Alternative Systems

Yinyu Ye
Department of Management Science and Engineering
Stanford University
Stanford, CA 94305, U.S.A.
http://www.stanford.edu/~yyye

Linear Equations

Given matrix $A \in R^{m \times n}$ vector $b \in R^{m}$, exactly one of the following two systems is feasible:

$$
A x=b
$$

or

$$
A^{T} y=0, b^{T} y=1
$$

Polyhedron set

Given matrix $A \in R^{m \times n}$ vector $b \in R^{m}$, exactly one of the following two systems is feasible:

$$
A x=b, x \geq 0
$$

or

$$
A^{T} y \leq 0, b^{T} y=1
$$

Proof: They cannot be both feasible since

$$
0 \geq x^{T}\left(A^{T} y\right)=\left(x^{T} A^{T}\right) y=(A x)^{T} y=b^{T} y=1
$$

which is a contradiction. Now we prove that if the "red" system is infeasible then the "green" system must be feasible.

Consider convex cone $C=\{A x: x \geq 0\}$. We must have $b \notin C$. From the
separating hyperplane theorem, there is $y \in R^{m}$ such that

$$
y^{T} b>\sup _{x \geq 0} y^{T} A x .
$$

Thus, we must have i) $y^{T} b>0$ since $x=0$ makes $y^{T} A x=0$. ii) $y^{T} A \leq 0$ since, otherwise, say the first element of $y^{T} A$ is positive, we can choose $x=(\alpha ; 0 ; \ldots ; 0)$ and let $\alpha \rightarrow \infty$. Then, $y^{T} A x \rightarrow \infty$ which is a contradiction to that $y^{T} A x$ is bounded above for any $x \geq 0$.

More polyhedron set

Given matrix $A \in R^{m \times n}$ vector $c \in R^{n}$, exactly one of the following two systems is feasible:

$$
A^{T} y \leq c
$$

or

$$
A x=0, c^{T} x=-1, x \geq 0
$$

Transformation: Rewrite the red system as

$$
\left(A^{T},-A^{T}, I\right)\left(\begin{array}{c}
y^{\prime} \\
y^{\prime \prime} \\
s
\end{array}\right)=c,\left(\begin{array}{c}
y^{\prime} \\
y^{\prime \prime} \\
s
\end{array}\right) \geq 0
$$

Then use the previous standard system to construct its alternative system.

Or rewrite the green system to

$$
\binom{A}{c^{T}} x=\binom{0}{-1}, x \geq 0
$$

Then use the previous standard system to construct its alternative system.

Strictly inequality

Given matrix $A \in R^{m \times n}$ vector $c \in R^{n}$, what's the alternative system for

$$
c^{T} d<0, A d \geq 0 ?
$$

For some positive constant ϵ, this system is equivalent to

$$
c^{T} d \leq-\epsilon,-A d \leq 0
$$

Thus, its alternative system is

$$
\frac{1}{\epsilon} \cdot c-A^{T} x=0, x \geq 0
$$

or simply

$$
c-A^{T} x=0, x \geq 0 .
$$

