CME307/MS&E311 Optimization Model/Theory Summary

Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A.

http://www.stanford.edu/~yyye

Optimization Problems

- A set of decision variables, x, in vector or matrix form with dimension n or nxn
- A continuous and sometime differentiable objective function *f(x)*
- A feasible region where x can be in

min	f(x)
s.t.	$\pmb{X} \in \pmb{X}$

 One can smooth them by reformulation as constrained optimization:

max $\min_{i} \{ f_{i}(x), i=1,...,n \} \}$

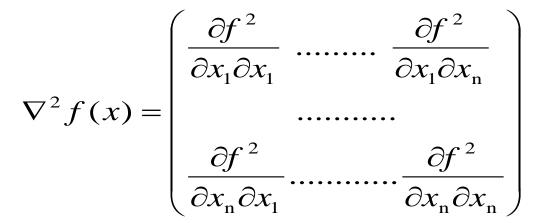
max α s.t. α - $f_i(x) \leq 0$, for i=1,...,n

Function, Gradient Vector and Hessian Matrix

- A function f of x in \mathbb{R}^n
- The <u>Gradient Vector</u> of f at x

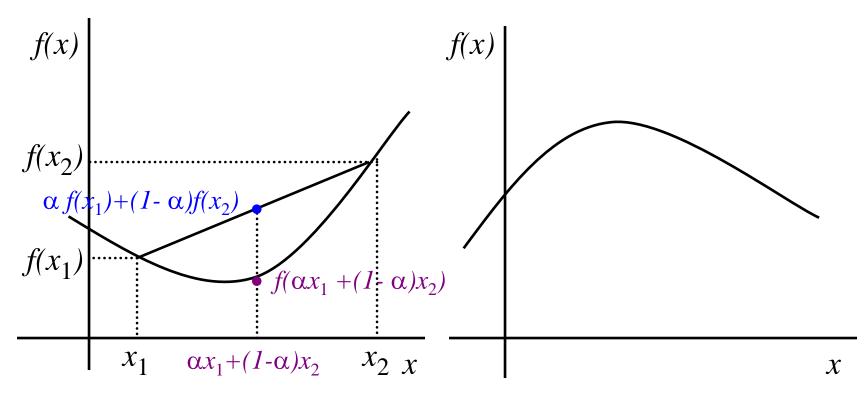
$$\nabla f(x) = \left(\frac{\partial f}{\partial x_1} \quad \frac{\partial f}{\partial x_2} \dots \frac{\partial f}{\partial x_n}\right)$$

• The <u>Hessian Matrix</u> of f at x



• Taylor's Expansion Theorem

Convex and Concave Functions



f(x) is a <u>convex function</u> if and only if for any given two points x_1 and x_2 in the function domain and for any constant $0 \le \alpha \le 1$ $f(\alpha x_1 + (1 - \alpha)x_2) \le \alpha f(x_1) + (1 - \alpha)f(x_2)$ Strongly convex if $x_1 \ne x_2$, $f(0.5x_1 + 0.5x_2) < 0.5f(x_1) + 0.5f(x_2)$

More on Convex Functions

f(x) is a (stronly) convex function if and only if its Hessian matrix is (positive definite PD) positive semi-definite (PSD) in the domain of the function.

A symmetric matrix Q is PSD (or PD) if and only if $x^TQx \ge (or >) 0$ for all $x \ne 0$.

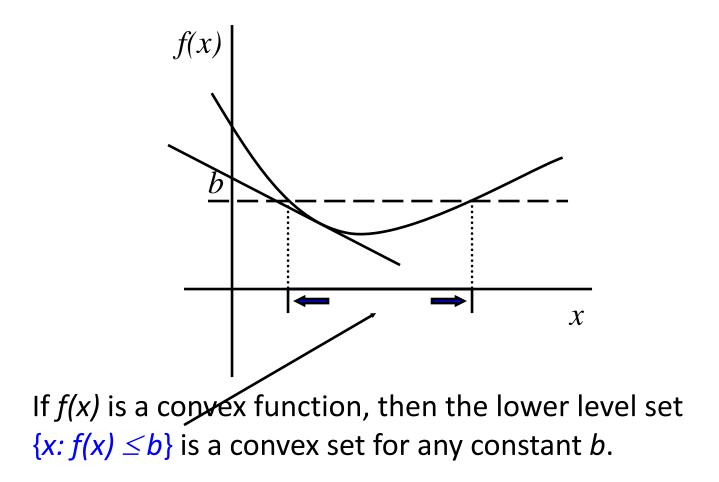
A 2x2 matrix is PSD (or PD) if and only if two diagonal entries and the determinant are nonnegative (or positive).

