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Preface

This monograph is developed for MS&E 314, “Conic Linear Programming”,
which I am teaching at Stanford. Information, lecture slides, supporting mate-
rials, and computer programs related to this book may be found at the following
address on the World-Wide Web:

http://www.stanford.edu/class/msande314
Please report any question, comment and error to the address:

yinyu-ye@stanford.edu
A little story in the development of semidefinite programming (SDP), a

major subclass of conic linear programming. One day in 1990, I visited the
Computer Science Department of the University of Minnesota and met a young
graduate student, Farid Alizadeh. He, working then on combinatorial optimiza-
tion, introduced me “semidefinite optimization” or linear programming over the
positive definite matrix cone. We had a very extensive discussion that afternoon
and concluded that interior-point linear programming algorithms could be ap-
plicable to solving SDPs. I suggested Farid to look at the linear programming
(LP) interior-point algorithms and to develop an SDP (primal) potential reduc-
tion algorithm. He worked hard for several months, and one afternoon showed
up in my office in Iowa City, about 300 miles from Minneapolis. He had every-
thing worked out, including potential function, algorithm, complexity bound,
and even a “dictionary” list between LP and SDP. But he was stuck on one
problem that was on how to keep the symmetry of the scaled directional ma-
trix. We went to a bar nearby on Clinton Street in Iowa City (I paid for him
since I was a third-year professor then and eager to demonstrate that I could
take care of my students). After chatting for a while, I suggested that he should
use scaling X−1/2∆X−1/2 to compute symmetric directional matrix ∆, instead
of X−1∆ which he was using earlier, where X is the current symmetric positive
definite matrix. This way, X + α∆ would remain symmetric with a step-size
scalar. He returned to Minneapolis and moved to Berkeley shortly after, and few
weeks later sent me an e-mail message telling me that everything had worked
out beautifully.

At the same time, Nesterov and Nemirovskii developed a more general and
powerful theory in extending interior-point algorithms for solving convex pro-
grams, where SDP was a special case. Boyd and his group presented a wide
range of SDP applications and formulations, many of which were incredibly
novel and elegant. Then came the primal-dual algorithms of many authors, the
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SDP approximation algorithm for Max-Cut, ... – SDP eventually established
its full popularity.
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Chapter 1

Introduction and
Preliminaries

1.1 Introduction

Conic Linear Programming, hereafter CLP, is a natural extension of classical
Linear programming (LP) that is a central decision model in Management Sci-
ence and Operations Research. LP plays an extremely important role in the
theory and application of Optimization. In one sense it is a continuous opti-
mization problem in minimizing a linear objective function over a convex poly-
hedron; but it is also a combinatorial problem involving selecting an extreme
point among a finite set of possible vertices. Businesses, large and small, use
linear programming models to optimize communication systems, to schedule
transportation networks, to control inventories, to adjust investments, and to
maximize productivity.

In LP, the variables form a vector which is required to be component-wise
nonnegative (≥ 0), where in CLP they are components of a vector, matrix or
tensor and constrained to be in a (pointed) convex cone. Both of them have
linear objective function and linear equality constraints as well.

Example 1.1 Consider the following two optimization problems with three vari-
ables:

• A classical LP problem in standard form:

minimize 2x1 + x2 + x3

subject to x1 + x2 + x3 = 1,
(x1;x2;x3) ≥ 0.

• An Second-Order Cone LP problem (SOCP) in standard form:

minimize 2x1 + x2 + x3

subject to x1 + x2 + x3 = 1,

x1 −
√
x2

2 + x2
3 ≥ 0,

1



2 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

where the bottom constraint makes variables lie in the so-called “ice-cream
cone” – formally called second-order cone.

• An Semidefinite Cone LP problem (SDP) in standard form:

minimize 2x1 + x2 + x3

subject to x1 + x2 + x3 = 1,(
x1 x2

x2 x3

)
� 0,

where symbol · � 0 implies that the left-side symmetric matrix must be
positive semidefinite. In this instance, the matrix dimension is two.

One can see that, although the objective and constraint are identical, the last
constraint of the problems represents a different restriction, so that they are
really different optimization problems and models. For example, the simplex
method for LP is hardly applicable to CLP.

However, one thing in common is that interior-point algorithms developed in
past three decades for LP are naturally applied to solving SDP or CLP at large.
Interior-point algorithms are continuous iterative algorithms. Computation ex-
perience with sophisticated procedures suggests that the number of iterations
necessarily grows much more slowly than the dimension grows. Furthermore,
they have an established worst-case polynomial iteration bound, providing the
potential for dramatic improvement in computation effectiveness.

The goal of the monograph is to provide a text book for teaching Semidefinite
Programming, a modern Linear Programming decision model and its applica-
tions in other scientific and engineering fields. One theme of the monograph is
the “mapping” between CLP and LP, so that the reader, with knowledge of LP,
can understand CLP with little effort.

The monograph is organized as follows. In Chapter 1, we discuss some
necessary mathematical preliminaries. We also present several decision and
optimization problems and several basic numerical procedures used throughout
the text.

Chapter 2 is devoted to studying the theories and geometries of linear
and matrix inequalities, convexity, and semidefinite programming. Almost all
interior-point methods exploit rich geometric properties of linear and matrix
inequalities, such as “center,” “volume,” “potential,” etc. These geometries are
also helpful for teaching, learning, and research.

Chapter 3 focuses on interior-point algorithms. Here, we select two types
algorithms: the path-following algorithm and the potential reduction algorithm.
Each algorithm has three forms, the primal, the dual and the primal-dual form.
We analyze the worst-case complexity bound for them, where we will use the
real number computation model in our analysis because of the continuous nature
of interior-point algorithms. We also compare the complexity theory with the
convergence rate used in numerical analysis.

Not only has the convergence speed of CLP algorithms been significantly im-
proved during the last decade, but also the problem domain applicable by CLP,
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especially SDP, has dramatically widened. Chapters 4, 5, 6 and 7 would describe
some of SDP applications and new established results in Quadratic and Combi-
natory Optimization, Euclidean Geometry Computation, Robust Optimization,
Quantum Computation, etc.

Finally, we discuss major computational issues in Chapter 8. We discuss sev-
eral effective implementation techniques frequently used in interior-point SDP
software, such as the sparse linear system, the predictor and corrector step, and
the homogeneous and self-dual formulation. We also present major difficulties
and challenges faced by SDP.

1.2 Mathematical Preliminaries

This section summarizes mathematical background material for linear algebra,
linear programming, and nonlinear optimization.

1.2.1 Basic notations

The notation described below will be followed in general. There may be some
deviation where appropriate. We write vectors in bold lower case through out
this monograph. Upper-case letters will be used to represent matrices. Greek
letters will typically be used to represent scalars.

By R we denote the set of real numbers. R+ denotes the set of nonnegative
real numbers, and R++ denotes the set of positive numbers. For a natural num-
ber n, the symbol Rn (Rn+, Rn++) denotes the set of vectors with n components
in R (R+, R++).

A vector is always considered as a column vector, unless otherwise stated.
For convenience, we sometime write a column vector x as

x = (x1;x2; . . . ;xn)

and a row vector as
x = (x1, x2, . . . , xn).

A set of vectors a1, ...,am is said to be linearly dependent if there are scalars
λ1, ..., λm, not all zero, such that the linear combination

m∑
i=1

λiai = 0.

The vector inequality x ≥ y means xj ≥ yj for j = 1, 2, ..., n. 0 represents a
vector whose entries are all zeros and e represents a vector whose entries are all
ones, where their dimensions may vary according to other vectors in expressions.

Addition of vectors and multiplication of a vector with a scalar are standard.
The superscript “T” denotes transpose operation. The inner product in Rn is
defined as follows:

〈x,y〉 := xTy =

n∑
j=1

xjyj for x,y ∈ Rn.
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The l2 norm of a vector x is given by

‖x‖2 =
√

xTx,

and the l∞ norm is

‖x‖∞ = max{|x1|, |x2|, ..., |xn|}.

In general, the p-norm is

‖x‖p =

(
n∑
1

|xj |p
)1/p

, p = 1, 2, ...

The dual of the p-norm, denoted by ‖.‖∗, is the q norm, where

1

p
+

1

q
= 1.

In this monograph, ‖.‖ generally represents the l2 norm.
For natural numbers m and n, Rm×n denotes the set of real matrices with m

rows and n columns. For A ∈ Rm×n, we assume that the row index set of A is
{1, 2, ...,m} and the column index set is {1, 2, ..., n}. The ith row of A is denoted
by ai. and the jth column of A is denoted by a.j ; the i and jth component of
A is denoted by aij . If I is a subset of the row index set and J is a subset of
the column index set, then AI denotes the submatrix of A whose rows belong
to I, AJ denotes the submatrix of A whose columns belong to J , AIJ denotes
the submatrix of A induced by those components of A whose indices belong to
I and J , respectively.

The identity matrix is denoted by I. The null space of A is denoted N (A)
and the range of A is R(A). The determinant of an n× n-matrix A is denoted
by det(A). The trace of A, denoted by tr(A), is the sum of the diagonal entries
in A. For a vector x ∈ Rn, ∆(x) represents a diagonal matrix in Rn×n whose
diagonal entries are the entries of x and every other entry is 0, i.e.,

∆(x) = Diag(x).

Addition of matrices and multiplication of a matrix with a scalar are stan-
dard. The inner product in Rm×n is defined as follows:

〈A,B〉 := A •B = trATB =
∑
i,j

ai,jbi,j for A,B ∈ Rm×n.

This is a generalization of the vector inner product to matrices. The matrix
norm associated with the inner product is called Frobenius norm:

‖A‖f =
√

trATA .

On the other hand, the operator norm of A, denoted by ‖A‖, is

‖A‖2 := max
06=x∈Rn

‖Ax‖2

‖x‖2
.
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A symmetric matrix Q ∈ Rn×n, Q = QT , is said to be positive definite
(PD), denoted by Q � 0, if

xTQx > 0, for all x 6= 0,

and positive semi-definite (PSD), denoted by Q � 0, if

xTQx ≥ 0, for all x.

If Q � 0, then −Q is called negative definite (ND), denoted by Q ≺ 0; if Q � 0,
then −Q is called negative semi-definite (NSD), denoted by Q � 0. If Q is
symmetric, then its eigenvalues are all real numbers; furthermore, Q is PSD if
and only if all its eigenvalues are non-negative, and Q is PD if and only if all
its eigenvalue are positive. Given a symmetric PD matrix Q we can define a
Q-norm , ‖.‖Q, for vector x as

‖x‖Q =
√

xTQx ;

for matrix X as
‖X‖Q =

√
X •QX .

Sn denotes the space of symmetric matrices in Rn×n. Sn+ denote the set of
positive semi-definite matrices in Sn. Sn++ denotes the set of positive definite
matrices in Sn. If A ∈ Sn+ and B ∈ Sn+, then we must have (see Exercise (1.4))

〈A,B〉 := A •B ≥ 0.

{xk}∞0 is an ordered sequence x0,x1,x2, ...,xk, .... A sequence {xk}∞0 is
convergent to x̄, denoted xk → x̄, if

‖xk − x̄‖ → 0.

A point x is a limit point of {xk}∞0 if there is a subsequence of {xk} convergent
to x.

If g(x) ≥ 0 is a real valued function of a real nonnegative variable, the
notation g(x) = O(x) means that g(x) ≤ c̄x for some constant c̄; the notation
g(x) = Ω(x) means that g(x) ≥ cx for some constant c; the notation g(x) = θ(x)
means that cx ≤ g(x) ≤ c̄x. Another notation is g(x) = o(x), which means that
g(x) goes to zero faster than x does:

lim
x→0

g(x)

x
= 0.

1.2.2 Convex sets and cones

If x is a member of the set Ω, we write x ∈ Ω; if y is not a member of Ω, we
write y 6∈ Ω. The union of two sets S and T is denoted S ∪ T ; the intersection
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of them is denoted S ∩ T . A set can be specified in the form Ω = {x : P (x)}
as the set of all elements satisfying property P .

For y ∈ Rn and ε > 0, B(y, ε) = {x : ‖x − y‖ ≤ ε} is the ball of radius
ε with center y. In addition, for a positive definite matrix Q of dimension n,
E(y, Q) = {x : (x − y)TQ(x − y) ≤ 1} is called an ellipsoid. The vector y is
the center of E(y, Q).

A set Ω is closed if xk → x, where xk ∈ Ω, implies x ∈ Ω. A set Ω is open
if around every point y ∈ Ω there is a ball that is contained in Ω, i.e., there is
an ε > 0 such that B(y, ε) ⊂ Ω. A set is bounded if it is contained within a
ball with finite radius. A set is compact if it is both closed and bounded. The

(topological) interior of any set Ω, denoted
◦
Ω, is the set of points in Ω which

are the centers of some balls contained in Ω. The closure of Ω, denoted Ω̂, is
the smallest closed set containing Ω. The boundary of Ω is the part of Ω̂ that

is not in
◦
Ω.

