CME307/MS\&E311 Suggested Course Project III: First-Order Algorithms for Conic Optimization

(You don't need to answer all the questions posted in the project)

February 21, 2017

1 Optimization over Convex Cones

We consider the following optimization problem in the non-nagative cone:

$$
\begin{array}{cc}
\text { Minimize } & f(\mathbf{x}) \tag{1}\\
\text { Subject To } & \mathbf{x} \geq 0 .
\end{array}
$$

Here we assume that $f(\mathbf{x})$ is a convex or non-convex function in $\mathbf{x} \in R^{n}$ and the minimizer \mathbf{x}^{*} is attainable. Furthermore, we make a standard Lipschitz assumption such that

$$
f(\mathbf{x}+\mathbf{d})-f(\mathbf{x}) \leq \nabla f(\mathbf{x})^{T} d+\frac{\beta}{2}\|\mathbf{d}\|^{2}
$$

where positive β is the Lipschitz parameter.
Note that any linear feasibility problem,

$$
\begin{gathered}
A \mathrm{x}=\mathbf{b} ; \\
\mathrm{x} \geq 0 .
\end{gathered}
$$

can be formulated as the model with $f(\mathbf{x})=\frac{1}{2}\|A \mathbf{x}-\mathbf{b}\|^{2}$ and β would be the largest eigenvalue of matrix $A^{T} A$.

The dual linear programming feasibility problem can be casted as

$$
\begin{gathered}
A^{T} \mathbf{y}+\mathbf{s}=\mathbf{c} ; \\
\quad \mathbf{x} \geq 0 .
\end{gathered}
$$

Substitute $\mathbf{y}=\left(A A^{T}\right)^{-1} A(\mathbf{c}-\mathbf{s})$, then it becomes

$$
\begin{gathered}
\left(I-A^{T}\left(A A^{T}\right)^{-1} A\right)(\mathbf{s}-\mathbf{c})=0 ; \\
\mathbf{s} \geq 0
\end{gathered}
$$

can be casted as $f(\mathbf{s})=\frac{1}{2}\left(I-A^{T}\left(A A^{T}\right)^{-1} A\right)(\mathbf{c}-\mathbf{s})$ and the Lipschitz parameter is 1 .

2 Steepest-Descent Affine-Scaling Interior-Point Algorithm

Let an iterate solution $\mathbf{x}^{k}>0$. Then, we can scale it to \mathbf{e}, the vector of all ones, by

$$
\mathbf{x}^{\prime}=\left(X^{k}\right)^{-1} \mathbf{x}
$$

where X^{k} is the diagonal matrix of vector \mathbf{x}^{k}. This is called Affine Scaling, which preserves the non-negativity. Consider the function in the scaled space:

$$
f^{\prime}\left(\mathbf{x}^{\prime}\right)=f\left(X^{k} \mathbf{x}^{\prime}\right) \quad \text { and } \quad \nabla f^{\prime}\left(\mathbf{x}^{\prime}\right)=X^{k} \nabla f\left(X^{k} \mathbf{x}^{\prime}\right)
$$

The new SDM iterate in the scaled space would be

$$
\mathbf{x}^{\prime}(\alpha)=\mathbf{e}-\alpha_{k} \nabla f^{\prime}(\mathbf{e})=\mathbf{e}-\alpha X^{k} \nabla f\left(\mathbf{x}^{k}\right)
$$

and the one in the original space is

$$
\mathbf{x}(\alpha)=\mathbf{x}^{k}-\alpha\left(X^{k}\right)^{2} \nabla f\left(\mathbf{x}^{k}\right)
$$

for some step-size α.
If function f is β-Lipschitz, then so is f^{\prime} with $\beta\left\|\mathbf{x}^{k}\right\|_{\infty}^{2}$:

$$
\begin{aligned}
f^{\prime}\left(\mathbf{x}^{\prime}\right)-f^{\prime}\left(\mathbf{y}^{\prime}\right)-\nabla f^{\prime}\left(\mathbf{y}^{\prime}\right)\left(\mathbf{x}^{\prime}-\mathbf{y}^{\prime}\right) & =f\left(X^{k} \mathbf{x}^{\prime}\right)-f\left(X^{k} \mathbf{y}^{\prime}\right)-\nabla f\left(X^{k} \mathbf{y}^{\prime}\right) X^{k}\left(\mathbf{x}^{\prime}-\mathbf{y}^{\prime}\right) \\
& \leq \frac{\beta}{2}\left\|X^{k}\left(\mathbf{x}^{\prime}-\mathbf{y}^{\prime}\right)\right\|^{2} \\
& \leq \frac{\beta\left\|\mathbf{x}^{k}\right\|_{\infty}^{2}}{2}\left\|\left(\mathbf{x}^{\prime}-\mathbf{y}^{\prime}\right)\right\|^{2}
\end{aligned}
$$