f(*x*) *is a (strongly) concave function if -f*(*x*) *is a (strongly) convex function*

Convex Sets

- A set is <u>convex</u> if every line segment connecting any two points in the set is contained entirely within the set
 - Ex polyhedron
 - Ex ball
- An <u>extreme point</u> of a convex set is any point that is not on any line segment connecting any other two distinct points of the set
- The intersection of convex sets is a convex set
- A set is closed if the limit of any convergent sequence of the set belongs to the set
- A set is compact if it is bounded and closed.

Convexity of Function and Level Set



The graph of a convex function lies above its <u>tangent line (planes)</u>. The Hessian matrix of a convex function is <u>positive semi-definite</u>.

Optimization Problem Classes

- <u>Unconstrained Optimization</u>
 Convex or Nonconvex
- Constrained Optimization

min	f(x)
s.t.	$\pmb{x} \in \pmb{X}$

- Conic Linear Optimization/Programming (CLO/CLP)
- Convex Constrained Optimization (CCO)
 - Feasible region/set is convex; objective general
- Generally Constrained Optimization (GCO)
- Convex Optimization (CO)
 - Minimize a convex function over a convex feasible set
 - Maximize a concave function over a convex feasible set
 - Changing variable/constraint representation may result CO

Optimization Problem Forms

min $c \bullet x$ s.t. Ax - b = 0, $X \in K$

Conic Linear Optimization (CLO)

A: an m x n matrix c: objective coefficient K: a closed convex cone

This is convex optimization

min	f (x)	
s.t.	<i>h_i(x) = 0,</i> i=1,,m	
	<i>c_i(x) ≥ 0,</i> i=1,,p	

Generally Constrained Optimization (GCO)

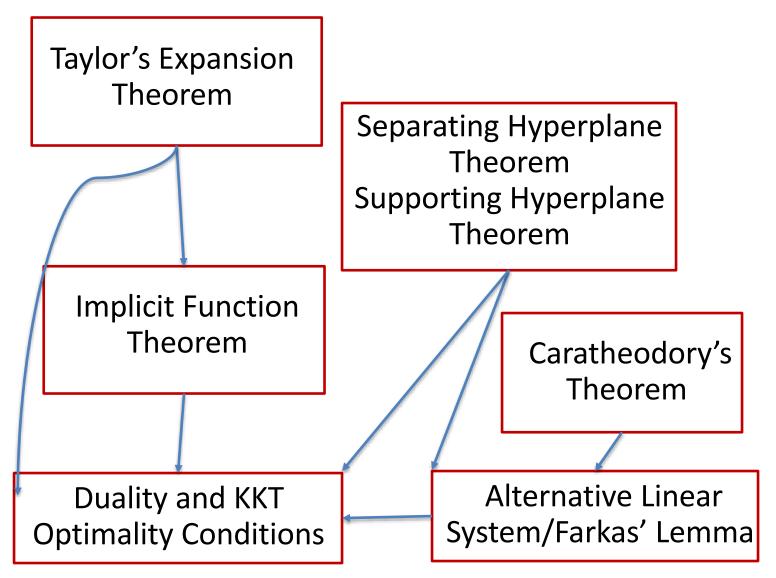
Each function can be continuous, continuously differentiable (C¹), or twice continuously differentiable (C²)

It is CCO if c_i are all concave, and h_i are all linear/affine functions. In addition, if f is convex, it is CO.

Why do we care about convex optimization?