A set C is said to be affine if for any two points x,y ∈ C and any real
numbers α and β, the affine combination point αx + βy ∈ C. A set C is said
to be convex if for any x,y ∈ C and any real number α, 0 < α < 1, the
convex combination point αx + (1−α)y ∈ C. The convex hull of a set Ω is the
intersection of all convex sets containing Ω.

Proposition 1.1 Let C1 and C2 be convex sets in a same space. Then,

• C1 ∩ C2 is convex.

• C1 + C2 is convex, where C1 + C2 = {b1 + b2 : b1 ∈ C1 and b2 ∈ C2}.

• C1 ⊕ C2 is convex, where C1 ⊕ C2 = {(b1; b2) : b1 ∈ C1 and b2 ∈ C2}.

Let us use the notation E to represent either Rn or Sn, depending on the
context, throughout this book, because all our decision and optimization prob-
lems take variables from one or both of these two vector spaces. A set K ⊂ E
is a cone if x ∈ K implies αx ∈ K for all α > 0. A cone that is also convex is a
convex cone. For a cone K ⊂ E , the dual of K is the cone

K∗ := {y : 〈x,y〉 ≥ 0 for all x ∈ K},

where again 〈·, ·〉 is the inner product operation for space E .

Example 1.2 The n-dimensional non-negative orthant, Rn+ = {x ∈ Rn : x ≥
0}, is a convex cone. The dual of the cone is also Rn+ so that it’s self-dual.

Example 1.3 The set of all positive semi-definite matrices in Sn, Sn+, is a
convex cone, called the positive semi-definite matrix cone. The dual of the cone
is also Sn+ so that it is self-dual.

Example 1.4 The set {x ∈ Rn : x1 ≥ ‖x−1‖}, where x−1 := (x2; ...;xn) ∈
Rn−1, is a convex cone in Rn. It is called the second-order cone, denoted by
Nn

2 . The dual of the cone is also the second-order cone in Rn so that it is
self-dual.
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Example 1.5 The set {x ∈ Rn : x1 ≥ ‖x−1‖p}, 1 ≤ p ≤ ∞, is a convex
cone in Rn, called the p-order cone, denoted by Nn

p . The dual of the cone is the

qorder cone in Rn where 1
p + 1

q = 1.

Definition 1.1 We call x an interior point of cone K if and only if, for any
point y ∈ K∗, y • x = 0 implies y = 0.

The set of interior points of K is denoted by
◦
K.

Proposition 1.2 The interior of the followings convex cones are given as fol-
lows.

• The interior of the non-negative orthant cone is the set of all vectors whose
every entry is positive.

• The interior of the positive semidefinite cone is the set of all positive
definite matrices.

• The interior of p-order cone is the set of {x ∈ Rn : x1 > ‖x−1‖p}.

We leave the proof of the following proposition as an exercise.

Proposition 1.3 Let X ∈
◦
K and Y ∈ K∗. Then For any nonnegative constant

κ, Y •X ≤ κ implies that Y is bounded.

One of the most important type of convex sets is a hyperplane. Hyperplanes
dominate the entire theory of optimization. Let a be a nonzero n-dimensional
(directional) vector, and let b be a real number. The set

H = {x ∈ Rn : aTx = b}

is a hyperplane inRn (Figure 1.1). Relating to hyperplane, positive and negative
closed half spaces are given by

H+ = {x : aTx ≥ b}

H− = {x : aTx ≤ b}.

A set which can be expressed as the intersection of a finite number of closed
half spaces is said to be a convex polyhedron:

P = {x : Ax ≤ b}.

A bounded polyhedron is called polytope. Let P be a polyhedron in Rn, F is a
face of P if and only if there is a vector c for which F is the set of points attaining
max {cTx : x ∈ P} provided the this maximum is finite. A polyhedron has
only finite many faces; each face is a nonempty polyhedron. In particular, a
cone C is (convex) polyhedral if C can be represented by

C = {x : Ax ≤ 0}



8 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

+

HH

a

H

-

+

0

Figure 1.1: A hyperplane and half-spaces.

Polyhedral Cone Nonpolyhedral Cone

Figure 1.2: Polyhedral and nonpolyhedral cones.
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or
C = {Ax : x ≤ 0}

for some matrix A (Figure 1.2). In the latter case, we say cone C is generated
by the column vectors of A, written as cone(A).

Example 1.6 The non-negative orthant is a polyhedral cone, and neither the
positive semi-definite matrix cone nor the second-order cone is polyhedral.

We have the following theorem on polyhedral cones:

Theorem 1.4 (Carathéodory’s theorem) Let point b ∈ cone(A). Then, b ∈
cone(ai1 ,ai2 ...,aid) for some linearly independent column vectors ai1 ,ai2 ...,aid
chosen from A.

Proof.The proof is constructive and based on a null space reduction. Suppose

b =

d∑
j=1

x̄jaij , x̄j > 0, j = 1, ..., d

and generation vectors ai1 ,ai2 ...,aid are not independent. Then, one can find a
null space vector 0 6= ȳ ∈ Rd such that

0 =

d∑
j=1

ȳjaij .

Let ȳ have at least one component positive (otherwise use −ȳ), and consider
the affine combination vector x̄− αȳ. Then, there must be an ᾱ > 0 such that
x̄−αȳ ≥ 0 and have at least one component equal 0; with out loss of generality,
say the first one. Consequently,

b =

d∑
j=1

(x̄j − ᾱȳj)aij =

d∑
j=2

(x̄j − ᾱȳj)aij ,

that is, b ∈ cone(ai2 ...,aid). One can continue this reduction procedure as long
as the remaining generation vectors are not independent, which gives the proof.

The most important theorem about the convex set is the following separating
theorem (Figure 1.3).

Theorem 1.5 (Separating hyperplane theorem) Let C ⊂ E be a closed convex
set and let b be a point exterior to C. Then there is a y ∈ E such that

〈y,b〉 < inf
x∈C
〈y,x〉.

The geometric interpretation of the theorem is that, given a convex set C and a
point b outside of C, there is a hyperplane with norm-direction y which contains
b in one of its open half spaces and C in the other.
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C

-yb

Figure 1.3: Illustration of the separating hyperplane theorem; an exterior point
b is separated by a hyperplane from a convex set C.

Example 1.7 Let C be a unit circle centered at the point (1; 1). That is, C =
{x ∈ R2 : (x1 − 1)2 + (x2 − 1)2 ≤ 1}. If b = (2; 0), y = (−1; 1) is a
separating hyperplane direction vector. If b = (0;−1), y = (0; 1) is a separating
hyperplane direction vector. It is worth noting that these separating hyperplanes
are not unique.

1.2.3 Real functions

The real function f(x) is said to be continuous at x if xk → x implies f(xk)→
f(x). The real function f(x) is said to be continuous on set Ω ⊂ E , where recall
that E is either Rn or Sn, if f(x) is continuous at x for every x ∈ Ω.

A function f(x) is called homogeneous of degree k if f(αx) = αkf(x) for all
α ≥ 0.

Example 1.8 Let c ∈ Rn be given and x ∈ Rn++. Then cTx is homogeneous
of degree 1 and

P(x) = n ln(cTx)−
n∑
j=1

log xj

is homogeneous of degree 0, where ln is the natural logarithmic function. Let
C ∈ Sn be given and X ∈ Sn++. Then xTCx is homogeneous of degree 2, C •X
and det(X) are homogeneous of degree 1 and n, respectively, and

P(X) = n log(C •X)− log det(X)

is homogeneous of degree 0.
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A set of real-valued function f1, f2, ..., fm defined on E can be written as a
single vector function f = (f1, f2, ..., fm)T ∈ Rm. If fi has continuous partial
derivatives of order p, we say fi ∈ Cp. The gradient vector of a real-valued
function fi ∈ C1 is a row vector in Rn:

∇fi(x) = (∂f/∂x1, ... , ∂f/∂x1).

If fi ∈ C2, we define the Hessian of fi to be the n-dimensional symmetric matrix

∇2fi(x) =

(
∂2f

∂xi∂xj

)
for i, j = 1, ..., n.

If f = (f1, f2, ..., fm)T ∈ Rm, the Jacobian matrix of f is

∇f(x) =

 ∇f1(x)
...

∇fm(x)

 .

Example 1.9 Let X ∈ Sn++ and f(X) = ln det(X). Then

∇f(X) = X−1

or
∂f

∂xij
= (X−1)ij , ∀i, j;

and
∇2f(X) = −X−1 ⊕X−1,

where ⊕ denotes the standard Kronecker product, or

∂2f

∂xij∂xkl
= (X−1)ij · (X−1)kl, ∀i, j, k, l.

f is a (continuous) convex function if and only if for 0 ≤ α ≤ 1,

f(αx + (1− α)y) ≤ αf(x) + (1− α)f(y).

f is a (continuous) quasi-convex function if and only if for 0 ≤ α ≤ 1,

f(αx + (1− α)y) ≤ max[f(x), f(y)].

Thus, a convex function is a quasi-convex function.
The epigraph set of f is given by

{(t; x) : f(x) ≤ t}.

f is a quasi-convex function implies that its epigraph set is convex. The z-level
set of f is given by

L(z) = {x : f(x) ≤ z}.
f is a quasi-convex function implies that the level set of f is convex for any
given z (see Exercise 1.14).

Several results that are used frequently in analyses are under the heading
of Taylor’s theorem or the mean-value theorem. The theorem establishes the
linear and quadratic approximations of a function.
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Theorem 1.6 (Taylor expansion) Let f ∈ C1 be in a region containing the line
segment [x, y]. Then there is a α, 0 ≤ α ≤ 1, such that

f(y) = f(x) +∇f(αx + (1− α)y)(y − x).

Furthermore, if f ∈ C2 then there is a α, 0 ≤ α ≤ 1, such that

f(y) = f(x) +∇f(x)(y − x) +
1

2
(y − x)T∇2f(αx + (1− α)y)(y − x).

We also have several propositions for real functions. The first indicates that
the linear approximation of a convex function is a under-estimate.

Proposition 1.7 Let f ∈ C1. Then f is convex over a convex set Ω if and
only if

f(y) ≥ f(x) +∇f(x)(y − x)

for all x, y ∈ Ω.

The following proposition states that the Hessian of a convex function is
positive semi-definite.

Proposition 1.8 Let f ∈ C2. Then f is convex over a convex set Ω if and
only if the Hessian matrix of f is positive semi-definite throughout Ω.

1.2.4 Inequalities

There are several important inequalities that are frequently used in algorithm
design and complexity analysis.

Cauchy-Schwarz: given x,y ∈ Rn, then

|xTy| ≤ ‖x‖p‖y‖q, where
1

p
+

1

p
= 1, p ≥ 1.

Arithmetic-geometric mean: given x ∈ Rn+,∑
xj
n
≥
(∏

xj

)1/n

.

Harmonic: given x ∈ Rn++,(∑
xj

)(∑
1/xj

)
≥ n2.

Hadamard: given A ∈ Rm×n with columns a1,a2, ...,an, then√
det(ATA) ≤

∏
‖aj‖ .
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1.3 Some Basic Decision and Optimization Prob-
lems

A decision or optimization problem has a form that is usually characterized by
the decision variables and the constraints. A problem, P, consists of two sets,
data set Zp and solution set Sp. In general, Sp can be implicitly defined by the
so-called optimality conditions. The solution set may be empty, i.e., problem P
may have no solution.

Theorem 1.9 Weierstrass theorem A continuous function f defined on a com-
pact set (bounded and closed) Ω ⊂ E has a minimizer in Ω; that is, there is an
x∗ ∈ Ω such that for all x ∈ Ω, f(x) ≥ f(x∗).

In what follows, we list several decision and optimization problems. More
problems will be listed later when we address them.

1.3.1 System of linear equations

Given A ∈ Rm×n and b ∈ Rm, the problem is to solve m linear equations for n
unknowns:

Ax = b.

The data and solution sets are

Zp = {A ∈ Rm×n,b ∈ Rm} and Sp = {x ∈ Rn : Ax = b}.

Sp in this case is an affine set. Given an x, one can easily check to see if x is in
Sp by a matrix-vector multiplication and a vector-vector comparison. We say
that a solution of this problem is easy to recognize.

To highlight the analogy with the theories of linear inequalities and linear
programming, we list several well-known results of linear algebra. The first
theorem provides two basic representations, the null and row spaces, of a linear
subspaces.

Theorem 1.10 Each linear subspace of Rn is generated by finitely many vec-
tors, and is also the intersection of finitely many linear hyperplanes; that is,
for each linear subspace of L of Rn there are matrices A and C such that
L = N (A) = R(C).

The following theorem was observed by Gauss. It is sometimes called the
fundamental theorem of linear algebra. It gives an example of a characterization
in terms of necessary and sufficient conditions, where necessity is straightfor-
ward, and sufficiency is the key of the characterization.

Theorem 1.11 Let A ∈ Rm×n and b ∈ Rm. The system Ax = b has a
solution if and only if there is no y such that ATy = 0 and bTy = 1.

A vector y, with ATy = 0 and bTy = 1, is called an infeasibility certificate for
the system Ax = b.

