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February 11, 2022

As described in Lectures, Rainforcement Learning (RL) and Markov Decision Processes (MDP) provide

a mathematical framework for modeling sequential decision-making in situations where outcomes are partly

random and partly under the control of a decision maker. MDPs are useful for studying a wide range of

optimization problems solved via Dynamic Programming (DP), where it was known at least as early as

the 1950s (cf. Shapley 1953, Bellman 1957). Modern applications include dynamic planning, reinforcement

learning, social networking, and almost all other dynamic/sequential decision game strategy making problems

in Mathematical, Physical, Management and Social Sciences.

As talked in class, the MDP problem with m states and total n actions can be formulated as a standard

form linear program with m equality constraints and n variables:

minx
∑

j∈A1
cjxj+ ... +

∑
j∈Am

cjxj

s.t.
∑

j∈A1
(e1 − γpj)xj+ ... +

∑
j∈Am

(em − γpj)xj = e,

... xj ... ≥ 0, ∀j,

(1)

where Ai represents the set of all actions available in state i, pj is the state transition probabilities from

state i to all states and cj is the immediate cost when action j is taken, and 0 < γ < 1 is the discount factor.

Also, e ∈ Rm is the vector of ones, and ei is the unit vector with 1 at the i-th position and zeros everywhere

else. Variable xj , j ∈ Ai, is the state-action frequency or flux, or the expected present value of the number

of times in which the process visits state i and takes state-action j ∈ Ai. Thus, solving the problem entails

choosing a state-action frequencies/fluxes that minimize the expected present value sum of total costs. The
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dual of the LP is

maximizey eTy =
∑m

i=1 yi

subject to y1 − γpT
j y ≤ cj , j ∈ A1

...

yi − γpT
j y ≤ cj , j ∈ Ai

...

ym − γpT
j y ≤ cj , j ∈ Am.

(2)

where yi represents the cost-to-go value in state i.

1. Question 1: Prove that in (1) every basic feasible solution represent a policy, i.e., the basic variables

have exactly one variable from each state i. Furthermore, prove each basic variable value is no less

than 1, and the sum of all basic variable values is m
1−γ .

2. Question 2: Value Iteration Method: This is a first-order optimization method – starting with any

vector y0, then iteratively update it

yk+1
i = min

j∈Ai

{cj + γpT
j y

k}, ∀i. (3)

Prove the contraction result:

∥yk+1 − y∗∥∞ ≤ γ∥yk − y∗∥∞, ∀k.

where y∗ is the fixed-point or optimal value vector, that is,

y∗i = min
j∈Ai

{cj + γpT
j y

∗}, ∀i.

3. Question 3: In the VI method, if starting with any vector y0 ≥ y∗ and assuming y1 ≤ y0, then prove

the following entry-wise monotone property:

y∗ ≤ yk+1 ≤ yk, ∀k.

On the other hand, if we start from a vector such that

y0i < min
j∈Ai

{cj + γpT
j y

0}, ∀i

(y0 in the interior of the feasible region), then prove the entry-wise monotone property:

y∗ ≥ yk+1 ≥ yk, ∀k.

This monotone property has been used in a recent paper (see [SWWY17]) on the VI method using

samples.
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4. Question 4: Rather than go through all state values in each iteration, we modify the VI method, call

it RamdomVI: In the kth iteration, randomly select a subset of states Bk and do

yk+1
i = min

j∈Ai

{cj + γpT
j y

k}, ∀i ∈ Bk. (4)

In RandomVI, we only update a subset of state values at random in each iteration.

What can you tell the convergence of the RandomVI method? Does it make a difference with the

classical VI method? How is the sample size affect the performance? Use simulated computational

experiments to verify your claims.

Rather than randomly select a subset of all states in each iteration, suppose we build an “influence

tree” from a given subset of states, say B, for all sates, denoted by I(B), that are connected by any

state in B. Then when states in B are updated in the current iteration, then selected a subset of states

in I(B) for updating in the next iteration. Redo the computational experiments using this strategy

for a sparsely connected (pj is a very sparse distribution vector for each action j) MDP network. In

doing so, many unimportant or irrelevant states may be avoided which results a state-reduction.

5. Question 5: Here is another modification, called CyclicVI: In the kth iteration do

• Initialize ỹk = yk.

• For i = 1 to m

ỹki = min
j∈Ai

{cj + γpT
j ỹ

k} (5)

• yk+1 = ỹk.

In the CyclicVI method, as soon as a state value is updated, we use it to update the rest of state

values.

What can you tell the convergence of the CyclicVI method? Does it make a difference with other VI

methods? Use simulated computational experiments to verify your claims. How is this cyclic method

related to the method at the bottom of Question 4?

6. Question 6: In the CyclicVI method, rather than with the fixed cycle order from 1 to m, we follow a

random permutation order, or sample without replacement to update the state values. More precisely,

in the kth iteration do

0. Initialize ỹk = yk and Bk = {1, 2, ...,m}

1. – Randomly select i ∈ Bk

–

ỹki = min
j∈Ai

{cj + γpT
j ỹ

k} (6)
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– remove i from Bk and return to Step 1.

3. yk+1 = ỹk.

We call it the randomly permuted CyclicVI or RPCyclicVI in short

What can you tell the convergence of the RPCyclicVI method? Does it compare with other VI methods?

Use simulated computational experiments to verify your claims.

In this project, you may generate a Maze Game in 2D by assign actions with different costs and

probability distributions to test your algorithms.

Question 7: Tic-Tac-Toe Game: In this problem, we want to develop the optimal strategy for the cross-

player. We assume that the cross-player plays first, and the opponent is a random player. That is, the

opponent puts a circle in an empty square with equal probability in each round. Please formulate the 3× 3

tic-tac-toe game as an MDP problem and find the optimal policy.

In addition, what can you tell about the optimal first step for the cross player in the 4× 4 tic-tac-toe

game?
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