
CME 307 / MS&E 311 Winter 2022

Optimization Jan 18, 2022

Prof. Yinyu Ye Not graded

Homework Assignment 1

Problem Session Friday Jan 28th 11:30 am

Optional Reading. Read Luenberger and Ye’s Linear and Nonlinear Programming Fourth

Edition Chapters 1, 2, 6 and Appendices A and B.

Theoretical Homework (80’):

1. (15’) Show the following:

(a) (5’) Consider the set

F := {x ∈ Rn : Ax = b, x ≥ 0},

where data matrix A ∈ Rm×n and vector b ∈ Rm. Prove that F is a convex set.

(b) (5’) Fix data matrix A and consider the b-data set for F defined in part (a):

B := {b ∈ Rm : F is not empty}.

Prove that B is a convex set.

(c) (5’) Fix data matrix A and consider the linearly constrained convex minimization

problem

z(b) := max f(x)

s.t. Ax = b, x ≥ 0

where f(x) is a concave function, and the maximal value function z(b) is an

implicit function of b. Prove that z(b) is a concave function of b ∈ B, where B

is defined in part (b).

2. (10’) Show that the dual cone of the n-dimensional nonnegative orthant cone Rn
+ is

itself, that is,

(Rn
+)

∗ = Rn
+.

(Hint: show that Rn
+ ⊂ (Rn

+)
∗ and (Rn

+)
∗ ⊂ Rn

+.)



3. (10’) Let g1, . . . , gm be a collection of concave functions on Rn such that

S = {x : gi(x) > 0 for i = 1, . . . ,m} ≠ ∅.

Show that for any positive constant µ and any convex function f on Rn, the function

(called Barrier function)

h(x) = f(x)− µ

m∑
i=1

log(gi(x))

is convex over S. (Hint: directly apply the convex/concave function definition or

analyze the Hessian of h(x).)

4. (10’) (Lipschitz Functions) Prove the following two implication inequalities:

(a) (5’) Assume f is a first-order β-Lipschitz function, namely there is a positive

number β such that for any x,y ∈ Rn:

∥∇f(x)−∇f(y)∥ ≤ β∥x− y∥,

then for any x,y ∈ Rn,

|f(x)− f(y)−∇f(y)T (x− y)| ≤ β

2
∥x− y∥2.

(b) (5’) Assume f is a second-order β-Lipschitz function, namely there is a positive

number β such that for any x,y ∈ Rn:

∥∇f(x)−∇f(y)−∇2f(y)(x− y)∥ ≤ β∥x− y∥2,

then for any x,y ∈ Rn,

|f(x)− f(y)−∇f(y)T (x− y)− 1

2
(x− y)T∇2f(y)(x− y)| ≤ β

3
∥x− y∥3.

5. (10’) Consider the following SOCP problem:

min 2x1 + x2 + x3

s.t. x1 + x2 + x3 = 1,

x1 −
√

x2
2 + x2

3 ≥ 0.

(a) (5’) Show that the feasible region is a convex set.

(b) (5’) Try to find a minimizer of the problem and “argue” 1 why it is a minimizer.
1We recommend to prove this directly, namely without using duality argument which will be introduced

in the following lectures.



6. (10’) Prove that the set {Ax : x ≥ 0 ∈ Rn} is a closed and convex cone. (Hint: apply

Carathéodory’s theorem in Lecture Note to prove the closedness.)

7. (15’) Farkas’ lemma can be used to derive many other (named) theorems of the alter-

native. This problem concerns a few of these pairs of systems. Using Farkas’s lemma,

prove each of the following results.

(a) (5’) Gordan’s Theorem. Exactly one of the following systems has a solution:

(i) Ax > 0

(ii) yTA = 0, y ≥ 0, y ̸= 0.