Example 1.10 Let A = (1;−1) and b = (1; 1). Then, y = (1/2; 1/2) is an
infeasibility certificate for Ax = b.
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1.3.2 Linear least-squares problem

Given A ∈ Rm×n and c ∈ Rn, the system of equations ATy = c may be over-
determined or have no solution. Such a case usually occurs when the number
of equations is greater than the number of variables. Then, the problem is to
find a y ∈ Rm or s ∈ R(AT ) such that ‖ATy− c‖ or ‖s− c‖ is minimized. We
can write the problem in the following format:

(LS) minimize ‖ATy − c‖2
subject to y ∈ Rm,

or

(LS) minimize ‖s− c‖2
subject to s ∈ R(AT ).

In the former format, the term ‖ATy − c‖2 is called the objective function,
y is called the decision variable. Since y can be any point in Rm, we say this
(optimization) problem is unconstrained. The data and solution sets are

Zp = {A ∈ Rm×n, c ∈ Rn}

and

Sp = {y ∈ Rm : ‖ATy − c‖2 ≤ ‖ATx− c‖2 for every x ∈ Rm}.

Given a y, to see if y ∈ Sp is as the same as the original minimization problem.
However, from a projection theorem in linear algebra, the solution set can be
characterized and represented as

Sp = {y ∈ Rm : AATy = Ac},

which becomes a system of linear equations and always has a solution. The
vector s = ATy = AT (AAT )+Ac is the projection of c onto the range of AT ,
where AAT is called normal matrix and (AAT )+ is called pseudo-inverse. If A
has full row rank then (AAT )+ = (AAT )−1, the standard inverse of full rank
matrix AAT . If A is not of full rank, neither is AAT and (AAT )+AATx = x
only for x ∈ R(AT ).

The vector c − ATy = (I − AT (AAT )+A)c is the projection of c onto the
null space of A. It is the solution of the following least-squares problem:

(LS) minimize ‖x− c‖2
subject to x ∈ N (A).

In the full rank case, both matrices AT (AAT )−1A and I − AT (AAT )−1A are
called projection matrices. These symmetric matrices have several desired prop-
erties (see Exercise 1.19).
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1.3.3 System of linear inequalities

Given A ∈ Rm×n and b ∈ Rm, the problem is to find a solution x ∈ Rn
satisfying Ax ≤ b or prove that the solution set is empty. The inequality
problem includes other forms such as finding an x that satisfies the combination
of linear equations Ax = b and inequalities x ≥ 0. The data and solution sets
of the latter are

Zp = {A ∈ Rm×n,b ∈ Rm} and Sp = {x ∈ Rn : Ax = b, x ≥ 0}.

Traditionally, a point in Sp is called a feasible solution, and a strictly positive
point in Sp is called a strictly feasible or interior feasible solution.

The following results are Farkas’ lemma and its variants.

Theorem 1.12 (Farkas’ lemma) Let A ∈ Rm×n and b ∈ Rm. Then, the
system {x : Ax = b, x ≥ 0} has a feasible solution x if and only if there is no
y such that ATy ≤ 0 and bTy = 1.

A vector y, with ATy ≤ 0 and bTy = 1, is called a (primal) infeasibility
certificate for the system {x : Ax = b, x ≥ 0}. Geometrically, Farkas’ lemma
means that if a vector b ∈ Rm does not belong to the cone generated by column
vectors a1, ...,an, then there is a hyperplane separating b from cone(a1, ...,an).

Example 1.11 Let A = (1, 1) and b = −1. Then, y = −1 is an infeasibility
certificate for {x : Ax = b, x ≥ 0}.

Theorem 1.13 (Farkas’ lemma variant) Let A ∈ Rm×n and c ∈ Rn. Then,
the system {y : ATy ≤ c} has a solution y if and only if there is no x such
that Ax = 0, x ≥ 0 and cTx = −1.

Again, a vector x ≥ 0, with Ax = 0 and cTx = −1, is called a (dual) infeasibility
certificate for the system {y : ATy ≤ c}.

Example 1.12 Let A = (1;−1) and c = (1;−2). Then, x = (1; 1) is an
infeasibility certificate for {y : AT y ≤ c}.

We say {x : Ax = b, x ≥ 0} or {y : ATy ≤ c} is approximately feasible in the
sense that we have an approximate solution to the equations and inequalities.
In this case we can show that any certificate proving their infeasibility must
have large norm. Conversely, if {x : Ax = b, x ≥ 0} or {y : ATy ≤ c} is
“approximately infeasible” in the sense that we have an approximate certificate
in Farkas’ lemma, then any feasible solution must have large norm.

Example 1.13 Given ε > 0 but small. Let A = (1, 1) and b = −ε. Then,
x = (0; 0) is approximately feasible for {x : Ax = b, x ≥ 0}, and the infeasibility
certificate y = −1/ε has a large norm.

Let A = (1; −1) and c = (1; −1− ε). Then, y = 1 is approximately feasible
for {y : AT y ≤ c}, and the infeasibility certificate x = (1/ε; 1/ε) has a large
norm.
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1.3.4 Linear programming (LP)

Given A ∈ Rm×n, b ∈ Rm and c, l,u ∈ Rn, the linear programming (LP)
problem is the following optimization problem:

minimize cTx
subject to Ax = b, l ≤ x ≤ u,

where some elements in l may be −∞ meaning that the associated variables
are unbounded from below, and some elements in u may be ∞ meaning that
the associated variables are unbounded from above. If a variable is unbounded
either from below or above, then it is called a “free” variable

The standard form linear programming problem is given below, which we
will use throughout this book:

(LP ) minimize cTx
subject to Ax = b, x ≥ 0.

The linear function cTx is called the objective function, and x is called the
decision variables. In this problem, Ax = b and x ≥ 0 enforce constraints on
the selection of x. The set Fp = {x : Ax = b,x ≥ 0} is called feasible set or
feasible region. A point x ∈ Fp is called a feasible point, and a feasible point
x∗ is called an optimal solution if cTx∗ ≤ cTx for all feasible points x. If there
is a sequence {xk} such that xk is feasible and cTxk → −∞, then (LP) is said
to be unbounded.

The data and solution sets for (LP), respectively, are

Zp = {A ∈ Rm×n,b ∈ Rm, c ∈ Rn}

and
Sp = {x ∈ Fp : cTx ≤ cTy, for every y ∈ Fp}.

Again, given an x, to see if x ∈ Sp is as difficult as the original problem.
However, due to the duality theorem, we can simplify the representation of the
solution set significantly.

With every (LP), another linear program, called the dual (LD), is the fol-
lowing problem:

(LD) maximize bTy
subject to ATy + s = c, s ≥ 0,

where y ∈ Rm and s ∈ Rn. The components of s are called dual slacks. Denote
by Fd the sets of all (y, s) that are feasible for the dual. We see that (LD) is
also a linear programming problem where y is a “free” vector.

The following theorems give us an important relation between the two prob-
lems.

Theorem 1.14 (Weak duality theorem) Let Fp and Fd be non-empty. Then,

cTx ≥ bTy for all x ∈ Fp, (y, s) ∈ Fd.
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This theorem shows that a feasible solution to either problem yields a bound
on the value of the other problem. We call cTx − bTy the duality gap. From
this we have important results.

Theorem 1.15 (Strong duality theorem) Let Fp and Fd be non-empty. Then,
x∗ is optimal for (LP) if and only if the following conditions hold:

i) x∗ ∈ Fp;

ii) there is (y∗, s∗) ∈ Fd;

iii) cTx∗ = bTy∗.

Theorem 1.16 (LP duality theorem) If (LP) and (LD) both have feasible solu-
tions then both problems have optimal solutions and the optimal objective values
of the objective functions are equal.

If one of (LP) or (LD) has no feasible solution, then the other is either
unbounded or has no feasible solution. If one of (LP) or (LD) is unbounded
then the other has no feasible solution.

The above theorems show that if a pair of feasible solutions can be found to
the primal and dual problems with equal objective values, then these are both
optimal. The converse is also true; there is no “gap.” From this condition, the
solution set for (LP) and (LD) is

Sp =

(x,y, s) ∈ (Rn+,Rm,Rn+) :
cTx− bTy = 0

Ax = b
−ATy − s = −c

 , (1.1)

which is a system of linear inequalities and equations. Now it is easy to verify
whether or not a pair (x,y, s) is optimal.

For feasible x and (y, s), xT s = xT (c − ATy) = cTx − bTy is called the
complementarity gap. If xT s = 0, then we say x and s are complementary to
each other. Since both x and s are nonnegative, xT s = 0 implies that xjsj = 0
for all j = 1, . . . , n. Thus, one equation plus nonnegativity are transformed into
n equations. Equations in (1.1) become

x ◦ s = 0
Ax = b

−ATy − s = −c,
(1.2)

where ◦ is the element-element or Hadamard product operator, that is,

x ◦ s =


x1s1

x2s2

...
xnsn

 .
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This system has total 2n + m unknowns and 2n + m equations including n
nonlinear equations.

The following theorem plays an important role in analyzing LP interior-
point algorithms. It give a unique partition of the LP variables in terms of
complementarity.

Theorem 1.17 (Strict complementarity theorem) If (LP) and (LD) both have
feasible solutions then both problems have a pair of strictly complementary so-
lutions x∗ ≥ 0 and s∗ ≥ 0 meaning

x∗ · s∗ = 0 and x∗ + s∗ > 0.

Moreover, the support sets

P ∗ = supp(x∗) := {j : x∗j > 0} and Z∗ = supp(s∗) := {j : s∗j > 0}

are invariant for all pairs of strictly complementary solutions.

Given (LP) or (LD), the pair of P ∗ and Z∗ is called the (strict) complemen-
tarity partition. {x : AP∗xP∗ = b, xP∗ ≥ 0, xZ∗ = 0} is called the primal
optimal face, and {y : cZ∗ − ATZ∗y ≥ 0, cP∗ − ATP∗y = 0} is called the dual
optimal face.

Select m linearly independent columns, denoted by the index set B, from A.
Then matrix AB is nonsingular and we may uniquely solve

ABxB = b

for the m-vector xB . By setting the variables, xN , of x corresponding to the
remaining columns of A equal to zero, we obtain a solution x such that

Ax = b.

Then, x is said to be a (primal) basic solution to (LP) with respect to the basis
AB . The components of xB are called basic variables. A dual vector y satisfying

ATBy = cB

is said to be the corresponding dual basic solution. If a basic solution x ≥ 0,
then x is called a basic feasible solution. If the dual solution is also feasible,
that is

s = c−ATy ≥ 0,

then x is called an optimal basic solution and AB an optimal basis. A basic
feasible solution is a vertex on the boundary of the feasible region. An optimal
basic solution is an optimal vertex of the feasible region.

If one or more components in xB has value zero, that basic solution x is
said to be (primal) degenerate. Note that in a nondegenerate basic solution the
basic variables and the basis can be immediately identified from the nonzero
components of the basic solution. If all components, sN , in the corresponding
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dual slack vector s, except for sB , are non-zero, then y is said to be (dual)
nondegenerate. If both primal and dual basic solutions are nondegenerate, AB
is called a nondegenerate basis.

From Carathéodory’s theorem, one can prove

Theorem 1.18 (LP fundamental theorem) Given (LP) and (LD) where A has
full row rank m,

i) if there is a feasible solution, there is a basic feasible solution;

ii) if there is an optimal solution, there is an optimal basic solution.

The above theorem reduces the task of solving a linear program to that
searching over basic feasible solutions. By expanding upon this result, the sim-
plex method, a finite search procedure, is derived. The simplex method is to
proceed from one basic feasible solution (an extreme point of the feasible region)
to an adjacent one, in such a way as to continuously decrease the value of the
objective function until a minimizer is reached. In contrast, interior-point algo-
rithms will move in the interior of the feasible region and reduce the value of
the objective function, hoping to by-pass many extreme points on the boundary
of the region.

1.3.5 Quadratic programming (QP)

Given Q ∈ Rn×n, A ∈ Rm×n, b ∈ Rm and c ∈ Rn , the quadratic programming
(QP) problem is the following optimization problem:

(QP ) minimize q(x) := 1
2xTQx + cTx

subject to Ax = b, x ≥ 0.

We denote the feasible set by Fp. The data and solution sets for (QP) are

Zp = {Q ∈ Rn×n, A ∈ Rm×n,b ∈ Rm, c ∈ Rn}

and
Sp = {x ∈ Fp : q(x) ≤ q(y) for all y ∈ Fp}.

A feasible point x∗ is called a KKT point, where KKT stands for Karush-Kuhn-
Tucker, if the following KKT conditions hold: there exists (y∗ ∈ Rm, s∗ ∈ Rn)
such that (x∗,y∗, s∗) is feasible for the following dual problem:

(QD) maximize d(x,y) := bTy − 1
2xTQx

subject to ATy + s−Qx = c, x, s ≥ 0,

and satisfies the complementarity condition

(x∗)T s∗ =
1

2
(x∗)TQx∗ + cTx∗ − (bTy∗ − 1

2
(x∗)TQx∗ = 0.

Similar to LP, we can write the KKT condition as:

(x,y, s) ∈ (Rn+,Rm,Rn+)
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and
x · s = 0
Ax = b

−ATy +Qx− s = −c.
(1.3)

Again, this system has total 2n+m unknowns and 2n+m equations including
n nonlinear equations.

