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Mathematical Optimization/Programming (MP) I

The class of mathematical optimization/programming problems considered in this course can all be
expressed in the form
(P) minimize  f(x)

subjectto x € X

where X usually specified by constraints:
1€ &
1€ L.

@) o
S R
—~
KA
~—_—  —
IA I
-) -



CME307/MS&E311: Optimization Lecture Note #02

Global and Local Optimizers I

A global minimizer for (P) is a vector X™ such that

x*eX and f(x") < f(x) VxeX.

Sometimes one has to settle for a local minimizer, that is, a vector X such that

xeX and f(x)< f(x) Vxe XN N(Z)
where N (X) is a neighborhood of X. Typically, NV (X) = Bs(X), an open ball centered at X having
suitably small radius 6 > 0.

The value of the objective function f at a global minimizer or a local minimizer is also of interest. We call it

the global minimum value or a local minimum value, respectively.
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Important Terms '

e decision variable/activity, data/parameter
® objective/goal/target

e constraint/limitation/requirement

e satisfied/violated

e feasible/allowable solutions

e optimal (feasible) solutions

e optimal value
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Size and Complexity of Problems I

e number of decision variables

e number of constraints

e bit size/number required to store the problem input data
e problem difficulty or complexity number

e algorithm complexity or convergence speed
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R, R., intR.

R™, T, ImtRY

X >ymeansx; > y,;foryg =12 ...n

0: all zero vector; and e: all one vector

Column vector:

and row vector:

Inner-Product:

X:(le‘l;ﬂfg;...'

X = ($17.I’2,...

n
Xey = xTy:Za;jyj

Real n-Space; Euclidean Space I

g=1
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e Vector norm: ||x|[s = Vx'x, |[|x| e = max{|x1]|,|z2],..., |xn|},in general, forp > 1

. 1/p
Ixllp = [ D lajlP
j=1

(Quasi-normwhen 0 < p < 1.)

e A setof vectors aq, ..., a,, is said to be linearly dependent if there are multipliers A1, ..., A,,,, not all

i )\iai =0
1=1

zero, the linear combination

e A linearly independent set of vectors that span R is a basis.

e Forasequence x* € R", k= 0,1, ..., we say it is a contraction sequence if there is an x* € R"
and a scalar constant 0 < v < 1 such that

[x* 7 — x| < fx" — x|, Vk = 0.
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Matrices '

o Ac R™*™; a,,theith row vector; a j,the jth column vector; a;;, the , jth entry
e O: all zero matrix, and /: the identity matrix

e The null space ' (A), the row space R(A”"), and they are orthogonal.

e det(A), tr(A): the sum of the diagonal entries of A

e |nner Product:
Ae B = trATB — Z Cbijbij

@]

e The operator norm of matrix A:

Ax||?
JAI? = max 12X
0#xeR™ ||x||?

The Frobenius norm of matrix A:

A} :=Ae A=) a}
1,]
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e Sometimes we use X = diag(x)

e Eigenvalues and eigenvectors

Av =)\ v

e Perron-Frobenius Theorem: a real square matrix with positive entries has a unique largest real

eigenvalue and that the corresponding eigenvector can be chosen to have strictly positive components.

e Stochastic Matrices: A > 0 with e’ A = e’ (Column-Stochastic), or Ae = e (Row-Stochastic), or
Doubly-Stochastic if both. It has a unique largest real eigenvalue 1 and corresponding non-negative
right or left eigenvector.
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Symmetric Matrices I

o S”

e The Frobenius norm:

Xy = ViXT X = vX

e Positive Definite (PD): () = O iff x’ (Qx > 0, forall x # 0. The sum of PD matrices is PD.
e Positive Semidefinite (PSD): ) > 0iff x’ Qx > 0, forall x. The sum of PSD matrices is PSD.

e PSD matrices: 8!, int 8" is the set of all positive definite matrices.
_|_
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Affine Set '

S C R"is affine if
[ x,yeSanda e R|—=ax+ (1 —a)y € 5.

When x and y are two distinct points in /2" and « runs over 7,
{z:z=ax+(1—-a)y}
is the affine combination of x and y.

When 0 < o < 1, it is called the convex combination of x and y. More points?

