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In resource allocation described in class, we consider a linear program of the form

maximizex
∑n

j=1 πjxj

s.t.
∑n

j=1 aijxj ≤ bi, ∀ i = 1, 2, ...,m

0 ≤ xj ≤ 1, ∀ j = 1, ..., n;

(1)

where πj is the gain to allocate a combination of goods/resources to bidder j (we can think of this as the

bid of bidder j), aij is the requested quantity of good/resource i by bidder j, and bi is the total available

quantity of good/resource i; see [3] and references therein. For simplicity, in this project we assume that aij

is either 0 or 1.

The classical offline LP algorithm would compute the full optimal solution x in one go, while the online

algorithm would compute the solution sequentially x1, then x2,.... Specifically, when computing the decision

variables x1 to xk, we don’t consider information associated with xk+1 and beyond. In this course project,

you are asked to study and explore some theories of online linear and convex programming and perform

computational observations on some simulated or real data.

The online algorithm described in [3] is as follows: suppose there is a reliable estimate that there will

be a total of n bidders in the market; then we wait for the first k bidders to arrive, solve the resulting partial

linear program:

(SLPM): maximizex1,...,xk

∑k
j=1 πjxj

s.t.
∑k

j=1 aijxj ≤ k
nbi, ∀ i = 1, 2, ...,m,

0 ≤ xj ≤ 1, ∀ j = 1, ..., k.

and then use the dual prices, say ȳk, of the (partial) LP for future online decisions:

xj = 1, if πj > aTj ȳ
k and there are remaining goods left; and xj = 0, otherwise.
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The interpretation of this is that we allow the allocation to bidder j if the their bid is higher than the value,

calculated after k bids, of the goods they require.

You may run the online and offline auctions using simulated bidding data with m = 10 and bi =

1, 000 for all i. Fix a ground truth price vector p̄ > 0. One way to generate a sequence of random bids,

k = 1, 2, ..., is as follows: generate a vector ak whose each entry is either zero or one at random, then let

πk = p̄Tak + randn(0, 0.2) where randn(0, 0.2) represents the Gauss random variable with zero mean and

variance 0.2 in Matlab.

Question 1: Let n = 10, 000. Then run the one-time online learning (SLPM) algorithm using the

same simulated bidding data above based on three different sizes of k = 50, 100, 200 to see how sensitive the

ratio of the generated revenue over the offline revenue is to k. Note that we keep the estimated prices ȳk

fixed in this case. What is the trade-off between choosing large and small k?

Question 2: Now let us dynamically update the dual prices at time points k = 50, 100, 200, 400, 800...

and use the prices to make decision for the immediate subsequent period. How does the dynamic learning

perform on the revenue? Do the dual price vectors ȳk generated from the online LP model approach the

ground truth vector p̄ > 0? Explain your observations and findings. Again, use the same data generated in

Question 1.

The online algorithm described above does not use information on how much good inventory remains

for allocation in the decision process. One approach is to consider an offiline model as

maximizex,s
∑

j πjxj + u(s)

s.t.
∑

j aijxj + si = bi, ∀ i = 1, 2, ...,m,

0 ≤ xj ≤ 1, ∀ j = 1, ..., n,

si ≥ 0,∀ i = 1, ...,m.

(2)

where u(s) = u(s1, . . . , sm) is increasing and strictly concave and it gradient entry ∂u(.)
∂si si=0

is sufficiently

large for all i. Typical choices of u(s) are

u(s) =
w

m

∑
i

log si

or

u(s) =
w

m

∑
i

(1− e−a·si)

for some parameters w(> 0) and a(> 0).

Question 3: Write down the first-order KKT conditions for optimality. Are they sufficient? Argue

why this problem will have unique optimal multipliers/prices (that is, the Lagrangian multipliers on the m

equality constraints of the problem). How would you interpret u(s) and s? (Hint: Read [7], [2] and [1, 4, 5].)
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Question 4: Now consider, after the first k bidders arrived, solving the revealed partial convex program

(SCPM): maximizex1,...,xk

∑k
j=1 πixi + u(s)

s.t.
∑k

j=1 aikxk + si ≤ k
nbi, ∀ i = 1, 2, ...,m,

0 ≤ xj ≤ 1, ∀ j = 1, ..., k.

and then use the optimal Lagrangian multipliers/prices, say ȳk, of the partial convex program for future

online decisions:

xj = 1, if πj > aTj ȳ
k and there are remaining goods left; and xj = 0, otherwise.