- It guarantees that every local optimizer is a global optimizer
- It guarantees that every (first-order) KKT (or stationary) point/solution is a global optimizer
- This is significant because all of our numerical optimization algorithms search/generate a KKT point/solution
- Sometime the problem can be "convexfied":

Optimization Theory: Mathematical Foundations



Theory: Feasibility Conditions

- <u>Feasibility Conditions or Farkas' Lemmas</u> are developed to characterize and certify feasibility or infeasibility of a feasible region
- Alternative Systems X and Y: X has a feasible solution if and only if Y has no feasible solution
 - X and Y cannot both have feasible solution
 - Exactly one of them has a feasible solution
- They can be viewed as special cases of Linear Programming primal and dual pairs

Alternative Systems and CLO Pairs I

 $X \in K$

 $b^{T}y=1(>0)$ $A^{T}y+s=0,$ $s \in K^{*}$

System X A: an m x n matrix **b**: m-dimension vector *K*: a closed convex cone

K* is the dual cone

$$d^*=\max \quad \boldsymbol{b}^T \boldsymbol{y}$$

s.t. $\mathcal{A}^T \boldsymbol{y} + \boldsymbol{s} = \boldsymbol{0},$
 $\boldsymbol{s} \in \boldsymbol{K^*}$

Alternative Systems and CLO Pairs II

$$c^{T}x = -1(<0)$$
$$Ax = 0,$$
$$x \in K$$

System X A: an m x n matrix C: n-dimension vector K: a closed convex cone

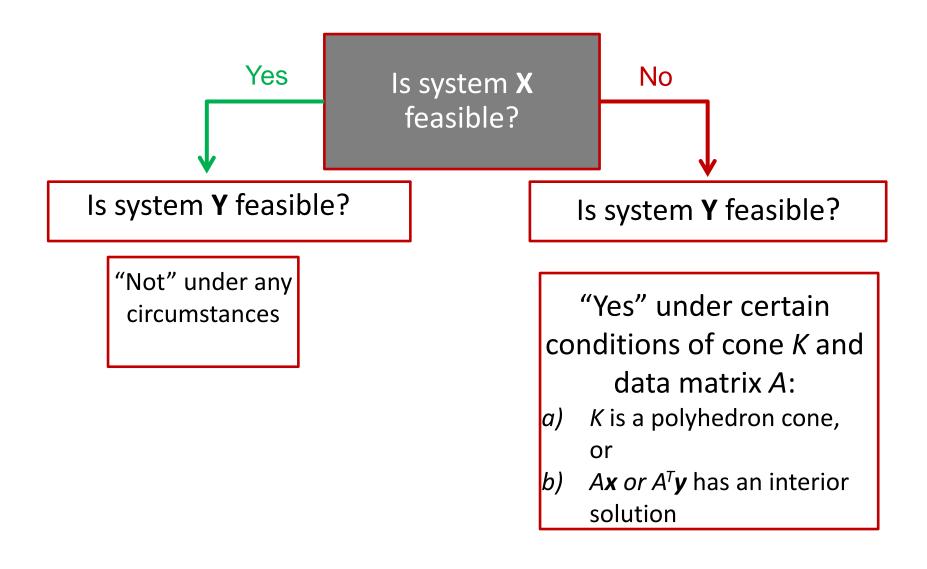
$$A^T \mathbf{y} + \mathbf{s} - \mathbf{c} = \mathbf{0},$$
$$\mathbf{s} \in \mathbf{K}^*$$

K* is the dual cone

$$d^*=\max \quad \boldsymbol{0}^T \boldsymbol{y}$$

s.t. $A^T \boldsymbol{y} + \boldsymbol{s} - \boldsymbol{c} = \boldsymbol{0},$
 $\boldsymbol{s} \in \boldsymbol{K}$

