f is

positive semi-definite throughout Ω.
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Theorem 7 Suppose we have a set of m equations in n variables

hi(x) = 0, i = 1, ...,m

where hi ∈ Cp for some p ≥ 1. Then, a set of m variables can be expressed as implicit functions of the

other n−m variables in the neighborhood of a feasible point when the Jacobian matrix of the m

functions is nonsingular.
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Lipschitz Functions

The first-order β-Lipschitz function: there is a positive number β such that for any two points x and y:

∥∇f(x)−∇f(y)∥ ≤ β∥x− y∥. (1)

This condition imples

|f(x)− f(y)−∇f(y)T (x− y)| ≤ β

2
∥x− y∥2.

The second-order β-Lipschitz function: there is a positive number β such that for any two points x and y

∥∇f(x)−∇f(y)−∇2f(y)(x− y)∥ ≤ β∥x− y∥2. (2)

This condition implies

|f(x)− f(y)−∇f(y)T (x− y)− 1

2
(x− y)T∇2f(y)(x− y)| ≤ β

3
∥x− y∥3.
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Known Inequalities

• Cauchy-Schwarz: given x,y ∈ Rn, |xTy| ≤ ∥x∥p∥y∥q, where 1
p + 1

q = 1 and p ≥ 1.

• Triangle: given x,y ∈ Rn, ∥x+ y∥p ≤ ∥x∥p + ∥y∥p for p ≥ 1.

• Arithmetic-geometric mean: given x ∈ Rn
+,∑
xj

n
≥

(∏
xj

)1/n

.
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System of linear equations

Given A ∈ Rm×n and b ∈ Rm, the problem is to determine n unknowns from m linear equations:

Ax = b

Theorem 8 Let A ∈ Rm×n and b ∈ Rm. The system {x : Ax = b} has a solution if and only if that

ATy = 0 and bTy ̸= 0 has no solution.

A vector y, with ATy = 0 and bTy ̸= 0, is called an infeasibility certificate for the system.

Alternative system pairs: {x : Ax = b} and {y : ATy = 0, bTy ̸= 0}.
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Gaussian Elimination and LU Decomposition

 a11 A1.

0 A′

 x1

x′

 =

 b1

b′

 .

A = L

 U C

0 0


The method runs in O(n3) time for n equations with n unknowns.
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Linear least-squares problem

Given A ∈ Rm×n and c ∈ Rn,

(LS) minimize ∥ATy − c∥2

subject to y ∈ Rm, or

(LS) minimize ∥s− c∥2

subject to s ∈ R(AT ).

AATy = Ac

Choleski Decomposition:

AAT = LΛLT , and then solve LΛLTy = Ac.

Projections Matrices: AT (AAT )−1A and I −AT (AAT )−1A
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Solving ball-constrained linear problem

(BP ) minimize cTx

subject to Ax = 0, ∥x∥2 ≤ 1,

x∗ minimizes (BP) if and only if there always exists a y such that they satisfy

AATy = Ac,

and if c−ATy ̸= 0 then

x∗ = −(c−ATy)/∥c−ATy∥;

otherwise any feasible x is a minimal solution.
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Solving ball-constrained linear problem

(BD) minimize bTy

subject to ∥ATy∥2 ≤ 1.

The solution y∗ for (BD) is given as follows: Solve

AAT ȳ = b

and if ȳ ̸= 0 then set

y∗ = −ȳ/∥AT ȳ∥;

otherwise any feasible y is a solution.
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