The above condition is also called the first-order necessary condition. If Q is
positive semi-definite, then x∗ is an optimal solution for (QP) if and only if x∗

is a KKT point for (QP). In this case, the solution set for (QP) is characterized
by a system of linear inequalities and equations. One can see (LP) is a special
case of (QP).

1.4 Algorithms and Computations

An algorithm is a list of instructions to solve a problem. For every instance of
problem P, i.e., for every given data Z ∈ Zp, an algorithm for solving P either
determines that Sp is empty or generates an output x such that x ∈ Sp or x is
close to Sp in certain measure. The latter x is called an approximate solution.

Let us use Ap to denote the collection of all possible algorithm for solving
every instance in P. Then, the (operation) complexity of an algorithm A ∈ Ap
for solving an instance Z ∈ Zp is defined as the total arithmetic operations: +,
−, ∗, /, and comparison on real numbers. Denote it by co(A,Z). Sometimes it
is convenient to define the iteration complexity, denoted by ci(A,Z), where we
assume that each iteration costs a polynomial number (in m and n) of arith-
metic operations. In most iterative algorithms, each iteration can be performed
efficiently both sequentially and in parallel, such as solving a system of linear
equations, rank-one updating the inversion of a matrix, pivoting operation of a
matrix, multiplying a matrix by a vector, etc.

In the real number model, we introduce ε, the error for an approximate
solution as a parameter. Let c(A,Z, ε) be the total number of operations of
algorithm A for generating an ε-approximate solution, with a well-defined mea-
sure, to problem P. Then,

c(A, ε) := sup
Z∈Zp

c(A,Z, ε) ≤ fA(m,n, ε) for any ε > 0.

We call this complexity model error-based. One may also view an approximate
solution an exact solution to a problem ε-near to P with a well-defined measure
in the data space. This is the so-called backward analysis model in numerical
analysis.

1.4.1 Complexity of problems

If fA(m,n, ε) is a polynomial in m, n, and log(1/ε), then algorithm A is a poly-
nomial algorithm and problem P is polynomially solvable. Again, if fA(m,n, ε)
is independent of ε and polynomial in m and n, then we say algorithm A is a
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strongly polynomial algorithm. If fA(m,n, ε) is a polynomial in m, n, and (1/ε),
then algorithm A is a polynomial approximation scheme or pseudo-polynomial
algorithm . For some optimization problems, the complexity theory can be
applied to prove not only that they cannot be solved in polynomial-time, but
also that they do not have polynomial approximation schemes. In practice,
approximation algorithms are widely used and accepted in practice.

Example 1.14 There is a strongly polynomial algorithm for sorting a vector
in descending or ascending order, for multiplying a matrix by a vector, and for
computing the norm of a vector.

Example 1.15 Consider the bisection method to locate a root of a continuous
function f(x) : R → R within interval [0, 1], where f(0) > 0 and f(1) <
0. The method calls the oracle to evaluate f 1

2 (counted as one operation). If
f 1

2 > 0, we throw away [0, 1/2); if f 1
2 < 0, we throw away (1/2, 1]. Then

we repeat this process on the remaining half interval. Each step of the method
halves the interval that contains the root. Thus, in log(1/ε) steps, we must have
an approximate root whose distance to the root is less than ε. Therefore, the
bisection method is a polynomial algorithm.

We have to admit that the criterion of polynomiality is somewhat controver-
sial. Many algorithms may not be polynomial but work fine in practice. This
is because polynomiality is built upon the worst-case analysis. However, this
criterion generally provides a qualitative statement: if a problem is polynomial
solvable, then the problem is indeed relatively easy to solve regardless of the
algorithm used. Furthermore, it is ideal to develop an algorithm with both
polynomiality and practical efficiency.

1.4.2 Convergence rate

Most algorithms are iterative in nature. They generate a sequence of ever-
improving points x0,x1, ...,xk, ... approaching the solution set. For many opti-
mization problems and/or algorithms, the sequence will never exactly reach the
solution set. One theory of iterative algorithms, referred to as local or asymp-
totic convergence analysis, is concerned with the rate at which the optimality
error of the generated sequence converges to zero.

Obviously, if each iteration of competing algorithms requires the same amount
of work, the speed of the convergence of the error reflects the speed of the algo-
rithm. This convergence rate, although it may hold locally or asymptotically,
provides evaluation and comparison of different algorithms. It has been widely
used by the nonlinear optimization and numerical analysis community as an ef-
ficiency criterion. In many cases, this criterion does explain practical behavior
of iterative algorithms.

Consider a sequence of real numbers {rk} converging to zero. One can define
several notions related to the speed of convergence of such a sequence.
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Definition 1.2 . Let the sequence {rk} converge to zero. The order of conver-
gence of {rk} is defined as the supermum of the nonnegative numbers p satisfying

0 ≤ lim sup
k→∞

|rk+1|
|rk|p

<∞.

Definition 1.3 . Let the sequence {rk} converge to zero such that

lim sup
k→∞

|rk+1|
|rk|2

<∞.

Then, the sequence is said to converge quadratically to zero.

It should be noted that the order of convergence is determined only by the
properties of the sequence that holds as k →∞. In this sense we might say that
the order of convergence is a measure of how good the tail of {rk} is. Large
values of p imply the faster convergence of the tail.

Definition 1.4 . Let the sequence {rk} converge to zero such that

lim sup
k→∞

|rk+1|
|rk|

= β < 1.

Then, the sequence is said to converge linearly or geometrically to zero with
convergence ratio β.

Linear or geometric convergence is the most important type of convergence
behavior. A linearly convergence sequence, with convergence ratio β, can be said
to have a tail that converges to zero at least as fast as the geometric sequence
Cβk for a fixed number C. Thus, the bisection method is linearly convergent
and has a convergence ratio 0.5.

As a rule, when comparing the relative effectiveness of two competing al-
gorithms both of which produce linearly convergent sequences, the comparison
is based on their corresponding convergence ratio—the smaller the ratio, the
faster the algorithm. The ultimate case where β = 0 is referred to as superlin-
ear convergence.

Example 1.16 Consider the conjugate gradient algorithm for minimizing 1
2xTQx+

c. Starting from an x0 ∈ Rn and d0 = Qx0 + c, the method uses iterative for-
mula

xk+1 = xk − αkdk

where

αk =
(dk)T (Qxk + c)

‖dk‖2Q
,

and
dk+1 = Qxk+1 − θkdk
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where

θk =
(dk)TQ(Qxk+1 + c)

‖dk‖2Q
.

This algorithm is superlinearly convergent (in fact, it converges in finite number
of steps).

There is another convergence speed

Definition 1.5 . Let the sequence {rk} converge to zero such that

|rk|
|r0|
≤ L

kp
,

where L is a fixed constant.Then, the sequence is said to converge arithmetically
to zero with convergence order p > 0.

1.5 Basic Computational Procedures

There are several basic numerical problems frequently solved by interior-point
algorithms.

1.5.1 Gaussian elimination method

Probably the best-known algorithm for solving a system of linear equations is
the Gaussian elimination method. Suppose we want to solve

Ax = b.

We may assume a11 6= 0 after some row switching, where aij is the component
of A in row i and column j. Then we can subtract appropriate multiples of the
first equation from the other equations so as to have an equivalent system:(

a11 A1.

0 A′

)(
x1

x′

)
=

(
b1
b′

)
.

This is a pivot step, where a11 is called a pivot, and A′ is called a Schur com-
plement. Now, recursively, we solve the system of the last m− 1 equations for
x′. Substituting the solution x′ found into the first equation yields a value for
x1. The last process is called back-substitution.

In matrix form, the Gaussian elimination method transforms A into the form(
U C
0 0

)
where U is a nonsingular, upper-triangular matrix,

A = L

(
U C
0 0

)
,
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and L is a nonsingular, lower-triangular matrix. This is called the LU -decomposition.
Sometimes, the matrix is transformed further to a form(

D C
0 0

)
where D is a nonsingular, diagonal matrix. This whole procedure uses about
nm2 arithmetic operations. Thus, it is a strong polynomial-time algorithm.

1.5.2 Choleski decomposition method

Another useful method is to solve the least squares problem:

(LS) minimize ‖ATy − c‖.

The theory says that y∗ minimizes ‖ATy − c‖ if and only if

AATy∗ = Ac.

So the problem is reduced to solving a system of linear equations with a sym-
metric semi-positive definite matrix.

One method is Choleski’s decomposition. In matrix form, the method trans-
forms AAT into the form

AAT = LΛLT ,

where L is a lower-triangular matrix and Λ is a diagonal matrix. (Such a
transformation can be done in about nm2 arithmetic operations as indicated in
the preceding section.) L is called the Choleski factor of AAT . Thus, the above
linear system becomes

LΛLTy∗ = Ac,

and y∗ can be obtained by solving two triangle systems of linear equations.

1.5.3 The Newton method

The Newton method is used to solve a system of nonlinear equations: given
f(x) : Rn → Rn, the problem is to solve n equations for n unknowns such that

f(x) = 0.

The idea behind Newton’s method is to use the Taylor linear approximation at
the current iterate xk and let the approximation be zero:

f(x) ' f(xk) +∇f(xk)(x− xk) = 0.

The Newton method is thus defined by the following iterative formula:

xk+1 = xk − α(∇f(xk))−1f(xk),
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where scalar α ≥ 0 is called step-size. Rarely, however, is the Jacobian matrix
∇f inverted. Generally the system of linear equations

∇f(xk)dx = −f(xk)

is solved and xk+1 = xk + αdx is used. The vector dx is called the Newton
direction vector, which can be carried out in strongly polynomial time.

A modified or quasi Newton method is defined by

xk+1 = xk − αMkf(xk),

where Mk is an n× n symmetric matrix. In particular, if Mk = I, the method
is called the steepest descent method, where f is viewed as the gradient vector
of a real function.

The Newton method has a superior asymptotic convergence order equal 2
for ‖f(xk)‖ when the sequence is convergent and ∇f(·) at the limit point is
invertible. It is frequently used in interior-point algorithms, and believed to be
the key to their effectiveness. On the other hand, the steepest descent method
typically generates a sequence that converges to the limit point arithmetically.

1.5.4 Solving ball-constrained linear problem

The ball-constrained linear problem has the following form:

(BP ) minimize cTx
subject to Ax = 0, ‖x‖2 ≤ 1,

or
(BD) minimize bTy

subject to ‖ATy‖2 ≤ 1.

The minimizer x∗ of (BP) is given as follows: Solve linear system

AAT ȳ = Ac,

ȳ; and if c−AT ȳ 6= 0 then

x∗ = −(c−AT ȳ)/‖c−AT ȳ‖;

otherwise any feasible x is a solution. The minimizer y∗ of (BD) is given as
follows: Solve linear system

AAT ȳ = b,

for ȳ; and if AT ȳ 6= 0 then set

y∗ = −ȳ/‖AT ȳ‖;

otherwise any feasible y is a solution. So these two problems can be reduced to
solving a system of linear equations.
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1.5.5 Solving ball-constrained quadratic problem

The ball-constrained quadratic problem has the following form:

(BP ) minimize 1
2xTQx + cTx

subject to Ax = 0, ‖x‖2 ≤ 1,

or simply
(BD) minimize 1

2yTQy + bTy
subject to ‖y‖2 ≤ 1.

This problem is used by the classical trust region method for nonlinear opti-
mization. The optimality conditions for the minimizer y∗ of (BD) are

(Q+ µ∗I)y∗ = −b, µ∗ ≥ 0, ‖y∗‖2 ≤ 1, µ∗(1− ‖y∗‖2) = 0,

and
(Q+ µ∗I) � 0.

These conditions are necessary and sufficient. This problem can be solved in
polynomial time log(1/ε) or log(log(1/ε)) by the bisection method or a hybrid
of the bisection and Newton methods, respectively. In practice, several trust
region procedures have been very effective in solving this problem.

The ball-constrained quadratic problem will be used an a sub-problem by
several interior-point algorithms in solving complex optimization problems. We
will discuss them later in the book.

1.6 Notes

Most of the materials presented can be found from convex analysis, such as
Rockeafellar [266].

The term “complexity” was introduced by Hartmanis and Stearns [157].
Also see Garey and Johnson [120] and Papadimitriou and Steiglitz [250]. The
NP theory was due to Cook [72] and Karp [182]. The importance of P was
observed by Edmonds [90].

Linear programming and the simplex method were introduced by Dantzig
[75]. Other inequality problems and convexity theories can be seen in Gritz-
mann and Klee [143], Grötschel, Lovász and Schrijver [144], Grünbaum [145],
Rockafellar [266], and Schrijver [273]. Various complementarity problems can be
found found in Cottle, Pang and Stone [74]. The positive semi-definite program-
ming, an optimization problem in nonpolyhedral cones, and its applications can
be seen in Nesterov and Nemirovskii [243], Alizadeh [8], and Boyd, Ghaoui,
Feron and Balakrishnan [58]. Recently, Goemans and Williamson [127] ob-
tained several breakthrough results on approximation algorithms using positive
semi-definite programming. The KKT condition for nonlinear programming was
given by Karush, Kuhn and Tucker [197].