In order to keep each iterate in the interior the non-negative cone, our selection would be

$$
\alpha^{k}=\min \left\{\frac{1}{\beta\left\|\mathbf{x}^{k}\right\|_{\infty}^{2}}, \frac{1}{2\left\|X^{k} \nabla f\left(\mathbf{x}^{k}\right)\right\|}\right\}
$$

Question 1: Show that the step-size strategy would keep the next iterate positive.
(In practice, one can start $\alpha=\frac{1}{\beta\left\|\mathbf{x}^{k}\right\|_{\infty}^{2}}$. If the new iterate is not positive, then let $\alpha:=\alpha / 2$ till the new iterate to be positive.)

Question 2: Show that, assigning $\mathbf{x}^{k+1}=\mathbf{x}\left(\alpha^{k}\right)>0$ one has

$$
f\left(\mathbf{x}^{k+1}-f\left(\mathbf{x}^{k}\right) \leq \frac{-1}{2 \beta\left\|\mathbf{x}^{k}\right\|_{\infty}^{2}}\left\|X^{k} \nabla f\left(\mathbf{x}^{k}\right)\right\|^{2}\right.
$$

or

$$
f\left(\mathrm{x}^{k+1}-f\left(\mathrm{x}^{k}\right) \leq \frac{-1}{4}\left\|X^{k} \nabla f\left(\mathrm{x}^{k}\right)\right\| .\right.
$$

What is the convergence speed of the problem?

3 Steepest-Descent Potential Reduction Interior-Point Algorithm

We now consider the problem with the logarithmic barrier function:

$$
\phi(\mathbf{x})=f(\mathbf{x})-\mu \sum_{j} \ln \left(x_{j}\right)
$$

where μ is a fixed positive constant, and we assume that the potential value is bounded below by ϕ^{*}. Let us start from $\mathbf{x}^{0}=\mathbf{e}$, the vector of all ones, and generate a sequence of points $\mathbf{x}^{k}>0, k=1, \ldots$, , whose potential value is strictly decreased. We now describe a first order steepest descent potential reduction algorithm.

Note that the gradient vector of the potential function of $\mathbf{x}>0$ is

$$
\nabla \phi(\mathbf{x})=\nabla f(\mathbf{x})-\mu X^{-1} \mathbf{e}
$$

Thus, the first-order optimality condition is

$$
X \nabla f(\mathbf{x})=\mu \mathbf{e}, \quad \nabla f(\mathbf{x})>0, \quad \mathbf{x}>0
$$

The following lemma is well known in the literature of interior-point algorithms:
Lemma 1. Let $\mathbf{x}^{k}>0$ and $\left\|\left(X^{k}\right)^{-1} \mathbf{d}\right\|_{\infty} \leq \delta<1$. Then

$$
-\sum_{j} \ln \left(x_{j}^{k}+d_{j}\right)+\sum_{j} \ln \left(x_{j}^{k}\right) \leq-\mathbf{e}^{T}\left(X^{k}\right)^{-1} \mathbf{d}+\frac{1}{2(1-\delta)}\left\|\left(X^{k}\right)^{-1} \mathbf{d}\right\|^{2}
$$

Again for any given $\mathbf{x}^{k}>0$,

$$
\begin{aligned}
f\left(\mathbf{x}^{k}+d\right)-f\left(\mathbf{x}^{k}\right) & \leq \nabla f\left(\mathbf{x}^{k}\right)^{T} \mathbf{d}+\frac{\beta}{2}\|\mathbf{d}\|^{2} \\
& =\nabla f\left(\mathbf{x}^{k}\right)^{T} d+\frac{\beta}{2}\left\|\left(X^{k}\right)\left(X^{k}\right)^{-1} \mathbf{d}\right\|^{2} \\
& \leq \nabla f\left(\mathbf{x}^{k}\right)^{T} \mathbf{d}+\frac{\beta\left\|\mathbf{x}^{k}\right\|_{\infty}^{2}}{2}\left\|\left(X^{k}\right)^{-1} \mathbf{d}\right\|^{2}
\end{aligned}
$$

