Alternative Systems

Yinyu Ye

Department of Management Science and Engineering Stanford University

Stanford, CA 94305, U.S.A.

http://www.stanford.edu/~yyye

Linear Equations

Given matrix $A \in \mathbb{R}^{m \times n}$ vector $b \in \mathbb{R}^m$, exactly one of the following two systems is feasible:

Ax = b

or

$$A^T y = 0, \ b^T y = 1.$$

Polyhedron set

Given matrix $A \in R^{m \times n}$ vector $b \in R^m$, exactly one of the following two systems is feasible:

$$Ax = b, \ x \ge 0$$

or

$$A^T y \le 0, \ b^T y = 1.$$

Proof: They cannot be both feasible since

$$0 \ge x^T (A^T y) = (x^T A^T) y = (Ax)^T y = b^T y = 1$$

which is a contradiction. Now we prove that if the "red" system is infeasible then the "green" system must be feasible.

Consider convex cone $C = \{Ax : x \ge 0\}$. We must have $b \notin C$. From the

separating hyperplane theorem, there is $y \in \mathbb{R}^m$ such that

$$y^T b > \sup_{x \ge 0} y^T A x.$$

Thus, we must have i) $y^T b > 0$ since x = 0 makes $y^T A x = 0$. ii) $y^T A \le 0$ since, otherwise, say the first element of $y^T A$ is positive, we can choose $x = (\alpha; 0; ...; 0)$ and let $\alpha \to \infty$. Then, $y^T A x \to \infty$ which is a contradiction to that $y^T A x$ is bounded above for any $x \ge 0$.

More polyhedron set

Given matrix $A \in \mathbb{R}^{m \times n}$ vector $c \in \mathbb{R}^n$, exactly one of the following two systems is feasible:

 $A^T y \le c$

or

$$Ax = 0, \ c^T x = -1, \ x \ge 0.$$

Transformation: Rewrite the red system as

$$(A^T, -A^T, I)$$
 $\begin{pmatrix} y'\\y''\\s \end{pmatrix} = c, \begin{pmatrix} y'\\y''\\s \end{pmatrix} \ge 0.$

Then use the previous standard system to construct its alternative system.

Or rewrite the green system to

$$\begin{pmatrix} A \\ c^T \end{pmatrix} x = \begin{pmatrix} 0 \\ -1 \end{pmatrix}, \ x \ge 0.$$

Then use the previous standard system to construct its alternative system.

Strictly inequality

Given matrix $A \in \mathbb{R}^{m \times n}$ vector $c \in \mathbb{R}^n$, what's the alternative system for

 $c^T d < 0, \ Ad \ge 0?$

For some positive constant ϵ , this system is equivalent to

 $c^T d \le -\epsilon, \ -Ad \le 0.$

Thus, its alternative system is

$$\frac{1}{\epsilon} \cdot c - A^T x = 0, \ x \ge 0$$

or simply

$$c - A^T x = 0, \ x \ge 0.$$