Optimization
Prof. Yinyu Ye

Homework Assignment 0

This is a diagnostic homework that covers prerequisite materials that you should be familiar with. This homework will not be graded and will not be counted towards the final grade.

Solve the following problems:

1. Consider the iterative process

$$
x_{k+1}=\frac{1}{2}\left(x_{k}+\frac{a}{x_{k}}\right),
$$

where $a>0$. Assuming the process converges, to what does it converge?
2. Let $\left\{\left(\mathbf{a}_{i}, c_{i}\right)\right\}_{i=1}^{m}$ be Wa given dataset where $\mathbf{a}_{i} \in R^{n}, c_{i} \in\{ \pm 1\}$.
(a) Compute the gradient of the following log-logistic-loss function,

$$
f\left(\mathbf{x}, x_{0}\right)=\sum_{i: c_{i}=1} \log \left(1+\exp \left(-\mathbf{a}_{i}^{T} \mathbf{x}-x_{0}\right)\right)+\sum_{i: c_{i}=-1} \log \left(1+\exp \left(\mathbf{a}_{i}^{T} \mathbf{x}+x_{0}\right)\right)
$$

where $\mathbf{x} \in R^{n}$ and $x_{0} \in R$.
(b) Consider the following data set

$$
\mathbf{a}_{1}=(0 ; 0), \quad \mathbf{a}_{2}=(1 ; 0), \quad \mathbf{a}_{3}=(0 ; 1), \quad \mathbf{a}_{4}=(0 ; 0), \quad \mathbf{a}_{5}=(-1 ; 0), \quad \mathbf{a}_{6}=(0 ;-1)
$$

with label

$$
c_{1}=c_{2}=c_{3}=1, \quad c_{4}=c_{5}=c_{6}=-1,
$$

show that there is no solution for $\nabla f\left(\mathbf{x}, x_{0}\right)=0$.
3. Given a symmetric matrix $A \in R^{n \times n}$ s.t. A has eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$, show that for every $k=1,2, \cdots, n$, we have:

$$
\begin{align*}
\lambda_{k} & =\max _{U}\left\{\left.\min _{\mathbf{x}}\left\{\left.\frac{\mathbf{x}^{T} A \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}} \right\rvert\, \mathbf{x} \in U, \mathbf{x} \neq \mathbf{0}\right\} \right\rvert\, U \text { is a linear subspace of } R^{n} \text { of dimension } k\right\} \\
& =\min _{U}\left\{\left.\max _{\mathbf{x}}\left\{\left.\frac{\mathbf{x}^{T} A \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}} \right\rvert\, \mathbf{x} \in U, \mathbf{x} \neq \mathbf{0}\right\} \right\rvert\, U \text { is a linear subspace of } R^{n} \text { of dimension } n-k+1\right\} \tag{2}
\end{align*}
$$

4. Given symmetric matrices $A, B, C \in R^{n \times n}$ s.t. A has eigenvalues $a_{1} \geq a_{2} \geq \cdots \geq a_{n}$, B has eigenvalues $b_{1} \geq b_{2} \geq \cdots \geq b_{n}$ and C has eigenvalues $c_{1} \geq c_{2} \geq \cdots \geq c_{n}$, if $A=B+C$, show that for every $k=1,2, \cdots, n$, we have:

$$
\begin{equation*}
b_{k}+c_{n} \leq a_{k} \leq b_{k}+c_{1} . \tag{3}
\end{equation*}
$$

5. Let $A \in R^{n \times n}$ be a positive-semidefinite matrix with Schur decomposition $A=Q \Lambda Q^{T}$, where $Q=\left[\mathbf{q}_{1}|\cdots| \mathbf{q}_{n}\right]$ is an orthogonal matrix, $\Lambda=\operatorname{diag}\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ satisfies $\lambda_{1} \geq$ $\lambda_{2} \geq \cdots \lambda_{n} \geq 0$. Show that for any $k=1, \ldots, n$,

$$
\begin{equation*}
\min _{\operatorname{rank}(B)=k}\|A-B\|_{2}=\left\|A-A_{k}\right\|_{2}=\lambda_{k+1}, \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\min _{\operatorname{rank}(B)=k}\|A-B\|_{F}=\left\|A-A_{k}\right\|_{F}=\sqrt{\sum_{j=k+1}^{n} \lambda_{j}^{2}} \tag{5}
\end{equation*}
$$

where A_{k} is defined as

$$
\begin{equation*}
A_{k}:=\sum_{j=1}^{k} \lambda_{j} \mathbf{q}_{j} \mathbf{q}_{j}^{T} \tag{6}
\end{equation*}
$$

Here $\|\cdot\|_{2}$ stands for the spectrum $\left(L_{2}\right)$ norm and $\|\cdot\|_{F}$ stands for the Frobenius norm.