Feasibility Test Machine



General Rules to Construct the CLO Dual

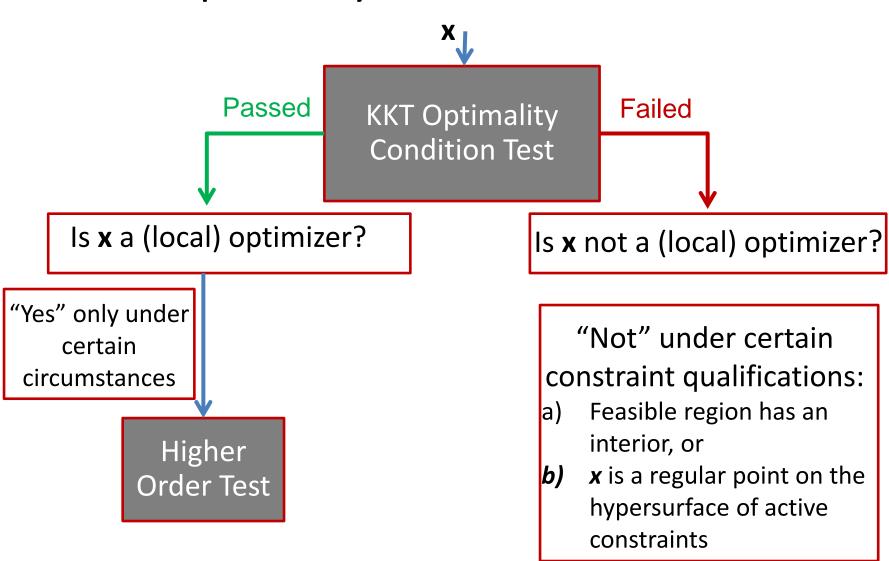
OBJ Vector/Matrix	RHS Vector/Matrix
RHS Vector/Matrix	OBJ Vector/matrix
A	A ^T
Max model	Min model
$\mathbf{x}_j \geq_{K} 0$	<i>j</i> th block constraints \geq_{K^*}
$\mathbf{x}_j \leq_{\mathcal{K}} 0$	<i>j</i> th block constraints \leq_{κ^*}
x _j free	<i>j</i> th block constraints =
<i>i</i> th block constraints \leq_{κ}	$\mathbf{y}_i \geq_{K^*} 0$
<i>i</i> th block constraints \geq_{κ}	<i>y^{<i>i</i>} ≤_{<i>K</i>*} 0</i>
<i>i</i> th block constraints =	y _i free

The dual of the dual is the primal

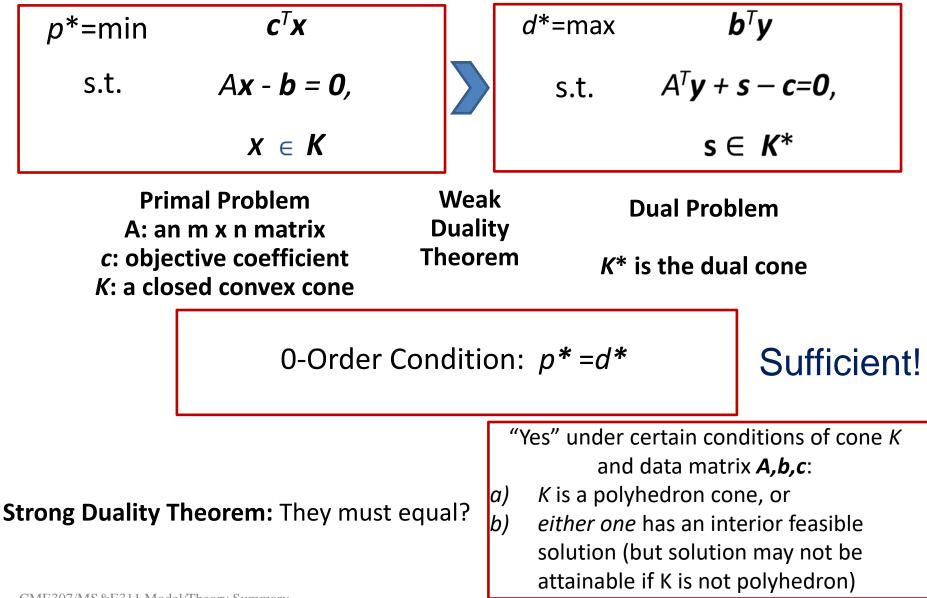
Theory: Optimality Conditions

- <u>Optimality (KKT) Conditions</u> are developed to characterize and certify possible minimizers
 - Feasibility of original variables
 - Optimality conditions consist of original variables and Lagrange multipliers
 - Zero-order, First-order, Second-order, necessary, sufficient
- They may not lead directly to a very efficient algorithm for solving problems, but they do have a number of benefits:
 - They give insight into what optimal solutions look like
 - They provide a way to set up and solve small problems
 - They provide a method to check solutions to large problems
 - The Lagrange multipliers can be seen as sensitivities of the constraints
- A minimizers may not satisfy optimality conditions unless certain *constraint qualifications* hold.

