CME 307 / MS&E 311 Optimization Prof. Yinyu Ye Winter 2022 Jan 5, 2022 Optional - not graded

Homework Assignment 0

This is a diagnostic homework that covers prerequisite materials that you should be familiar with. This homework will not be graded and will not be counted towards the final grade.

Solve the following problems:

1. Consider the iterative process

$$x_{k+1} = \frac{1}{2} \left(x_k + \frac{a}{x_k} \right),$$

where a > 0. Assuming the process converges, to what does it converge?

- 2. Let $\{(\mathbf{a}_i, c_i)\}_{i=1}^m$ be Wa given dataset where $\mathbf{a}_i \in \mathbb{R}^n, c_i \in \{\pm 1\}$.
 - (a) Compute the gradient of the following log-logistic-loss function,

$$f(\mathbf{x}, x_0) = \sum_{i:c_i=1} \log \left(1 + \exp(-\mathbf{a}_i^T \mathbf{x} - x_0) \right) + \sum_{i:c_i=-1} \log \left(1 + \exp(\mathbf{a}_i^T \mathbf{x} + x_0) \right),$$

where $\mathbf{x} \in \mathbb{R}^n$ and $x_0 \in \mathbb{R}$.

(b) Consider the following data set

 $\mathbf{a}_1 = (0;0), \ \mathbf{a}_2 = (1;0), \ \mathbf{a}_3 = (0;1), \ \mathbf{a}_4 = (0;0), \ \mathbf{a}_5 = (-1;0), \ \mathbf{a}_6 = (0;-1),$ with label

$$c_1 = c_2 = c_3 = 1, \quad c_4 = c_5 = c_6 = -1,$$

show that there is no solution for $\nabla f(\mathbf{x}, x_0) = 0$.

3. Given a symmetric matrix $A \in \mathbb{R}^{n \times n}$ s.t. A has eigenvalues $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$, show that for every $k = 1, 2, \cdots, n$, we have:

$$\lambda_{k} = \max_{U} \left\{ \min_{\mathbf{x}} \left\{ \frac{\mathbf{x}^{T} A \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}} \middle| \mathbf{x} \in U, \mathbf{x} \neq \mathbf{0} \right\} \middle| U \text{ is a linear subspace of } R^{n} \text{ of dimension } k \right\}$$
(1)

$$= \min_{U} \left\{ \max_{\mathbf{x}} \left\{ \frac{\mathbf{x}^{T} A \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}} \middle| \mathbf{x} \in U, \mathbf{x} \neq \mathbf{0} \right\} \middle| U \text{ is a linear subspace of } R^{n} \text{ of dimension } n - k + 1$$
(2)

4. Given symmetric matrices $A, B, C \in \mathbb{R}^{n \times n}$ s.t. A has eigenvalues $a_1 \ge a_2 \ge \cdots \ge a_n$, B has eigenvalues $b_1 \ge b_2 \ge \cdots \ge b_n$ and C has eigenvalues $c_1 \ge c_2 \ge \cdots \ge c_n$, if A = B + C, show that for every $k = 1, 2, \cdots, n$, we have:

$$b_k + c_n \le a_k \le b_k + c_1. \tag{3}$$

5. Let $A \in \mathbb{R}^{n \times n}$ be a positive-semidefinite matrix with Schur decomposition $A = Q\Lambda Q^T$, where $Q = [\mathbf{q}_1 | \cdots | \mathbf{q}_n]$ is an orthogonal matrix, $\Lambda = \mathbf{diag}\{\lambda_1, \ldots, \lambda_n\}$ satisfies $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$. Show that for any $k = 1, \ldots, n$,

$$\min_{\operatorname{rank}(B)=k} \|A - B\|_2 = \|A - A_k\|_2 = \lambda_{k+1},\tag{4}$$

and

$$\min_{\operatorname{rank}(B)=k} \|A - B\|_F = \|A - A_k\|_F = \sqrt{\sum_{j=k+1}^n \lambda_j^2},\tag{5}$$

where A_k is defined as

$$A_k := \sum_{j=1}^k \lambda_j \mathbf{q}_j \mathbf{q}_j^T.$$
(6)

Here $\|\cdot\|_2$ stands for the spectrum (L_2) norm and $\|\cdot\|_F$ stands for the Frobenius norm.