CME 307 / MS&E 311 Optimization Prof. Yinyu Ye Winter 2021-2022 March 17th, 2022

Homework Assignment 4

Reading. Read selected sections in Luenberger and Ye's *Linear and Nonlinear Programming* Fourth Edition Chapters 5, 6, 8, 10 and 14.

1. Recall that the (local) second-order (SO), concordant second-order (CSO) and scaled concordant second-order (SCSO) Lipschitz conditions (LC) are defined as follows:

SOLC: $\|\nabla f(\mathbf{x} + \mathbf{d}) - \nabla f(\mathbf{x}) - \nabla^2 f(\mathbf{x})\mathbf{d}\| \le \beta \|\mathbf{d}\|^2$, where $\|\mathbf{d}\| \le C$ for some C > 0CSOLC: $\|\nabla f(\mathbf{x} + \mathbf{d}) - \nabla f(\mathbf{x}) - \nabla^2 f(\mathbf{x})\mathbf{d}\| \le \beta \|\mathbf{d}^T \nabla^2 f(\mathbf{x})\mathbf{d}\|$, where $\|\mathbf{d}\| \le C$ for some C > 0, and

SCSOLC:
$$||X(\nabla f(\mathbf{x} + \mathbf{d}) - \nabla f(\mathbf{x}) - \nabla^2 f(\mathbf{x})\mathbf{d})|| \le \beta |\mathbf{d}^T \nabla^2 f(\mathbf{x})\mathbf{d}|,$$

where $||X^{-1}\mathbf{d}|| \le C$ for some $C > 0$,

and $X = \text{diag}(\mathbf{x} > \mathbf{0})$. Here we have implicitly assumed/required that \mathbf{x} and $\mathbf{x} + \mathbf{d}$ are in the domain of f. Here the constant C should be independent of \mathbf{x} .

For each of the following scalar functions, find the Lipschitz parameter β value of (SOLC), (CSOLC) and (SCSOLC). You can provide an upper bound on β or state that it doesn't exist.

- (a) $f(x) = \frac{1}{3}x^3 + x, x > 0$
- (b) $f(x) = -\log(x), x > 0.$
- (c) $f(x) = x \log(x), x > 0$
- 2. Consider the following questions:
 - (a) Let $\phi(\mathbf{y})$, where $\mathbf{y} \in \mathbb{R}^m$, be (regular) β -second-order (SO) Lipschitz and be δ strongly convex, that is, for all \mathbf{y} in the domain of ϕ , the largest eigenvalue of Hessian $\nabla^2 \phi(\mathbf{y})$ is bounded above by $\beta > 0$ and the smallest eigenvalue of $\nabla^2 \phi(\mathbf{y})$ is bounded below by $\delta > 0$. Prove that the function

$$f(\mathbf{x}) = \phi(A\mathbf{x}),$$

where $A \in \mathbb{R}^{m \times n}$, $n \geq m$, is a constant coefficient matrix with rank m, is <u>concordant</u> second-order Lipschitz for all $\mathbf{x} \in \mathbb{R}^n$ such that $\mathbf{y} = A\mathbf{x}$ is in the domain of ϕ .

(b) Find the <u>concordant</u> Lipschitz bounds α for the following three functions (or show that a global constant doesn't exist):

$$- f(\mathbf{x}) = \frac{1}{2}(x_1 + x_2)^2$$

- $f(\mathbf{x}) = e^{x_1 + x_2}$
- $f(\mathbf{x}) = (x_1 + x_2)\log(x_1 + x_2)$ where $x_1 + x_2 > 0$.

3. Prove the logarithmic approximation lemma for SDP. Let $D \in S^n$ and $|D|_{\infty} < 1$. Then,

$$Tr(D) \ge \log \det(I+D) \ge Tr(D) - \frac{|D|^2}{2(1-|D|_{\infty})}$$

where for any given symmetric matrix D, $|D|^2$ is the sum of all its squared eigenvalues, and $|D|_{\infty}$ is its largest absolute eigenvalue.

Hint: det(I + D) equals the product of the eigenvalues of I + D. Then the proof follows from Taylor's expansion.