Question 5: Dynamically update the optimal Lagrangian multipliers/prices at time points k = 50, 100,

200, 400, 800... and use the them to make decision for the immediate subsequent period. How does the convex

programming online learning perform on the revenue? Again, use the same data generated in Question 1,

and you may tune parameters w and a in u(s) to improve the performance.

Another online approach that uses the information of inventory (See [6]) is the Action-history-dependent

Learning Algorithm, which means this algorithm uses historic actions to update the dual price, i.e., at each

time point k ≥ 2, decide the value of xk:

xk = 1, if πk > aTk ȳ
k−1 and there are remaining goods left; and xk = 0, otherwise,

update remaining resources:

b
(k)
i = b

(k−1)
i − aikxk for i = 1,2,...,m,

and, then update the dual price by solving the linear programming:

maximizex1,...,xk

∑k
j=1 πjxj

s.t.
∑k

j=1 aijxj ≤ k
n−k b

(k)
i , ∀ i = 1, 2, ...,m,

0 ≤ xj ≤ 1, ∀ j = 1, ..., k,

(3)

and, just compute the initial dual price by (3) when k = 1.

Question 6: Solve the LP by the Action-history-dependent Learning Algorithm. At each time point

k ≥ 2, compute
k∑

j=1

rjxj − k
nOPT for the Action-history-dependent Learning Algorithm, where OPT is

the optimal of the offline problem (1). Then, do the same thing for the algorithm in Question 2. Which

algorithm has better performance? Provide your result and intuition. Again, use the same data generated

in Question 1.

Question 7: In [6], note that if (πj ,aj) ∼ (π,a), j = 1, 2, ..., n is a sequence of i.i.d. random vectors,

the problem (1) is closely related to

minimizeȳ dT ȳ + E
(
π − aT ȳ

)+
,

s.t. ȳ ≥ 0,
(4)
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where d = b/n and (·)+ = max{·, 0}. Prove that (4) is a convex optimization problem and find the

connection between (1) and (4).

Question 8: Although both dynamic online algorithms above can provide good results, one drawback

of them is that one has to solve a large scale LP to update the dual price. When n is large, the computation

is both time- and memory- consuming. A way to fix it is to utilize the idea of Stochastic Gradient Descent.

Under some mild conditions, the objective in (4) is differentiable and the derivative is

f(ȳ) = E
(
d− aI{π>aT ȳ}

)
.

Assume at each time step k, E(f(π,a)) can be approximated by f(πk,ak). Using the idea described in the

lecture notes, derive a new online Algorithm with ȳ0 = 0 as the initialization. For here, set β =
√
k at

each time point, which is different from the lecture notes where β is fixed. How does the dynamic learning

algorithm perform on the revenue? Do the approximated dual price vectors ȳ generated from this gradient

descent version of online LP algorithm converge to the true vector p̄ > 0? Explain your observations and

findings with the same data in Question 1.

Question 9: A key condition for the above algorithms to work is i.i.d. condition on {πj , a}nj=1. For

some of the above algorithms, this condition can be relaxed. However, the essential part is that in the end

of each time k − 1, all left samples are equivalent in the sense that they have same probability to be the

k-th sample. Is this condition necessary for the two algorithms to achieve sub-linear regret? In other words,

can you construct an LP problem such that the i.i.d. assumption is violated and both the two algorithms

perform badly? To follow up, how should we relax the i.i.d. assumption so that the two algorithms still

perform acceptably well?

Here, one interesting case is that the reward {πj ,aj}nj=1 is a sequence of random work but not a set of

random samples from a fixed distribution, and the resources will be replenished periodically. For example,

{πj ,aj}nj=1 satisfies

πj = πj−1 + randn(2, 1), aij = ai,j−1 + randn(2, 1), ∀i, j

and b
(k)
i = b

(k−1)
i + n/10 when k = n/10, 2n/10, ..., n. In each period, we can formulate an LP and find its

optimal objective value. Will the above algorithms collect near optimal reward in each period? What if the

decision maker does not know the length of each period? Can we come up with some better algorithms?

Discuss your reason by numerical experiments or theoretical analysis.
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