(b) (5’) Stiemke’s Theorem. Exactly one of the following systems has a solution:

(i) Ax ≥ 0, Ax ̸= 0

(ii) yTA = 0, y > 0

(c) (5’) Gale’s Theorem. Exactly one of the following systems has a solution:

(i) Ax ≤ b

(ii) yTA = 0, yTb < 0, y ≥ 0



Computational Homework (50’) (group of 1-3 people):

8. (20’) Consider the sensor localization problem on plane R2 with one sensor x and three

anchors a1 = (1; 0), a2 = (−1; 0) and a3 = (0; 2). Suppose the Euclidean distances from

the sensor to the three anchors are d1, d2 and d3 respectively and known to us.Then,

from the anchor and distance information, we can locate the second by finding x ∈ R2

such that

∥x− ai∥2 = d2i , i = 1, 2, 3.

Do the following numerical experiments using CVX (or cvxpy, convex.jl) or MOSEK

and answer the questions:

(a) (10’) Generate any sensor point in the convex hull of the three anchors, compute

its distances to three anchors di, i = 1, 2, 3, respectively. Then solve the SOCP

relaxation problem

∥x− ai∥2 ≤ d2i , i = 1, 2, 3.

Did you find the correct location? What about if the sensor point was in the

outside of the convex hull? Try a few different locations of the sensor and identify

the pattern.

(b) (10’) Now try the SDP relaxation

(ai;−1)(ai;−1)T •

(
I x

xT y

)
= d2i , i = 1, 2, 3;

(
I x

xT y

)
⪰ 0 ∈ S3,

which can be written in the standard form

(1; 0; 0)(1; 0; 0)T • Z = 1,

(0; 1; 0)(0; 1; 0)T • Z = 1,

(1; 1; 0)(1; 1; 0)T • Z = 2,

(ai;−1)(ai;−1)T • Z = d2i , i = 1, 2, 3,

Z ⪰ 0 ∈ S3.

Did you find the correct location everywhere on the plane? Try a few different

locations of the sensor and identify the pattern.

You can use CVX (or cvxpy, convex.jl) to solve these numerical problems.



9. (20’) Consider the sensor localization problem on plane R2 with two sensors x1 and

x2 and three anchors a1 = (1; 0), a2 = (−1; 0) and a3 = (0; 2). Suppose that we

know the (Euclidean) distances from one sensor x1 to a1 and a2, denoted by d11 and

d12; distances of the other sensor x2 to a2 and a3, denoted by d22 and d23; and the

distance between the two sensors x1 and x2, denoted by d̂12. Then, from the anchor

and distance information we would like to locate the sensor positions x1,x2 ∈ R2.

Do the following numerical experiments using CVX (or cvxpy, convex.jl) or MOSEK

and answer the questions:

(a) (10’) Generate two sensor points anywhere and try the SOCP relaxation model

∥x1 − ai∥2 ≤ d21i, i = 1, 2

∥x2 − ai∥2 ≤ d22i, i = 2, 3

∥x1 − x2∥2 ≤ d̂212.

Did you find the correct locations? What have you observed? Try a few different

locations of the sensor pairs and identify the pattern.

(b) (10’) Now try the SDP relaxation: find X = [x1, x2] ∈ R2×2 and

Z =

(
I X

XT Y

)
∈ S4

to meet the constraints in the standard form:

(1; 0; 0; 0)(1; 0; 0; 0)T • Z = 1,

(0; 1; 0; 0)(0; 1; 0; 0)T • Z = 1,

(1; 1; 0; 0)(1; 1; 0; 0)T • Z = 2,

(ai;−1; 0)(ai;−1; 0)T • Z = d21i, i = 1, 2,

(ai; 0;−1)(ai; 0;−1)T • Z = d22i, i = 2, 3,

(0; 0; 1;−1)(0; 0; 1;−1)T • Z = d̂212,

Z ⪰ 0 ∈ S4.

Did you find the correct locations? What have you observed? Can you conclude

with something? Try a few different locations of the sensor pairs and identify the

pattern.

10. (10’) For the Maze Runner example in Lecture Note #1, suppose that the blue-action

at State 3 has a probability 0.5 leading to State 4 and 0.5 leading to State 5; and

the only action at State 5 leads to State 0. Reformulate the MDP-LP problem with

γ = 0.9 and solve it using any LP solver.