It was shown by Klee and Minty [186] that the simplex method is not a
polynomial-time algorithm. The ellipsoid method, the first polynomial-time al-
gorithm for linear programming with rational data, was proven by Khachiyan



1.7. EXERCISES 27

[183]; also see Bland, Goldfarb and Todd [54]. The method was devised inde-
pendently by Shor [279] and by Nemirovskii and Yudin [241]. The interior-point
method, another polynomial-time algorithm for linear programming, was devel-
oped by Karmarkar. It is related to the classical barrier-function method studied
by Frisch [111] and Fiacco and McCormick [106]; see Gill, Murray, Saunders,
Tomlin and Wright [126], and Anstreicher [22]. For a brief LP history, see the
excellent article by Wright [326].

The real computation model was developed by Blum, Shub and Smale [55]
and Nemirovskii and Yudin [241]. Other complexity issues in numerical opti-
mization were discussed in Vavasis [321].

Many basic numerical procedures listed in this chapter can be found in
Golub and Van Loan [135]. The ball-constrained quadratic problem and its
solution methods can be seen in Moré [231], Sorenson [284], and Dennis and
Schnable [78]. The complexity result of the ball-constrained quadratic problem
was proved by Vavasis [321] and Ye [335].

1.7 Exercises

1.1 Let Q ∈ Rn×n be a given nonsingular matrix, and a and b be given Rn
vectors. Show

(Q+ abT )−1 = Q−1 − 1

1 + bTQ−1a
Q−1abTQ−1.

This formula is called the Sherman-Morrison-Woodbury formula.

1.2 Prove that the eigenvalues of all symmetric matrices X ∈ Sn are real, and

X =

r∑
i=1

λiviv
T
i ,

where r is the rank of X, λi is an eigenvalue and vi its eigenvector of X.
Furthermore, show that X is PSD if and only if all its eigenvalues are non-
negative, and V is PD if and only if all its eigenvalues are positive.

1.3 Let X be a positive semidefinite matrix of rank r, and A be any given
symmetric matrix. Then, there is another decomposition of X

X =

r∑
i=1

viv
T
i ,

such that for all i,

vTi Avi = A • (viv
T
i ) =

1

r
(A •X).

1.4 Prove X • S ≥ 0 if both X and S are positive semi-definite matrices.
Moreover, prove that two positive semi-definite matrices are complementary to
each other, X • S = 0, if and only if XS = 0.
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1.5 Using the ellipsoid representation in Section 1.2.2, find the matrix Q and
vector y that describes the following ellipsoids:

i) The 3-dimensional sphere of radius 2 centered at the origin;

ii) The 2-dimensional ellipsoid centered at (1; 2) that passes the points (0; 2),
(1; 0), (2; 2), and (1; 4);

iii) The 2-dimensional ellipsoid centered at (1; 2) with axes parallel to the line
y = x and y = −x, and passing through (−1; 0), (3; 4), (0; 3), and (2; 1).

1.6 Show that the biggest coordinate-aligned ellipsoid that is entirely contained
in Rn+ and has its center at xa ∈ Rn++ can be written as:

E(xa) = {x ∈ Rn : ‖(Xa)−1(x− xa)‖ ≤ 1}.

1.7 Prove Proposition 1.1.

1.8 Show that the non-negative orthant, the positive semi-definite cone, and
the second-order cone are all self-dual. Also show that the dual cone of the
p-order cone, p = 1, ...,∞, is the q-order cone where 1

q + 1
p = 1.

1.9 When both K1 and K2 are closed convex cones. Show

i) (K∗1 )∗ = K1.

ii) K1 ⊂ K2 =⇒ K∗2 ⊂ K∗1 .

iii) (K1 ⊕K2)∗ = K∗1 ⊕K∗2 .

iv) (K1 +K2)∗ = K∗1 ∩K∗2 .

v) (K1 ∩K2)∗ = K∗1 +K∗2 .

1.10 Prove Proposition 1.3.

1.11 Consider the convex set C = {x ∈ R2 : (x1 − 1)2 + (x2 − 1)2 ≤ 1} and
let y ∈ R2. Assuming y 6∈ C,

i) Find the point in C that is closest to y;

ii) Find a separating hyperplane vector as a function of y.

iii) Using the idea of Exercise 1.11, prove the separating hyperplane theorem
1.5.

1.12 i) Given an m×n matrix A and a vector c ∈ Rn, consider the function
B(y) = −

∑n
j=1 log sj where s = c − ATy > 0. Find ∇B(y) and ∇2B(y)

in terms of s.
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ii)/ Given C ∈ Sn, Ai ∈ Sn, i = 1, · · · ,m, and b ∈ Rm, consider the function

B(y) := − ln det(S), where S = C −
m∑
i=1

yiAi � 0. Find ∇B(y) and

∇2B(y) in terms of S.

The best way to do this is to use the definition of the partial derivative

∇f(y)i = lim
δ→0

f(y1, y2, ..., yi + δ, ..., ym)− f(y1, y2, ..., yi, ..., ym)

δ
.

1.13 Let f(x) : Rn++ → R be a given convex function. Show that the function

g : Rn+1
++ → R given by g(τ ; x) = τ · f(x/τ) (called the homogenized version of

f) is also a convex function in the domain of (τ ; x) ∈ Rn+1
++ . Now, suppose that

f(x) is twice-differentiable. Write out the gradient vector and Hessian matrix
of g.

1.14 Prove that the level set of a quasi-convex function is convex.

1.15 Prove Propositions 1.7 and 1.8 for convex functions in Section 1.2.3.

1.16 Let f1, . . ., fm be convex functions. Then, the function f̄(x) defined below
is also convex:

i)
max

i=1,...,m
fi(x)

ii)
m∑
i=1

fi(x)

1.17 Prove Farkas’ lemma 1.11 for linear equations.

1.18 Prove the linear least-squares problem always has a solution.

1.19 Let P = AT (AAT )−1A or P = I −AT (AAT )−1A. Then prove

i) P = P 2.

ii) P is positive semi-definite.

iii) The eigenvalues of P are either 0 or 1.

1.20 Using the separating theorem, prove Farkas’ lemmas 1.12 and 1.13.

1.21 Prove the LP fundamental theorem 1.18.

1.22 If (LP) and (LD) have a nondegenerate optimal basis AB, prove that the
strict complementarity partition in Theorem 1.17 is

P ∗ = B.
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1.23 If Q is positive semi-definite, prove that x∗ is an optimal solution for
(QP) if and only if x∗ is a KKT point for (QP).

1.24 Given an (LP) data set (A,b, c) and an interior feasible point x0, find
the feasible direction dx (Adx = 0) that achieves the steepest decrease in the
objective function.

1.25 Given an (LP) data set (A,b, c) and a feasible point (x0,y0, s0) ∈ (Rn+,Rm,Rn+)
for the primal and dual, and ignoring the nonnegativity condition, write the sys-
tems of linear equations used to calculate the Newton steps for finding points that
satisfy the optimality equations (1.2) and (1.3), respectively.

1.26 Down load SEDUMI1.05, DSDP5.8, and/or CVX and install them in
Matlab or R. Solve the SDP example in Example 1.1.



Chapter 2

Conic Linear Programming

2.1 Conic Linear Programming and its Dual

Given a closed convex cone K ⊂ E , C ∈ E , Ai ∈ E , i = 1, 2, ...,m, and b ∈
Rm, the conic linear programming problem is to find a matrix X ∈ C for the
optimization problem in a canonical form:

(CLP ) inf C •X
subject to Ai •X = bi, i = 1, 2, ...,m, X ∈ K.

Recall that the • operation is the standard inner product

A •B := tr(ATB).

We put here “inf” instead of “minimize”, since the minimal objective value may
exist, but it cannot be attained at a finite solution. With this understanding,
we will use “minimize” through out this monograph.

When K = Rn+, an element in K is conventionally written as x ≥ 0 or x is
component-wise nonnegative; while when K = Sn+, an element in K is conven-
tionally written as X � 0 or X is a positive semi-definite matrix. Furthermore,
X � 0 means that X is a positive definite matrix. If a point X is in the inte-
rior of K and satisfies all equations in (CLP), it is called a (primal) strictly or
interior feasible solution. .

Note that the semidefinite programming example in Chapter 1

minimize 2x1 + x2 + x3

subject to x1 + x2 + x3 = 1,(
x1 x2

x2 x3

)
� 0

can be written in the canonical form

minimize C •X
subject to A1 •X = 1,

X � 0,

31
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where

C =

(
2 .5
.5 1

)
and A1 =

(
1 .5
.5 1

)
.

For semidefinite programming, the coefficient matrices C and Ai are not neces-
sarily symmetric in applications. However, since

Ai •X =
1

2
(Ai +ATi ) •X,

we can use 1
2 (Ai +ATi ) to replace original Ai. Therefore, without loss of gener-

ality, we assume that C and Ai in the canonical SDP form are all symmetric.

Example 2.1 Besides the two conic problems presented in Introduction of Chap-
ter 1, the following example is a second-order cone programming (SOCP) prob-
lem:

minimize 2x1 + x2 + x3

subject to x1 + x2 + x3 = 1,√
x2

2 + x2
3 ≤ x1.

Here, like linear programming, C and A1 are vectors in R3:

C =

 2
1
1

 and AT1 =

 1
1
1

 .

For convenience, we define an operator from space E to a vector:

AX :=


A1 •X
A2 •X
· · ·

Am •X

 . (2.1)

Then, (CLP) can be written in a compact form:

(CLP ) minimize C •X
subjectto AX = b,

X ∈ K.
(2.2)

Note that X may be decomposed as product several separate and mixed
cones linked by the linear constraints such as

(CLP ) minimize
∑p
l=1 Ck •Xl

subjectto
∑p
l=1AlXl = b,

Xl ∈ Kl, l = 1, ..., p,
(2.3)

where Kl could be any closed convex cones. Recall that we can stack the
variables and write it as

X = (X1;X2; ...;Xp) ∈ K1 ⊕K2 ⊕ ...⊕Kp.
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2.1.1 Dual of conic linear programming

The dual problem to (CLP) can be written as:

(CLD) maximize bTy
subject to

∑m
i yiAi + S = C, S ∈ K∗,

which is analogous to the dual of linear programming. Here y ∈ Rm and S ∈ E .
If a point (y, S) satisfies all equations in (SDD) and S is in the interior of K∗,
it is called a dual interior feasible solution. Again, the maximal objective value
of the dual may exist, but it cannot be attained at a finite solution. Just as in
LP, the dual of the dual would be the primal problem.

Example 2.2 Here are dual problems to the three examples where y is just a
scalar.

• The dual to the LP example:

maximize y

subject to y

 1
1
1

+ s =

 2
1
1

 ,

s = (s1; s2; s3) ∈ K∗ = R3
+.

• The dual to SDP example:

maximize y

subject to y

(
1 .5
.5 1

)
+ S =

(
2 .5
.5 1

)
,

S ∈ K∗ = S2
+.

• The dual to the SOCP example:

maximize y

subject to y

 1
1
1

+ s =

 2
1
1

 ,

s = (s1; s2; s3) ∈ K∗ = N 3
2 .

Some computational problems can be directly written in the CLD form.

Example 2.3 Let P (y ∈ Rm) = C −
∑m
i yiAi, where C and Ai, i = 1, . . . ,m,

are given symmetric matrices. The problem of maximizes the min-eigenvalue of
P (y) can be cast as a (CLD) problem:

maximize y0

subject to y0I +
∑m
i yiAi + S = C, S � 0.

Then, the dual problem would in CLP form:

minimize C •X
subject to Ai •X = 0, i = 1, . . . ,m,

I •X = 1, X � 0.
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Let us define the reverse operator of (2.1) from a vector to E:

ATy =

m∑
i=1

yiAi. (2.4)

Note that, by the definition, for any matrix X ∈ E

ATy •X = yT (AX),

that is, the association property holds. Then, (CLD) can be written in a com-
pact form:

(CLD) maximize bTy
subjectto ATy + S = C,

S ∈ K∗.
(2.5)

The dual to the mixed conic problem 2.3 would be

(CLD) minimize bTy
subjectto ATl y + Sl = Cl, l = 1, ..., p,

Sl ∈ K∗l , l = 1, ..., p,
(2.6)

where the last constraint can be written as

S = (S1;S2; ...;Sp) ∈ K∗1 ⊕K∗2 ⊕ ...⊕K∗p .

Example 2.4 (Euclidean Facility Location). This problem is to determine the
location of a facility serving n clients placed in a Euclidean space, whose known
locations are denoted by al ∈ Rd, l = 1, . . . , n. The location of the facility
would minimize the sum of the Euclidean distances from the facility to each of
the clients. Let the location decision be vector f ∈ Rd. Then the problem is

minimize
∑n
l=1 ‖f − al‖. .

The problem can be reformulated as

minimize
∑n
l=1 δl

subjectto sj + f = al, ∀l = 1, ..., n,
‖sl‖ ≤ δl, ∀l = 1, ..., n.