For multipliers o« > 0 and for 3 > 0
{z:2z =ax+ By},

is called the conic combination of X and y.

It is called linear combination if both o and [ are “free”.
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Convex Set '

e () is said to be a convex set if for every xl, x? € () and every real number o & [O, 1], the point
ax! + (1 —a)x? € Q.

e Ball and Ellipsoid: for given y € R and positive definite matrix ()):
E(y,Q)={x: (x—y)'Q(x—y) <1}

e The intersection of convex sets is convex, the sum-set of convex sets is convex, the scaled-set of a

convext set is convex

e The convex hull of a set (2 is the intersection of all convex sets containing {2. Given column-points of
A, the convex hullis {z = Ax : elx =1,x > 0}.
SVM Claim: two point sets are separable by a plane if any only if their convex hulls are separable.

e An extreme point in a convex set is a point that cannot be expressed as a convex combination of other

two distinct points of the set.

e A setis polyhedral if it has finitely many extreme points; {x : Ax = b, x > 0} and
{x: Ax < b} are convex polyhedral.

12
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Cone and Convex Cone '

e Aset Cisaconeifx € C impliesax € C forall v > 0
e The intersection of cones is a cone

® A convex cone is a cone and also a convex set

e A pointed cone is a cone that does not contain a line

e Dual:
C*":={y: xey >0 forall xe C}.

Theorem 1 The dual is always a closed convex cone, and the dual of the dual is the closure of convex hall

of C.
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Cone Examples I

e Example 1: The n-dimensional non-negative orthant, R} = {x € R"™: x > 0}, is a convex cone.

Its dual is itself.

e Example 2: The set of all PSD matrices in S, 8", is a convex cone, called the PSD matrix cone. Its
P +

dual is itself.

e Example 3: The set {({;x) € R™" : ¢ > ||x||,} forap > 1is aconvex cone in R" ", called the

p-order cone. lts dual is the g-order cone with % + % = 1.

e The dual of the second-order cone (p = 2) is itself.

14



CME307/MS&E311: Optimization Lecture Note #02

Polyhedral Convex Cones I

e A cone (' is (convex) polyhedral if C' can be represented by
C={x:Ax <0}

or

C={Ax:x >0}

for some matrix A.

15
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Polyhedral Cone Nonpolyhedral Cone

Figure 1: Polyhedral and nonpolyhedral cones.

e The non-negative orthant is a polyhedral cone, and neither the PSD matrix cone nor the second-order
cone is polyhedral.
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Real Functions '

e Continuous functions

e Weierstrass theorem: a continuous function f defined on a compact set (bounded and closed)
() C 'R™ has a minimizer in ).

e The gradient vector: V f(x) = {0f/0x;}, for i =1,....n.

ZL j

2
e The Hessian matrix: V2 f(x) = {856{0 } for 1=1,...,n;j=1,...,n.
e Vector function: f = (f1; fo;...; fin)

e The Jacobian matrix of f is

17
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e The least upper bound or supremum of | over {)

sup{f(x): x € Q}

and the greatest lower bound or infimum of f over ()

inf{f(x): x € Q}

18
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Convex Functions '

e f is a (strongly) convex function iff for 0 < o < 1,

flax+ (1 - a)y)(<) < af(x)+ (1 —-a)f(y).

e The sum of convex functions is a convex function; the max of convex functions is a convex function;
e The Composed function f(¢(x)) is convex if ¢(x) is a convex and f(-) is convex&non-decreasing.

e The (lower) level set of f is convex:

e Convexset{(z;x): f(x) < z}is called the epigraph of f.

e tf(x/t)is aconvex function of (¢;x) for t > 0if f(-) is a convex function; it's homogeneous with
degree 1.
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Convex Function Examples I

o ||x||,forp > 1.

lox + (1 = )yllp < [lax|lp +[[(1 = @)y, < aflx|l, + (1 =)yl
from the triangle inequality.
e Logistic function log(1 + €@ *?) is convex.
o c'l "2 f 73,
e log(e™ + e”2 + " ): we will prove it later.

Theorem 2 Every local minimizer is a global minimizer in minimizing a convex objective function over a

convex feasible set. If the objective is strongly convex in the feasible set, the minimizer is unique.

