Optimization
Prof. Yinyu Ye

Homework Assignment 4

Reading. Read selected sections in Luenberger and Ye's Linear and Nonlinear Programming Fourth Edition Chapters 5, 6, 8, 10 and 14.

1. Recall that the (local) second-order (SO), concordant second-order (CSO) and scaled concordant second-order (SCSO) Lipschitz conditions (LC) are defined as follows:

SOLC : $\left\|\nabla f(\mathbf{x}+\mathbf{d})-\nabla f(\mathbf{x})-\nabla^{2} f(\mathbf{x}) \mathbf{d}\right\| \leq \beta\|\mathbf{d}\|^{2}$, where $\|\mathbf{d}\| \leq C$ for some $C>0$ CSOLC : $\left\|\nabla f(\mathbf{x}+\mathbf{d})-\nabla f(\mathbf{x})-\nabla^{2} f(\mathbf{x}) \mathbf{d}\right\| \leq \beta\left|\mathbf{d}^{T} \nabla^{2} f(\mathbf{x}) \mathbf{d}\right|$, where $\|\mathbf{d}\| \leq C$ for some $C>0$, and

$$
\begin{aligned}
& \text { SCSOLC }:\left\|X\left(\nabla f(\mathbf{x}+\mathbf{d})-\nabla f(\mathbf{x})-\nabla^{2} f(\mathbf{x}) \mathbf{d}\right)\right\| \leq \beta\left|\mathbf{d}^{T} \nabla^{2} f(\mathbf{x}) \mathbf{d}\right| \\
& \text { where }\left\|X^{-1} \mathbf{d}\right\| \leq C \text { for some } C>0
\end{aligned}
$$

and $X=\operatorname{diag}(\mathbf{x}>\mathbf{0})$. Here we have implicitly assumed/required that \mathbf{x} and $\mathbf{x}+\mathbf{d}$ are in the domain of f. Here the constant C should be independent of \mathbf{x}.

For each of the following scalar functions, find the Lipschitz parameter β value of (SOLC), (CSOLC) and (SCSOLC). You can provide an upper bound on β or state that it doesn't exist.
(a) $f(x)=\frac{1}{3} x^{3}+x, x>0$
(b) $f(x)=-\log (x), x>0$.
(c) $f(x)=x \log (x), x>0$
2. Consider the following questions:
(a) Let $\phi(\mathbf{y})$, where $\mathbf{y} \in R^{m}$, be (regular) β-second-order (SO) Lipschitz and be δ strongly convex, that is, for all \mathbf{y} in the domain of ϕ, the largest eigenvalue of Hessian $\nabla^{2} \phi(\mathbf{y})$ is bounded above by $\beta>0$ and the smallest eigenvalue of $\nabla^{2} \phi(\mathbf{y})$ is bounded below by $\delta>0$. Prove that the function

$$
f(\mathbf{x})=\phi(A \mathbf{x})
$$

where $A \in R^{m \times n}, n \geq m$, is a constant coefficient matrix with rank m, is concordant second-order Lipschitz for all $\mathbf{x} \in R^{n}$ such that $\mathbf{y}=A \mathbf{x}$ is in the domain of ϕ.
(b) Find the concordant Lipschitz bounds α for the following three functions (or show that a global constant doesn't exist):

$$
\begin{aligned}
& -f(\mathbf{x})=\frac{1}{2}\left(x_{1}+x_{2}\right)^{2} \\
& -f(\mathbf{x})=e^{x_{1}+x_{2}} \\
& -f(\mathbf{x})=\left(x_{1}+x_{2}\right) \log \left(x_{1}+x_{2}\right) \text { where } x_{1}+x_{2}>0
\end{aligned}
$$

3. Prove the logarithmic approximation lemma for SDP. Let $D \in S^{n}$ and $|D|_{\infty}<1$. Then,

$$
\operatorname{Tr}(D) \geq \log \operatorname{det}(I+D) \geq \operatorname{Tr}(D)-\frac{|D|^{2}}{2\left(1-|D|_{\infty}\right)}
$$

where for any given symmetric matrix $D,|D|^{2}$ is the sum of all its squared eigenvalues, and $|D|_{\infty}$ is its largest absolute eigenvalue.

Hint: $\operatorname{det}(I+D)$ equals the product of the eigenvalues of $I+D$. Then the proof follows from Taylor's expansion.