This is a conic formulation in the (CLD) form. To see it clearly, let d = 2 and
n = 3 in the example, and let

A1 =


−1 0 0
0 0 0
0 0 0
0 1 0
0 0 1

 , A2 =


0 0 0
−1 0 0
0 0 0
0 1 0
0 0 1

 , A3 =


0 0 0
0 0 0
−1 0 0
0 1 0
0 0 1

 ,
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b =


1
1
1
0
0

 ∈ R5, c1 =

(
0
a1

)
∈ R3, c2 =

(
0
a2

)
∈ R3, c2 =

(
0
a3

)
∈ R3,

and variable vector
y = (δ1; δ2; δ3; f) ∈ R5.

Then, the facility location problem becomes

minimize bTy

subject to ATl y + sl = cl, i = 1, 2, 3,

sl ∈ Kl = N 3
2 ;

that is, each Kl is the 3-dimensional second-order cone. The dual of the facility
location problem would be in the (CLP) form:

minimize

3∑
l=1

cTl xl

subject to

3∑
l=1

Alxl = −b,

xl ∈ K∗l = N 3
2 ,

where dual decision vector xl ∈ R3.
If one like to choose location f to

minimize
∑n
l=1 ‖f − al‖p, p ≥ 1 ,

the same formulation hods but Kl = N 3
p and K∗l = N 3

q , where 1
p + 1

q = 1.

2.2 Farkas’ Lemma and Duality Theorem of Conic
Linear Programming

Let us consider the feasible region of (CLP) in (2.2):

Fp := {X : AX = b, X ∈ K};

where the interior of the feasible region is

◦
Fp:= {X : AX = b, X ∈

◦
K}.

If K = Rn+ in linear programming and Fp is empty, from Farkas’ lemma, a
vector y ∈ Rm, with −ATy ≥ 0 and bTy > 0, always exists and it is an
infeasibility certificate for Fp. Does this alternative relations hold for K being
a general closed convex one?
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2.2.1 Alternative theorem for conic systems

Let us rigorousize the question: when Fp is empty, does there exist a vector
y ∈ Rm such that −ATy ∈ K∗ and bTy > 0? Similarly, one can ask: when
set Fd := {y : C −ATy ∈ K∗} is empty, does there exist an X ∈ K such that
AX = 0 and C •X < 0? Note that the answer to the second question is also
”yes” when K = Rn+.

Example 2.5 The answer to either question is “not true in general”; see ex-
amples below.

• For the first question, consider K = S2
+ and

A1 =

(
1 0
0 0

)
, A2 =

(
0 1
1 0

)
and

b =

(
0
2

)
• For the second question, consider K = S2

+ and

C =

(
0 1
1 0

)
and A1 =

(
1 0
0 0

)
.

However, if the data set A satisfies additional conditions, the answer would
be “yes”; see theorem below.

Theorem 2.1 (Farkas’ lemma for CLP) The following results hod.

i) Consider set

Fp := {X : AX = b, X ∈ K}.

Suppose that there exists a vector ŷ such that −AT ŷ ∈
◦
K∗. Then,

1. Set C := {AX ∈ Rm : X ∈ K} is a closed convex set;

2. Fp has a (feasible) solution if and only if set {y : −ATy ∈ K∗, yTb >
0} has no feasible solution.

ii) Consider set

Fd := {y : C −ATy ∈ K}.

Suppose that there exists a vector X̂ ∈
◦
K∗ such that AX̂ = 0. Then,

1. Set C := {S −ATy : S ∈ K} is a closed convex set;

2. Fd has a (feasible) solution if and only if set {X : AX = 0, X ∈
K∗, C •X < 0} has no feasible solution.
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Proof.We prove the first part of i) of the theorem. It is clear that C is a convex
set. To prove that C is a closed set, we need to show that if yk := AXk ∈ Rm
for Xk ∈ K, k = 1, . . ., converges to a vector ȳ, then ȳ ∈ C, that is, there is
X̄ ∈ K such that ȳ := AX̄. Without loss of generality, we assume that yk is a
bounded sequence. Then, there is a positive constant c such that

c ≥ −ŷTyk = −ŷT (AXk) = −AT ŷ •Xk,∀k.

Since −AT ŷ ∈
◦
K∗, from Proposition 1.3, the sequence of Xk is also bounded.

Then there is at least one accumulate point X̄ ∈ K for the sequence because K
is a closed cone. Thus, we must have ȳ := AX̄, which prove that C is closed.

We now prove the second part. Let y be −ATy ∈ K∗. Then, if Fp has a
feasible solution X̄,

−yTb = −yT (AX̄) = −ATy • X̄ ≥ 0.

Thus, it must be true bTy ≤ 0, that is, {y : −ATy ∈ K∗, bTy > 0} must be
empty.

On the other hand, let Fp has no feasible solution, or equivalently, b 6∈ C.
We now show that {y : −ATy ∈ K∗, yTb > 0} must be nonempty.

Since C is a closed convex set, from the separating hyperplane theorem,
there must exist a ȳ ∈ Rm such that

ȳTb > ȳTy, ∀y ∈ C.

Or, from y = AX, X ∈ K, we have

ȳTb > ȳT (AX) = AT ȳ •X, ∀X ∈ K.

That is, AT ȳ •X is bounded above for all X ∈ K.
Immediately, we see ȳTb > 0 since 0 ∈ K. Next, it must be true −AT ȳ ∈

K∗. Otherwise, we must be able to find an X̄ ∈ K such that −AT ȳ • X̄ < 0
by the definition of K and its dual K∗. For any positive constant α we keep
αX̄ ∈ K and let α go to ∞. Then, AT ȳ • (αX̄) goes to ∞, contradicting the
fact that AT ȳ•X is bounded above for all X ∈ K. Thus, ȳ is a feasible solution
of {y : −ATy ∈ K∗, yTb > 0}.

Note that C may not be a closed set if the interior condition of Theorem 2.1
is not met. Consider A1, A2 and b in Example 2.5, and we have

C =

{
AX =

(
A1 •X
A2 •X

)
: X ∈ S2

+

}
.

Let

Xk =

(
1
k 1
1 k

)
∈ S2

+, ∀k = 1, . . . .

Then we see

yk = AXk =

(
1
k
2

)
.

As k →∞ we see yk converges b, but b is not in C.
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2.2.2 Duality theorem for conic linear programming

The weak duality theorem for (CLP) and (CLD) is identical to that of (LP) and
(LD).

Theorem 2.2 (Weak duality theorem in CLP) Let Fp and Fd be non-empty.
Then,

C •X ≥ bTy for all X ∈ Fp, (y, S) ∈ Fd.

Proof.By direct calculation

C •X − bTy =

(
m∑
i=1

yiAi + S

)
•X − bTy

=

m∑
i=1

yi(Ai •X) + S •X − bTy

=

m∑
i=1

yibi + S •X − yTb

= S •X ≥ 0,

where the last inequality comes from X ∈ K and S ∈ K∗.

As in linear programming, C •X − bTy is called the duality gap of (CLP)
and (CLD). Linear programming admits a strong duality theorem: when both
Fp and Fd are nonempty, then there is no gap at optimality. Does such strong
duality theorem hold for conic linear programming in general? The answer is
“not”.

Example 2.6 The following semidefinite program has a duality gap:

C =

 0 1 0
1 0 0
0 0 0

 , A1 =

 0 0 0
0 1 0
0 0 0

 , A2 =

 0 −1 0
−1 0 0

0 0 2


and

b =

(
0
2

)
.

The primal minimal objective value is 0 achieved by

X =

 0 0 0
0 0 0
0 0 1


and the dual maximal objective value is −2 achieved by y = (0; −1); so the
duality gap is 2.

This is in contrast to linear programming. However, under certain technical
conditions, there would be no duality gap at optimality. One condition is related



2.2. FARKAS’ LEMMAANDDUALITY THEOREMOF CONIC LINEAR PROGRAMMING39

to weather or not the primal feasible region Fp or dual feasible region has an
interior feasible solution. Recall

◦
Fp:= {X : AX = b, X ∈

◦
K}

and
◦
Fd:= {(y, S) : ATy + S = C, S ∈

◦
K∗}.

We state here a version of the strong duality theorem for (CLP) and (CLD).

Theorem 2.3 (Strong duality theorem in CLP)

i) Let (CLP) or (CLD) be infeasible, and furthermore the other be feasible and
has an interior. Then the other is unbounded.

ii) Let (CLP) and (CLD) be both feasible, and furthermore one of them has an
interior. Then there is no duality gap at optimality between (CLP) and
(CLD).

iii) Let (CLP) and (CLD) be both feasible and have interior. Then, both have
optimal solutions with no duality gap.

Proof.We let cone H = K⊕R+ in the following proof. Note that
◦
H=

◦
K ⊕R++.

i) Suppose Fd is empty and Fp is feasible and has an interior feasible solution.

Then, we have an X̄ ∈
◦
K and τ̄ = 1 that is an interior feasible solution to

(homogeneous) conic system:

AX̄ − bτ̄ = 0, (X̄, τ̄) ∈
◦
H .

Now, for any z∗ ∈ R, we form an alternative system pair based on Farkas’
Lemma ( see ii) of Theorem 2.1):

{(X, τ) : AX − bτ = 0, C •X − z∗τ < 0, (X, τ) ∈ H},

and

{(y, S, κ) : ATy + S = C, −bTy + κ = −z∗, (S, κ) ∈ H∗}.

But the latter is infeasible, so that the former has a feasible solution (X, τ).
At such a feasible solution, if τ > 0, we have A(X/τ) = b, (X/τ) ∈ K,
and C • (X/τ) < z∗ for any z∗, which indicates there is feasible solution
in F)p whose objective value goes to −∞. Otherwise, τ = 0 implies that
a new solution X̄ + αX is feasible for (CLP) for any positive α; and, as
α→∞, the objective value of the new solution also goes to −∞. Hence,
either way we have a feasible solution for (CLP) whose objective value is
unbounded from below.
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ii) Let Fp be feasible and have an interior feasible solution, and let z∗ be its
objective infimum. Again, we have an alternative system pair as listed in
the proof of i). But now the former is infeasible, so that we have a solution
for the latter. From the Weak Duality theorem bTy ≤ z∗, thus we must
have κ = 0, that is, we have a solution (y, S) such that

ATy + S = C, bTy = z∗, S ∈ K∗.

iii) We only need to prove that there exist a solution X ∈ Fp such that
C •X = z∗, that is, the infimum of (CLP) is attainable. But this is just
the other side of the proof given that Fd is feasible and has an interior
feasible solution, and z∗ is also the supremum of (CLD).

Again, if one of (CLP) and (CLD) has no interior feasible solution, the
common optimal objective value may not be attainable. For example,

C =

(
1 0
0 0

)
, A1 =

(
0 1
1 0

)
, and b1 = 2.

The dual is feasible but has no interior, while the primal has an interior. The
common objective value equals 0, but no primal solution attaining the infimum
value.

2.2.3 Optimality conditions of conic linear programming

Most of these examples that make the strong duality failed are superficial, and
a small perturbation would overcome the failure. Thus, in real applications and
in the rest of the chapter, we may assume that both (CLP) and (CLD) have
interior when they are feasible. Consequently, any primal and dual optimal
solution pair must satisfy the optimality conditions:

C •X − bTy = 0
AX = b

−ATy − S = −C
X ∈ K, S ∈ K∗

; (2.7)

which is a system of linear conic inequalities and equations.
These conditions can be rewritten in the complementarity gap form

X • S = 0
AX = b

−ATy − S = −C
X ∈ K, S ∈ K∗

. (2.8)

Example 2.7 Here are optimal solutions to the three examples presented ear-
lier.
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1) The LP primal and dual example:

minimize
(

2 1 1
)
x

subject to
(

1 1 1
)
x = 1,

x ≥ 0

maximize y

subject to y

 1
1
1

+ s =

 2
1
1

 ,

s ≥ 0.

A complementarity pair is at y∗ = 1:

x∗ =

 0
0.5
0.5

 and s∗ =

 1
0
0

 .

Note that the primal has multiple optimal solutions.

2) The SDP primal and dual example:

minimize

(
2 .5
.5 1

)
•X

subject to

(
1 .5
.5 1

)
•X = 1,

X � 0.

maximize y

subject to y

(
1 .5
.5 1

)
+ S =

(
2 .5
.5 1

)
,

S � 0.

A complementarity pair is at y∗ = 1:

X∗ =

(
0 0
0 1

)
and S∗ =

(
1 0
0 0

)
.

This SDP optimal solution pair is unique.

3) The SOCP primal and dual example:

minimize
(

2 1 1
)
x

subject to
(

1 1 1
)
x = 1,√

x2
2 + x2

3 ≤ x1

maximize y

subject to y

 1
1
1

+ s =

 2
1
1

 ,√
s2

2 + s2
3 ≤ s1.

A complementarity pair is at y∗ =
√

2:

x∗ =


√

2− 1
1− 1√

2

1− 1√
2

 and s∗ =

 2−
√

2

1−
√

2

1−
√

2

 .

This optimal solution pair is unique.
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2.3 Exact Low-Rank SDP Solutions

In this section, we consider K = K∗ = Sn+ and write (CLP) and (CLD) as
(SDP) and (SDD), respectively.