Theorem 3 Every local minimizer is a boundary solution in minimizing a concave objective function (with
non-zero gradient everywhere) over a convex feasible set. If the objective is strongly concave in the

feasible set, every local minimizer must be an extreme solution.
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Example: Proof of convex function I

Consider the minimal-objective function of b for fixed A and c:

z(b) := minimize  f(x)
subjectto Ax = b,
x > 0,

where f(x) is a convex function.

Show that z(b) is a convex function in b.

21
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Theorems on functions '

Taylor’s theorem or the mean-value theorem:

Theorem4 Let [ € C L'peina region containing the line segment [X, y]. Then thereisac, ) < o < 1,
such that

fly)=F(x)+Vflax+ (1 —-a)y)(y —x).
Furthermore, if f e C? then there is a o, < o < 1, such that

fly) = f(x) + V(x)(y —x) + (1/2)(y =)' V*flax + (1 - Q)y)(y — x).

Theorem 5 Let f € C'. Then f is convex over a convex set ) if and only if

fy) = f(x) + Vf(x)(y —x)
forallx, y € ().

Theorem 6 Let f € 2. Then f is convex over a convex set () if and only if the Hessian matrix of f is
positive semi-definite throughout €.
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Theorem 7 Suppose we have a set of m equations in n. variables

where h; € CP forsomep > 1. Then, a set of m variables can be expressed as implicit functions of the
other n — m variables in the neighborhood of a feasible point when the Jacobian matrix of the m

functions is nonsingular.

23
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Lipschitz Functions I

The first-order 3-Lipschitz function: there is a positive number 3 such that for any two points x and y:

IVix) =V < Bllx—yl. (1)

This condition imples

760~ Fly) = V1) e y)| < 5l -y

The second-order [3-Lipschitz function: there is a positive number (3 such that for any two points x and y

IVf(x)=Vy) —Vify)x—y)l <B8lx -yl (2)
This condition implies
f(x) = fly) = Vfy) (x—y) - %(X —y)'Viy)(x—y)| < gHX -yl
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Known Inequalities I

e Cauchy-Schwarz: givenx,y € R",

x"y| < [Ix[l,lly g, where . + - = landp > 1.

e Triangle: givenx,y € R", ||x + y|, < ||x]l, + ||¥]|, forp > 1.

e Arithmetic-geometric mean: given x € R},

anj > (Hflfj)l/n.
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System of linear equations I

Given A € R™*™ and b € R, the problem is to determine 1 unknowns from m linear equations:

Ax =D

Theorem 8 Let A € R™*"™ andb € R". The system {x : Ax = b} has a solution if and only if that
Aty = 0 and b’y # 0 has no solution.

A vector y, with ATy = (0 and bTy = (), is called an infeasibility certificate for the system.

Alternative system pairs: {x : Ax =b}and{y: ATy =0, bly #0}.
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Gaussian Elimination and LU Decomposition I

a1 Aj L1 B b1
0 A x! b’
Uu C
A=1L
0 O

The method runs in O(n?) time for n equations with 72 unknowns.

27
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Linear least-squares problem I

Given A € R™*™ andc € R",

Choleski Decomposition:

AAT =

(LS) minimize |[ATy — c||?

subjectto y € R™, or

(LS) minimize
subjectto s € R(AL).

Is —c|”

AATy = Ac

LALY, andthensolve LAL'y = Ac.

Projections Matrices: AT (AAT )"t Aand I — AT (AAT)"1A

28
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Solving ball-constrained linear problem I

(BP) minimize cl'x

subjectto  Ax = 0, ||x[|? < 1,

x* minimizes (BP) if and only if there always exists a y such that they satisfy
AATy = Ac,

and if c — ATy # 0 then
x" = —(c—Aly)/|lc = Ayl

otherwise any feasible x is a minimal solution.
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Solving ball-constrained linear problem I

(BD) minimize bly
subjectto  ||[Alyl|? < 1.

The solution y™ for (BD) is given as follows: Solve
AATy =D

and if y = 0 then set
v =-y/IIA"yl);

otherwise any feasible y is a solution.
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