KKT Optimality Condition Test Machine



0-Order Condition: Duality Theorems for CLO



The Lagrange Function of GCO

min $f(\mathbf{x})$ s.t. $c_i(\mathbf{x}) (\leq , =, \geq) 0$, i=1,...,m

Restriction on multipliers y_i ,

y_i (≤,"free",≥) 0, i=1,...,m

The Largrange Function

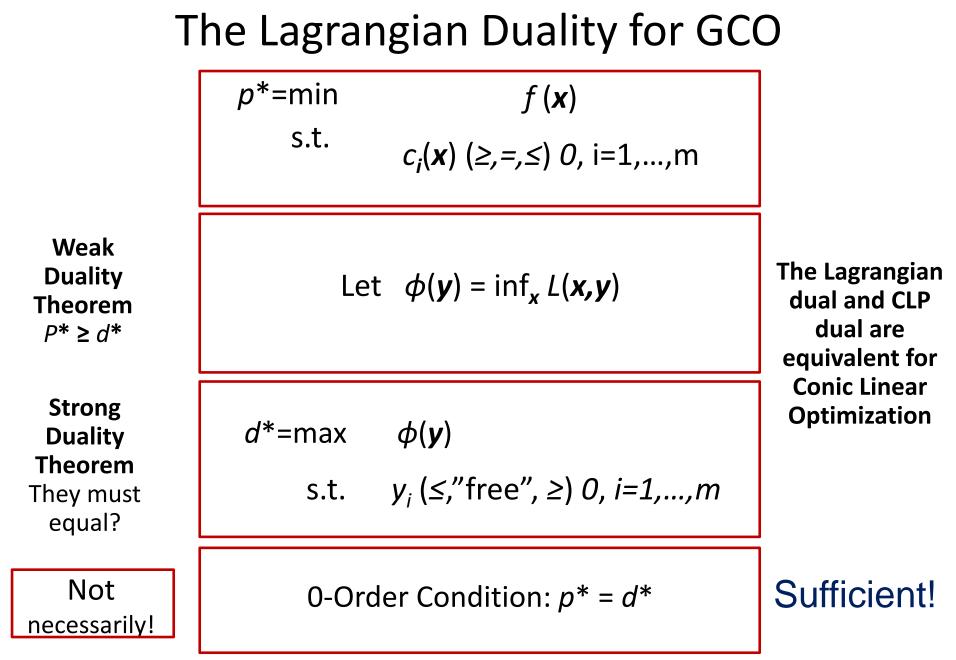
$$L(\mathbf{x},\mathbf{y}) = f(\mathbf{x}) - \sum_{i} y_{i}c_{i}(\mathbf{x})$$

The Lagrange function can be interpreted as a "penalized" aggregated objective function:

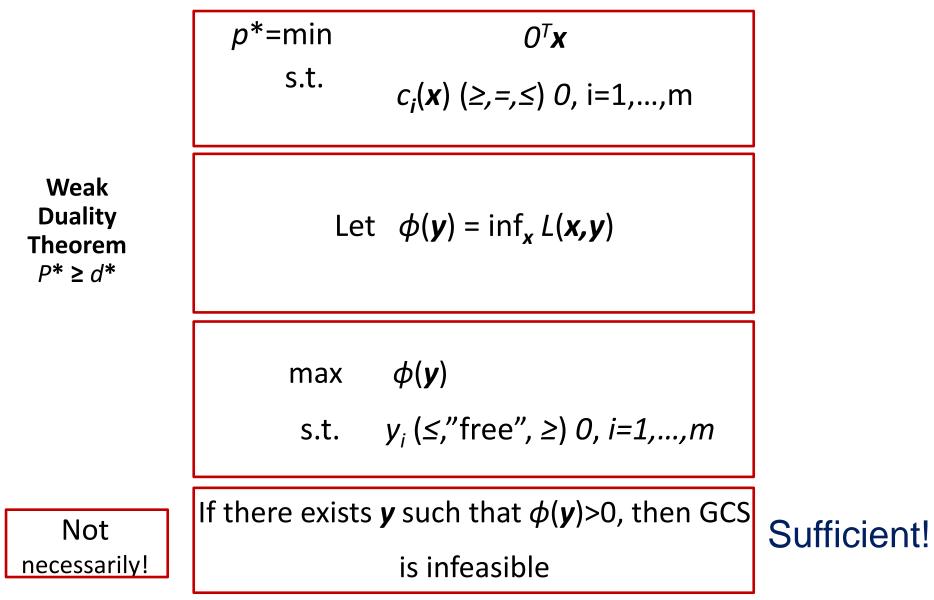
 y_i free: can be penalized either way

 $y_i \ge 0$ for " ≥ 0 " constraint: would be penalized only when $c_i(\mathbf{x}) \le 0$ $y_i \le 0$ for " ≤ 0 " constraint: would be penalized only when $c_i(\mathbf{x}) \ge 0$

 $y_i = 0$: no penalty if inequality constraint is strictly satisfied, which leads to complementarity.



The Farkas' Lemma for General Constraint System



CME307/MS&E311 Model/Theory Summary

General Rules to Construct the Dual

min $f(\mathbf{x})$ $c_i(\mathbf{x}) (\geq =, \leq) 0$, i=1,...,m (ODC)

Multiplier Sign Conditions (MSC)

 $y_i (\geq, "free", \leq) 0, i=1,...,m$

Lagrange Derivative Conditions (LDC)

$$\partial L(\mathbf{x},\mathbf{y})/\partial x_i = 0$$
, for all $j=1,...,n$.

Complementarity Slackness Condition (CSC)

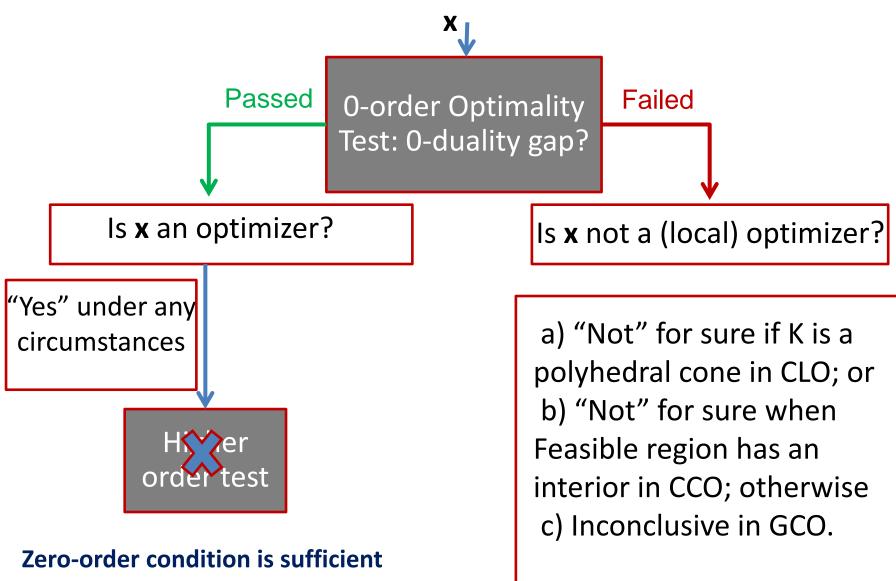
 $y_i c_i(\mathbf{x}) = 0$, for each inequality constraint i.

🛏 Primal

Constraints in the Dual

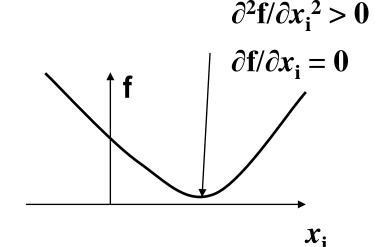
If no x in the equation, set it as an equality constraint in the dual; otherwise, express x in terms of y and replace x in the Lagrange function, which becomes the Dual objective. Warning: this may be difficult to do in general!