In linear programming, since x ≥ 0 and s ≥ 0,

0 = x • s = xT s =

n∑
j=1

xjsj

implies that xjsj = 0 for all j = 1, . . . , n. Now consider semidefinite cone Sn+.
Since X � 0 and S � 0, X • S = 0 implies XS = 0 (Exercise 1.4), that is, the
regular matrix product of the two is a zero matrix. In other words, every column
(or row) of X is orthogonal to every column (or row) of S at optimality. We
also call such property complementarity. Thus, besides feasibility, an optimal
semidefinite programming solution pair must satisfy complementarity, that is,
condition 2.8 can be further represented by

XS = 0
AX = b

−ATy − S = −C
X ∈ K, S ∈ K∗

. (2.9)

Therefore, we have

Proposition 2.4 Let X∗ and (y∗, S∗) be any optimal SDP solution pair with
zero duality gap. Then complementarity of X∗ and S∗ implies

rank(X∗) + rank(S∗) ≤ n.

Furthermore, is there an optimal (dual) S∗ such that rank(S∗) ≥ r, then the rank
of any optimal (primal) X∗ is bounded above by n− r, where integer 0 ≤ r ≤ n;
and the converse is also true.

In certain SDP problems, one may be interested in finding an optimal solution
whose rank is minimal, while the interior-point algorithm for SDP (developed
later) typically generates solution whose rank is maximal for primal and dual,
respectively. Thus, a rank reduction method sometimes is necessary to achieve
the low-rank goal.

2.3.1 Exact low-rank theorem

For linear programming in the standard form, it is known from Carathéodory’s
theorem that if there is a feasible solution, then there is a basic feasible solution
whose positive entries are at most m many, the number of linear equations; and
if there an optimal solution, then there is an optimal basic solution. We now
explore a similar sparse structure for SDP.

Theorem 2.5 Consider (SDP), that is, (CLP) with K = Sn+.
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i) If there is a feasible solution for (SDP), then there is a feasible solution

whose rank r satisfies r(r+1)
2 ≤ m.

ii) If there is an optimal solution for (SDP), then there is an optimal solution

whose rank r satisfies r(r+1)
2 ≤ m.

Proof.We first work on the first part of the Theorem. Similar to the proof of
Carathéodory’s theorem, we use null-space reduction to construct a low-rank
SDP solution. Let X � 0 be a feasible solution, that is,

Ai •X = bi, i = 1, ...,m,

and its rank r makes r(r + 1)/2 > m. Then, we can factorize X

X = V TV, V ∈ Rr×n,

and consider variable symmetric matrix U ∈ Sr to satisfy the dimension-reduced
system:

V AiV
T • U = bi, i = 1, ...,m, U � 0.

Note that any feasible U gives a feasible X(U) = V TUV for (SDP), since
V TUV � 0 and

Ai •X(U) = Ai • V TUV = V AiV
T • U = bi, i = 1, ...m.

In particular U = I is a feasible solution to the reduced system, since X(I) = X.
Now consider the system of homogeneous linear equations:

V AiV
T •W = 0, i = 1, ...,m.

where W ∈ Sr (i.e., a r × r symmetric matrices that does not need to be
semidefinite). This system has r(r+1)/2 real variables and m equations. Thus,
as long as r(r+1)/2 > m, we must be able to find a symmetric matrix W 6= 0 to
satisfy all the m equations. Without loss of generality, let W be either indefinite
or negative semidefinite (if it is positive semidefinite, we take −W as W ), that
is, W have at least one negative eigenvalue. Then we consider

U(α) = I + αW.

Choosing a α∗ sufficiently large such that U(α∗) � 0 and it has at least one 0
eigenvalue (or rank(U(α∗)) < r). Note that

V AiV
T • U(α∗) = V AiV

T • (I + α∗W ) = V AiV
T • I = bi, i = 1, ...,m.

That is, U(α∗) is feasible for the reduced system. Thus, X(U(α∗)) is feasible
for (SDP) and its rank is strictly less than r. This process can be repeated till
the system of homogeneous linear equations has only all-zero solution, which is
true only when r(r + 1)/2 ≤ m., which concludes the proof.
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We now work on the second part. Let X∗ be an optimal solution of (SDP)
with rank r and S∗ be any dual optimal solution. Again, we factorize X∗

X∗ = (V ∗)TV ∗, V ∗ ∈ Rr×n.

Then we consider a dimension-reduced SDP problem

minimize V ∗C(V ∗)T • U
subjectto V ∗Ai(V

∗)T • U = bi, i = 1, ...,m
U ∈ Sr+.

(2.10)

Again, from any feasible solution of (2.10) one can construct a feasible solution
for (SDP) using X∗(U) = (V ∗)TUV ∗. Furthermore, X∗(U) is actually optimal
for (SDP), since

S∗ •X∗(U) = S∗ • (V ∗)TUV ∗ = V ∗S∗(V ∗)T • U = 0 • U = 0,

that is, X∗(U) meets the complementarity so that it is optimal. Here, we have
used the fact that S∗X∗ = 0 implies V ∗S∗(V ∗)T = 0. Now, we can apply the

construct proof of the first part to prove the second part.

The following example shows that the rank-bound in Theorem 2.5 is tight.

Example 2.8 Consider SDP problem:

(ei − ej)(ei − ej)
T •X = 1, ∀i < j = 1, 2, 3, 4,

X ∈ S4
+,

where ei ∈ R4 has 1 at its ith entry and 0 everywhere else. The SDP the solution
has rank exactly 3, which reaches the bound of Theorem 2.5 since it has m = 6
equations.

To see an application of Theorem 2.5, consider a general quadratic mini-
mization with sphere constraint

z∗ ≡ minimize xTQx + 2cTx

subjectto ‖x‖2 = 1, x ∈ Rn,

where Q is general. The problem has an SDP relaxation by let X = xxT

minimize Q •X + 2cTx

subjectto I •X = 1,

X � 0.

But X � 0 can be equivalently written as(
X x
xT 0

)
� 0.
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Thus, the relaxation can be written in a standard form

zSDP ≡ minimize

(
Q c
cT 0

)
• Y

subject to

(
I 0

0R 0

)
• Y = 1,(

0 0
0T 1

)
• Y = 1,

Y ∈ Sn+1
+ .

Note that the SDP relaxation and its dual both have interior so that the strong
duality theorem holds, and it must have a rank-1 optimal SDP solution because
m = 2. But a rank-1 optimal SDP solution would be optimal to the original
quadratic minimization with sphere constraint. Thus, we must have z∗ = zSDP .
Thus, the sphere constrained general quadratic minimization is a hidden convex
SDP minimization, or its SDP relaxation is exact.

2.4 Approximate Low-Rank SDP Solutions

For simplicity, we again consider finding a feasible solution for (SDP), that is
find X � 0 that satisfies

Ai •X = bi ∀ i = 1, . . . ,m, (2.11)

where we assume that A1, . . . , Am are all symmetric and positive semidefinite
matrices and scalars b = (b1; . . . ; bm) ≥ 0.

Instead of finding an exact low-rank SDP feasible solution, we are interested
in finding an approximate low-rank feasible solution. More precisely, for a given
positive integer d, we consider the problem of finding an X̂ � 0 of rank at most
d that satisfies the linear equations (2.11) approximately:

β · bi ≤ Ai • X̂ ≤ α · bi ∀ i = 1, . . . ,m.

Here, α ≥ 1 and β ∈ (0, 1] are called distortion factors. Clearly, the closer are
both factors to 1, the better of the accuracy of X̂.

2.4.1 Approximate low-rank theorem

We have the following low-rank approximate theorem:

Theorem 2.6 Let r = max{rank(Ai)} ≤ n and there be X � 0 that satisfies
(2.11) exactly. Then, for any integer d ≥ 1, there exists an X̂ � 0 with rank at
most d such that

β(m, d) · bi ≤ Ai • X̂ ≤ α(m, r, d) · bi ∀ i = 1, . . . ,m,
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where

α(m, r, d) =


1 +

12 ln(4mr)

d
for 1 ≤ d ≤ 12 ln(4mr)

1 +

√
12 ln(4mr)

d
for d > 12 ln(4mr)

and

β(m, d) =


1

e(2m)2/d
for 1 ≤ d ≤ 4 ln(2m)

max

{
1

e(2m)2/d
, 1−

√
4 ln(2m)

d

}
for d > 4 ln(2m)

Moreover, there exists an efficient randomized algorithm for finding such an X̂.

Theorem 2.6 states that there exist an approximate rank-d SDP solution
with respect to a bounded distortion if the system is feasible. As the allowable
rank d increases, the distortions bounds become closer and closer to 1. When
d = Ω(ln(mr)), then they become constants. Also, the lower distortion bound
β(m, d) is independent of r. This result contains as special cases several well-
known results in the literature.

Without loss of generality, we can assume X = I is such a feasible solution
that satisfies (2.11) exactly. (Otherwise, as did in the last section, we can
factorize X and introduce an equivalent system where I is a feasible solution.)
With this assumption, we have bi = tr(Ai) ≥ 0 for all i. Thus we would prove
the following equivalent result:

Theorem 2.7 Let A1, . . . , Am ∈ Sn be symmetric positive semidefinite matri-
ces and r = max{rank(Ai)}. Then, for any integer d ≥ 1, there exists an X̂ � 0
with rank at most d such that

β(m, d) · tr(Ai) ≤ Ai • X̂ ≤ α(m, r, d) · tr(Ai) ∀ i = 1, . . . ,m,

where α(m, r, d) and β(m, d) are given in Theorem 2.6.

To prove the theorem, we first introduce Markov’s Inequality

Lemma 2.8 Let h be any positive valued and non-decreasing function and let
ξ be a random variable. Then, for any positive value t, the probability

Pr(ξ ≥ t) ≤ E[h(ξ)]

h(t)
, t > 0.
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Proof.Let fξ be the density function of ξ. Then,

E[h(ξ)] =

∫ ∞
−∞

h(z)fξ(z)dz

=

∫ t

−∞
h(z)fξ(z)dz +

∫ ∞
t

h(z)fξ(z)dz

≥
∫ ∞
t

h(z)fξ(z)dz (h is nonnegative)

≥
∫ ∞
t

h(t)fξ(z)dz (h is non-decreasing)

= h(t)

∫ ∞
t

fξ(z)dz = h(t)Pr(ξ ≥ t).

2.4.2 A constructive proof

We now prove Theorem 2.7. We first apply a simple randomized procedure to
construct an solution X̂:

• Generate i.i.d. Gaussian random variables ξji with mean 0 and variance

1/d, and define vectors ξj = (ξj1; . . . ; ξjn) ∈ Rn, where i = 1, . . . , n; j =
1, . . . , d.

• Return X̂ =
∑d
j=1 ξ

j
(
ξj
)T ∈ Sn+.

Clearly, the rank of random matrix X̂ is no more than d and it is positive
semidefinite with probability one.

Proposition 2.9 Let H ∈ Sn be a symmetric positive semidefinite matrix with
r ≡ rank(H) ≥ 1. Then, for any β ∈ (0, 1), we have:

Pr
(
H • X̂ ≤ βtr(H)

)
≤ exp

(
d

2
(1− β + lnβ)

)
≤ exp

(
d

2
(1 + lnβ)

)
Proof.Consider the spectral decomposition H =

∑r
k=1 λkvkv

T
k , where eigen-

values in a descending order λ1 ≥ λ2 ≥ · · · ≥ λr > 0. Then, we have

H • X̂ =

r∑
k=1

d∑
j=1

λk
(
vTk ξ

j
)2
.

Now, observe that U =
[(

vTk ξ
j
)
k=1,...,r,j=1,..,d

]
∼ N (0, d−1Ird), since Ukj =

vTk ξ
j is a Gaussian random variable with E[vTk ξ

j ] = 0 and

E
[(

vTk ξ
j
) (

vTl ξ
j′
)]

=
1

d
· vTk vl · 1{j=j′}

=
1

d
· 1{k=l,j=j′},
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where 1{·} is the indicator function either 1 or 0.
Since uncorrelated Gaussian random variables are independent, it follows

that H • X̂ has the same distribution as
∑r
k=1

∑d
j=1 λk ξ̃

2
kj , where ξ̃kj are

i.i.d. Gaussian random variables with mean 0 and variance 1/d. In particu-
lar, we have:

Pr
(
H • X̂ ≤ βtr(H)

)
= Pr

 r∑
k=1

d∑
j=1

λk ξ̃
2
kj ≤ β

r∑
k=1

λk


= Pr

 r∑
k=1

d∑
j=1

λ̄k ξ̃
2
kj ≤ β


where λ̄k = λk/(λ1 + · · ·+ λr) for k = 1, . . . , r. Now, we compute

Pr

 r∑
k=1

d∑
j=1

λ̄k ξ̃
2
kj ≤ β


= Pr

exp

−t r∑
k=1

d∑
j=1

λ̄k ξ̃
2
kj

 ≥ exp(−tβ)

 (for all t ≥ 0)

≤ exp(tβ) · E

exp

−t r∑
k=1

d∑
j=1

λ̄k ξ̃
2
kj

 (by Markov’s inequality)

= exp(tβ) ·
r∏

k=1

E
[
exp

(
−tλ̄k ξ̃2

11

)]d
(by independence)

Recall that for a standard Gaussian random variable ξ, we have E[exp
(
−tξ2

)
] =

(1 + 2t)−1/2 for all t ≥ 0. Thus, it follows that

Pr
(
H • X̂ ≤ βtr(H)

)
≤ exp(tβ) ·

r∏
k=1

(
1 +

2tλ̄k
d

)−d/2

= exp(tβ) · exp

(
−d

2

r∑
k=1

ln

(
1 +

2tλ̄k
d

))
.