Furthermore, if $\left\|\left(X^{k}\right)^{-1} \mathbf{d}\right\|_{\infty} \leq \delta=1 / 2$ so that $\mathbf{x}^{+}=\mathbf{x}^{k}+\mathbf{d}=X^{k}\left(\mathbf{e}+\left(X^{k}\right)^{-1} \mathbf{d}\right)>0$. Then, applying the above inequality and Lemma 1 we have

$$
\begin{aligned}
\phi\left(\mathbf{x}^{+}\right)-\phi\left(\mathbf{x}^{k}\right) & \leq \nabla f\left(\mathbf{x}^{k}\right)^{T} \mathbf{d}+\frac{\beta\left\|\mathbf{x}^{k}\right\|_{\infty}^{2}}{2}\left\|\left(X^{k}\right)^{-1} \mathbf{d}\right\|^{2}+\mu\left(-\mathbf{e}^{T}\left(X^{k}\right)^{-1} \mathbf{d}+\left\|\left(X^{k}\right)^{-1} \mathbf{d}\right\|^{2}\right) \\
& =\nabla \phi\left(\mathbf{x}^{k}\right)^{T} \mathbf{d}+\frac{\beta\left\|\mathbf{x}^{k}\right\|_{\infty}^{2}+2 \mu}{2}\left\|\left(X^{k}\right)^{-1} \mathbf{d}\right\|^{2}
\end{aligned}
$$

Now we let

$$
\mathbf{d}^{k}=-\alpha^{k}\left(X^{k}\right)^{2} \nabla \phi\left(\mathbf{x}^{k}\right)
$$

where

$$
\alpha^{k}=\min \left\{\frac{\left\|X^{k} \nabla \phi\left(\mathbf{x}^{k}\right)\right\|}{\beta\left\|\mathbf{x}^{k}\right\|_{\infty}^{2}+2 \mu}, \frac{1}{2\left\|X^{k} \nabla \phi\left(\mathbf{x}^{k}\right)\right\|}\right\}
$$

Now we have

$$
\nabla \phi\left(\mathbf{x}^{k}\right)^{T} \mathbf{d}^{k}=-\alpha^{k}\left\|X^{k} \nabla \phi\left(\mathbf{x}^{k}\right)\right\|^{2}
$$

so that if $\mathbf{x}^{k+1}=\mathbf{x}^{k}+\mathbf{d}^{k}$ we have

$$
\phi\left(\mathbf{x}^{k+1}\right)-\phi\left(\mathbf{x}^{k}\right) \leq-\min \left\{\frac{\left\|X^{k} \nabla \phi\left(\mathbf{x}^{k}\right)\right\|^{2}}{2\left(\beta\left\|\mathbf{x}^{k}\right\|_{\infty}^{2}+2 \mu\right)}, \frac{\left\|X^{k} \nabla \phi\left(\mathbf{x}^{k}\right)\right\|}{4}\right\} .
$$

Question 3: Show the following
Theorem 2. Let $\mu=\epsilon$ and $\left\|\mathbf{x}^{k}\right\|_{\infty}$ be bounded above by R for the iterative sequence. Then, in no more than $O\left(\frac{\beta R^{2}+2 \epsilon}{\epsilon^{2}}\left(\phi\left(\mathbf{x}^{0}\right)-\phi^{*}\right)\right)$ iterations the steepest descent potential reduction algorithm generates $a \mathbf{x}^{k}>0$ such that $\nabla f\left(\mathbf{x}^{k}\right)^{T} \mathbf{x}^{k} / n<2 \epsilon$ and $\nabla f\left(\mathbf{x}^{k}\right) \geq 0$.

4 Affine-Scalling and Potential Reduction for SDP cone

Now consider the SDP cone where we solve for $X \in S^{n}$:

$$
\begin{array}{cc}
\text { Minimize } & f(X) \\
\text { Subject To } & X \succeq 0, \tag{2}
\end{array}
$$

We assume that $f(X)$ is β-Lipschitz, that is, for any $D \in S^{n}$,

$$
f(X+D)-f(X) \leq \nabla f(X) \bullet D+\frac{\beta}{2}\|D\|_{f}^{2},
$$

where $\|\cdot\|_{f}$ is the Frobenius norm.
For example, the sensor network localization problem can be casted as such a problem with

$$
f(X)=\frac{1}{2}\|\mathcal{A} X-\mathbf{b}\|^{2}
$$

for given data $A_{i} \in S^{n}$ for $i=1, \ldots, m$, and $\mathbf{b} \in R^{m}$. Recall that

$$
\mathcal{A} X=\left(\begin{array}{c}
A_{1} \bullet X \\
\ldots \\
A_{m} \bullet X
\end{array}\right) \quad \text { and } \quad \mathcal{A}^{T} \mathbf{y}=\sum_{i=1} y_{i} A_{i} .
$$