Not needed for construct Dual



1 and 2-order Conditions: Unconstrained

- Problem:
 - Minimize *f(x)*, where *x* is a vector that could have any values, positive or negative
- First Order Necessary Condition (min or max):
 - $\nabla f(x) = 0$ ($\partial f/\partial x_i = 0$ for all i) is the first order necessary condition for optimization
- <u>Second Order Necessary Condition</u>:
 - $-\nabla^2 f(x)$ is positive semidefinite (PSD)
 - $[d^T \nabla^2 f(x) d \ge 0 \text{ for all } d]$
- <u>Second Order Sufficient Condition</u> (Given FONC satisfied)
 - $-\nabla^2 f(x)$ is positive definite (PD)
 - $[d^{T}\nabla^{2}f(x)d > 0 \text{ for all } d \neq 0]$



The First-Order Necessary Conditions for GCO

Original Decision-Var Constraints (ODC)

c_i(**x**) (≥,=,≤) 0, i=1,...,m

Multiplier Sign Condition (MSC)

 $y_i (\geq, "free", \leq) 0, i=1,...,m$

Lagrange Derivative Condition (LDC)

$$\partial L(\mathbf{x},\mathbf{y})/\partial x_i = 0$$
, for all $j=1,...,n$.

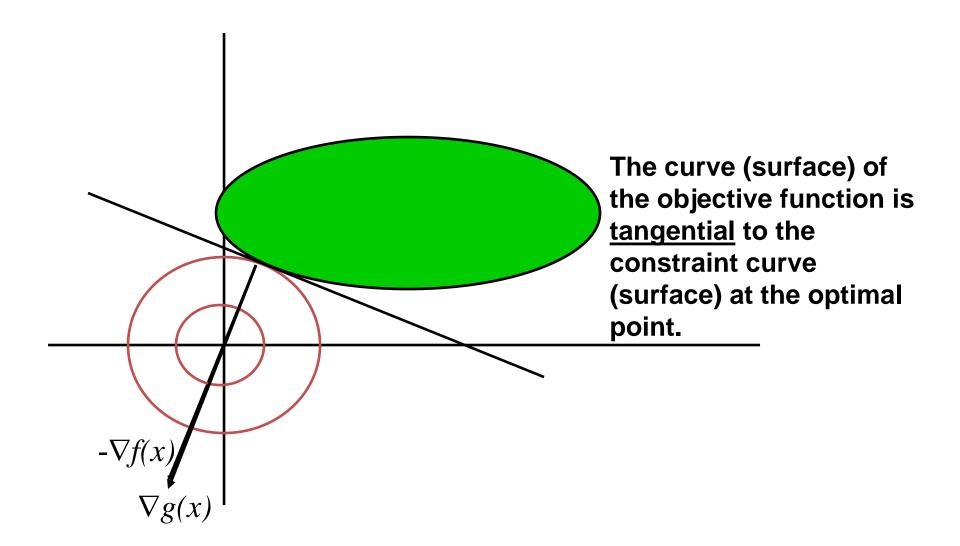
Complementary Slackness Condition (CSC)

 $y_i c_i(\mathbf{x}) = 0$, for each inequality constraint i.

For maximization, just flip the sign of multipliers, and every condition remains the same.

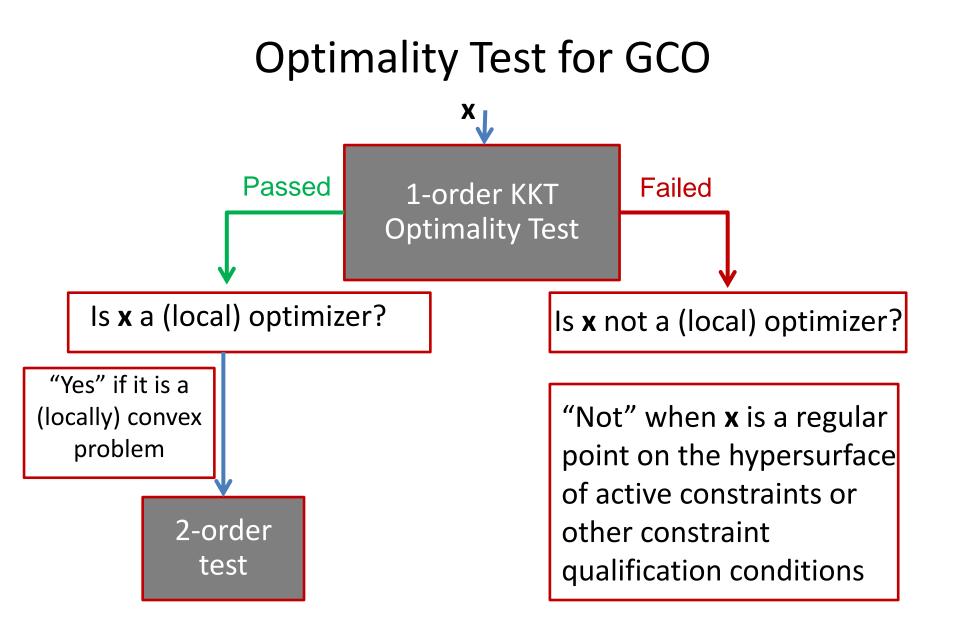
Short cut in dealing ODC: $x_i \ge 0$ LDC: $\partial L(\mathbf{x}, \mathbf{y}) / \partial x_j \ge 0$ CSC: $x_i \partial L(\mathbf{x}, \mathbf{y}) / \partial x_i = 0$

Example: KKT Conditions

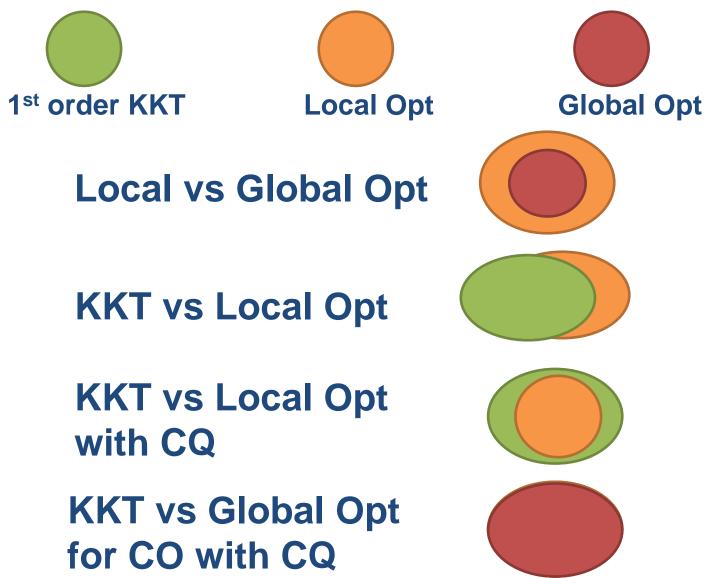


Remarks of First-Order Necessary Conditions

- The conditions only used the first derivatives of the functions involved in the problem, so it is usually called First-Order Necessary conditions (FONC), also named as the KKT conditions.
- Every optimizer must satisfy these conditions (under mild technical assumptions, such as all functions are linear, slate condition, regularity condition, etc.)
- For general optimization, these necessary conditions may not be sufficient; but for convex optimization, they are also sufficient, and the optimal solution is unique if the objective function is stronly convex.
- These conditions are important both theoretically and computationally
- Complementarity Slackness: nonbinding constraint receives zero penalty (multiplier and slack could be both zeros).
- Applications include: the Fisher equilibrium, SVM, etc.



Minimum and KKT Solutions



2-Order KKT Condition for GCO

Tangent Plane:

 $T = \{ \mathbf{z}: \nabla c_i(\mathbf{x})\mathbf{z} = 0, \text{ for all } i, \text{ such that } c_i(\mathbf{x}) = 0 \}$

Necessary Condition: $\mathbf{z}^{\mathrm{T}} \nabla_{x}^{2} L(\mathbf{x}, \mathbf{y}) \mathbf{z} \ge \mathbf{0}$, for all \mathbf{z} in T

Sufficient Condition: $z^{T}\nabla_{x}^{2}L(\mathbf{x},\mathbf{y})z > 0$, for all non-zero z in T

This can be done by checking positive semi-definiteness (or definiteness) of the projected Hessian of the Lagrange function

Applications: Optimality Condition & Duality

- Data Science, Machine Learning, Game/Market Equilibrium Theories
 - LR, SVM, WBC, SNL, MDP, etc.
 - Fisher market, Arrow-Debreu market
 - Duality and optimality lead to equilibrium conditions
- Pricing and learning
 - OLP: online LP by learning prices
 - WBC: distributed computation
 - SDP: Duality explains localizability
- Distributionally robust optimization/learning
 - A model to deal with inaccurate sample-distributions in stochastic optimization and prediction
- etc...