Note that $\nabla f(X)=\mathcal{A}^{T}(\mathcal{A} X-\mathbf{b})$ which is also a symmetric matrix.
Let an iterate $X^{k} \succ 0$. Then we can scale it to I (the identity matrix) by

$$
X^{\prime}=\left(X^{k}\right)^{-1 / 2} X\left(X^{k}\right)^{-1 / 2}
$$

Then,

$$
f^{\prime}\left(X^{\prime}\right)=f\left(\left(X^{k}\right)^{1 / 2} X^{\prime}\left(X^{k}\right)^{1 / 2}\right) \quad \text { and } \quad \nabla f^{\prime}(I)=\left(X^{k}\right)^{1 / 2} \nabla f\left(X^{k}\right)\left(X^{k}\right)^{1 / 2}
$$

the new SDM iterate in the scaled space is

$$
X^{\prime}(\alpha)=I-\alpha\left(X^{k}\right)^{1 / 2} \nabla f\left(X^{k}\right)\left(X^{k}\right)^{1 / 2}
$$

and in the original space

$$
X(\alpha)=X^{k}-\alpha X^{k} \nabla f\left(X^{k}\right) X^{k}
$$

for some step-size α.
The optimization with the logarithmic barrier function for SDP cone would be

$$
\phi(X)=f(X)-\mu \ln (\operatorname{det}(X))
$$

where μ is the fixed positive constant, and we assume that the potential value is bounded below by ϕ^{*}. Note that the gradient vector of the potential function of $X^{k} \succ 0$ is

$$
\nabla \phi\left(X^{k}\right)=\nabla f\left(X^{k}\right)-\mu\left(X^{k}\right)^{-1}
$$

Question 4: Extend the two algorithms, the early described affine-scaling and potential reduction for the non-negative cone, to solving problem over the SDP cone, starting from $X^{0}=I$ and generating interior-point matrices $X^{k} \succ 0, k=1, \ldots$, . Produce similar results in Question 1, Question 2 and Question 3 for the SDP cone case.

Question 5: Implement the algorithm and perform numerical tests to solve

$$
f(X)=\frac{1}{2}\|\mathcal{A} X-\mathbf{b}\|^{2}, \text { s.t. } X \succeq 0
$$

Not that if a good step-size strategy is set, then no matrix inverse is never needed in computation which would be suitable for solving large-scale SDP optimization problems. Furthermore, if each data matrix A_{i} is rank-one, that is, $A_{i}=\mathbf{a}_{i} \mathbf{a}_{i}^{T}$ (as in sensor network localization), $X^{k} A_{i} X^{k}=X^{k} \mathbf{a}_{i} \mathbf{a}_{i}^{T} X^{k}$ so that you need only compute a matrix-vector multiplication, $X^{k} \mathbf{a}_{i}$, for each data matrix.

You may consider a one-time preconditioning of the problem to improve the Lipschitz constant. Let

$$
M=\mathcal{A} \mathcal{A}^{T}=\left(\begin{array}{ccc}
A_{1} \bullet A_{1} & \ldots & A_{1} \bullet A_{m} \\
\ldots & \ldots & \ldots \\
A_{m} \bullet A_{1} & \ldots & a_{m} \bullet A_{m}
\end{array}\right)
$$

land $R^{T} R=M^{-1}$. Then let

$$
\bar{A}_{i}=R A_{i} R^{T}, i=1, \ldots, m
$$

and $\overline{\mathbf{b}}=M^{-1} \mathbf{b}$. Then you minimize

$$
\left.f(X)=\frac{1}{2} \| \overline{\mathcal{A}} X-\overline{\mathbf{b}}\right) \|^{2}, \text { s.t. } X \succeq 0
$$

References

[1] C. C. Gonzaga, Polynomial affine algorithms for linear programming, Math. Programming 49 (1990) 7-21.
[2] N. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica 4 (1984) 373-395.
[3] S. Mehrotra. On the implementation of a primal-dual interior point method. SIAM J. Optimization, 2(4):575-601, 1992.
[4] Y. Ye, M. J. Todd, and S. Mizuno, An $O(\sqrt{n} L)$ - iteration homogeneous and self-dual linear programming algorithm, Math. Oper. Res. 19 (1994) 53-67.
[5] Y. Ye, On the complexity of approximating a KKT point of quadratic programming, Math. Programming 80 (1998) 195-211.