Now, note that for any fixed t ≥ 0, the function gt : Rr → R defined by
gt(x) = −(d/2)

∑r
k=1 ln(1 + 2txk/d) is convex over the simplex

∑r
k=1 xk = 1

and x ≥ 0. Hence, its maximum over a simplex is attained at a vertex, which
leads to

Pr
(
H • X̂ ≤ βtr(H)

)
≤ exp

[
tβ − d

2
ln

(
1 +

2t

d

)]
, ∀t > 0.

Furthermore, function exp(tβ − (d/2) ln(1 + 2t/d)) is minimized at t∗ = d(1 −
β)/2β, and t∗ > 0 whenever β ∈ (0, 1), which gives the proof.
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Proposition 2.10 Let H ∈ Sn be a symmetric positive semidefinite matrix
with r ≡ rank(H) ≥ 1. Then, for any α > 1, we have:

Pr
(
H • X̂ ≥ αtr(H)

)
≤ r · exp

(
d

2
(1− α+ lnα)

)
Proof.We now consider factorization H =

∑r
k=1 qkq

T
k . Thus, we have H • X̂ =∑r

k=1

∑d
j=1

(
qTk ξ

j
)2

. Observe that qTk ξ
j is a Gaussian random variable with

zero mean and variance σ2
k = 1

d‖qk‖
2. Then, we have

r∑
k=1

σ2
k =

1

d

r∑
k=1

‖qk‖2 =
1

d
· tr(H).

It follows that:

Pr
(
H • X̂ ≥ αtr(H)

)
= Pr

(∑r
k=1

∑d
j=1

(
qTk ξ

j
)2 ≥ αd∑r

k=1 σ
2
k

)
≤
∑r
k=1 Pr

(∑d
j=1

(
qTk ξ

j
)2 ≥ αdσ2

k

) (2.12)

To bound the last quantity, we first note that E[
∑d
j=1

(
qTk ξ

j
)2

] = d ·σ2
k. Hence,

for any t ∈ [0, 1/2) and k = 1, . . . , r, we have:

Pr

 d∑
j=1

(
qTk ξ

j
)2 ≥ αdσ2

k

 = Pr

exp

t d∑
j=1

σ−2
k

(
qTk ξ

j
)2 ≥ exp(tαd)


≤ exp(−tαd) · (1− 2t)−d/2

Now, the function exp (−tαd) · (1 − 2t)−d/2 is minimized at t∗ = (α− 1) /2α.
Moreover, we have t∗ ∈ (0, 1/2) whenever α ∈ (1,∞). It follows that:

Pr
(∑d

j=1

(
qTk ξ

j
)2 ≥ αdσ2

k

)
≤ αd/2 · exp

(
−d(α−1)

2

)
= exp

(
d
2 (1− α+ lnα)

)
.

(2.13)

Upon combining (2.12) and (2.13), we obtain:

Pr
(
H • X̂ ≥ αtr(H)

)
≤ r · exp

(
d

2
(1− α+ lnα)

)
.

From these two Propositions, we are now ready to prove the theorem. We

first establish the lower bound. Let β =
(
e(2m)2/d

)−1
. Note that β ∈ (0, 1) for

all d ≥ 1. Hence, by Proposition 2.9, we have:

Pr
(
Ai • X̂ ≤ βtr(Ai)

)
≤ exp

[
d ln(eβ)

2

]
=

1

2m
for i = 1, . . . ,m
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which implies that:

Pr

(
Ai • X̂ ≥

1

e(2m)2/d
· tr(Ai) for all i = 1, . . . ,m

)
≥ 1

2
(2.14)

On the other hand, if d > 4 ln(2m), then we can obtain an alternative bound as
follows. Write β = 1− β′ for some β′ ∈ (0, 1). Using the inequality ln(1− x) ≤
−x− x2/2, which is valid for all x ∈ [0, 1], we have:

1− β + lnβ = β′ + ln(1− β′) ≤ −β
′2

2
.

Now, let β′ =
√

4 ln(2m)
d . Since d > 4 ln(2m), we have β′ ∈ (0, 1). It then follows

from Proposition 2.9 that:

Pr
(
Ai • X̂ ≤ βtr(Ai)

)
≤ exp

(
−dβ

′2

4

)
=

1

2m
for i = 1, . . . ,m

which in turn implies that:

Pr

(
Ai • X̂ ≥

(
1−

√
4 ln(2m)

d

)
· tr(Ai) for all i = 1, . . . ,m

)
≥ 1

2
(2.15)

Upon combining (2.14) and (2.15), we obtain:

Pr
(
Ai • X̂ ≥ β(m, d) · tr(Ai) for all i = 1, . . . ,m

)
≥ 1

2
(2.16)

where β(m, d) is given by the theorem 2.6.
Next, we establish the upper bound. We write α = 1 + α′ for some α′ > 0.

Using the inequality ln(1 + x) ≤ x − x2/2 + x3/3, which is valid for all x > 0,
it is easy to show that:

1− α+ lnα = −α′ + ln(1 + α′) ≤


−α
′

6
for α′ ≥ 1

−α
′2

6
for 0 < α′ < 1

(2.17)

Let T = 12 ln(4mr)
d . If T ≥ 1, then set α′ = T ; otherwise, set α′ =

√
T . In the

former case, we have α′ ≥ 1, and hence by Proposition 2.10 and the bound in
(2.17), for i = 1, . . . ,m, we have:

Pr
(
Ai • X̂ ≥ αtr(Ai)

)
≤ rank(Ai) · exp

(
−dα

′

12

)
≤ 1

4m

where the last inequality follows from the fact that rank(Ai) ≤ r. In the latter
case, we have α′ ∈ (0, 1), and a similar calculation shows that:

Pr
(
Ai • X̂ ≥ αtr(Ai)

)
≤ rank(Ai) · exp

(
−dα

′2

12

)
≤ 1

4m
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for i = 1, . . . ,m. Hence, we conclude that:

Pr
(
Ai • X̂ ≤ α(m, r, d) · tr(Ai) for all i = 1, . . . ,m

)
≥ 1− 1

4
=

3

4
(2.18)

where α(m, r, d) is given by the Theorem 2.6.
Finally, upon combining (2.16) and (2.18), we conclude that:

Pr
(
β(m, d) · tr(Ai) ≤ Ai • X̂ ≤ α(m, r, d) · tr(Ai) for all i = 1, . . . ,m

)
is greater than 1−

(
1
4 + 1

2

)
= 1

4 , which completes the proof of Theorems 2.7 and
2.6.

As indicated by the exact low-rank Theorem 2.5, one can always reduce an
n-dimensional SDP problem to a r-dimensional SDP problem where r(r+1)/2 ≤
m. Thus, one can safely claim that r ≤

√
2m in α(m, r, d) of Theorem 2.6.

If Ai is not positive semidefinite in system

Ai •X = bi ∀ i = 1, . . . ,m, X � 0,

one cannot guarantee relative distortion bounds for X̂. However, since

Ai = A+
i −A

−
i

where both A+
i and A−i are positive semidefinite. Thus, for any exact solution

X, let
A+
i •X = b+i , A

−
i •X = b−i , b+i − b

−
i = bi, i = 1, ...,m.

Then, we can have bounded relative distortions for X̂ on b+i and b−i , which lead
to bounded absolute distortions on bi.

2.5 Uniqueness of CLP Optimal Solution

In many applications, one may want to know if an optimization problem pos-
sesses a unique optimizer. Moreover, can such a uniqueness can be certified by
an efficient algorithm. We give a positive answer for linear programming and
semidefinite programming.

Theorem 2.11 Consider LP and SDP.

i) (Uniqueness Theorem for Linear Programming) An LP optimal solution
x∗ is unique if and only if the cardinality of supp(x∗) is maximal among
all optimal solutions and the columns of Asupp(x∗) are linear independent,
that is, the only solution for the null space, Asupp(x∗)w = 0, is w = 0.

ii) (Uniqueness Theorem for Semidefinite Programming) An SDP optimal
and complementary solution X∗ is unique if and only if the rank of X∗

is maximal among all optimal solutions and the only solution for the null
space, V ∗Ai(V

∗)T •W = 0, i = 1, ...,m, is W = 0, where X∗ = (V ∗)TV ∗,
V ∗ ∈ Rr×n and r is the rank of X∗.
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Proof.It is easy to see both conditions are necessary for LP case, since otherwise,
one can find an optimal solution with a different support size. To see sufficiency,
suppose there there is another optimal solution y∗ such that x∗ − y∗ 6= 0. We
must have supp(y∗) ⊂ supp(x∗). Then we see

0 = Ax∗ −Ay∗ = A(x∗ − y∗) = Asupp(x∗)(x
∗ − y∗)supp(x∗)

which implies that columns of Asupp(x∗) are linearly dependent.

Note that for any optimal dual slack matrix S∗, we have S∗ • (V ∗)TV ∗ = 0
which implies that S∗(V ∗)T = 0. Consider any matrix X(U) = (V ∗)TUV ∗

where U ∈ Sr+ and

bi = Ai • (V ∗)TUV ∗ = V ∗Ai(V
∗)T • U, i = 1, ...,m.

One can see that X(U) remains an optimal SDP solution for any such U ∈ Sr+,
since it makes X(U) feasible and remain complementary to any optimal dual
slack matrix. If one can find W 6= 0 such that

V ∗Ai(V
∗)T •W = 0, i = 1, ...,m, 0 6= W ∈ Sr.

Now consider X(I + αW ) = (V ∗)T (I + α ·W )V ∗, and one can choose α 6= 0
such that X(I + αW ) � 0 is another optimal solution. Thus, both conditions
are necessary.

To see sufficiency, suppose there there is another optimal solution Y ∗ such
that X∗ − Y ∗ 6= 0. We must have Y ∗ = (V ∗)TUV ∗ for some U ∈ Sr+, since X∗

has the maximal rank. Then we see I − U 6= bz but

V ∗Ai(V
∗)T • (I − U) = 0, i = 1, ...,m,

which is a contradiction.

Example 2.9 Consider the LP and SDP examples presented earlier.
1) The LP primal and dual example:

minimize
(

2 1 1
)
x

subject to
(

1 1 1
)
x = 1,

x ≥ 0

maximize y

subject to y

 1
1
1

+ s =

 2
1
1

 ,

s ≥ 0,

An optimal solution pair

x∗ =

 0
0.5
0.5

 and s∗ =

 1
0
0

 .

Clearly x∗ is a maximal cardinality optimal solution, since an dual optimal
solution has cardinality 1 and n = 3. But the null space equation

0 = A2,3w = (1 1)w = w1 + w2
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has a nonzero solution w, thus the linear program does not have a unique optimal
solution.

2) The SDP primal and dual example:

minimize

(
2 .5
.5 1

)
•X

subject to

(
1 .5
.5 1

)
•X = 1,

X � 0.

maximize y

subject to y

(
1 .5
.5 1

)
+ S =

(
2 .5
.5 1

)
,

S � 0.

An optimal solution pair

X∗ =

(
0 0
0 1

)
and S∗ =

(
1 0
0 0

)
.

Clearly X∗ has rank 1 and it is maximal, since an dual optimal solution has rank
1 and n = 2. One can see V ∗ = (0 1) is a factorization of X∗ = (V ∗)TV ∗.
Then, V ∗A1(V ∗)T = 1 so that the only solution to the null space equation
V ∗A1(V ∗)T •W = 0 is W = 0. (Note that here W ∈ S1 so that it is a scalar.)
Thus, the semidefinite program has a unique optimal solution.

Later, we would show that polynomial-time interior-point algorithms are
capable to compute a maximal cardinality or maximal rank optimal solution
for (LP) or (SDP). At such a solution, we can check the null space condition
in polynomial time. Thus, to certify the uniqueness of an linear program or
semidefinite program can be done in polynomial time.

From the proof of Theorem 2.11, we can also derive a corollary

Corollary 2.12 Consider LP and SDP.

i) If all optimal solutions of an linear program have same number of nonzero
entries, then the linear program has a unique optimal solution.

ii) If all optimal solutions of an semidefinite program have same rank, then
the semidefinite program has a unique optimal solution.

2.6 Notes

Farkas’ lemma for conic linear constraints are closely linked to convex analysis
(i.e, Rockeafellar [266]) and the CLP duality theorems commented next, also
see Barvinok [37].

The SDP duality theory was studied by Barvinok [37], Nesterov and Ne-
mirovskii [243], Ramana [261], Ramana e al. [262], etc. The SDP example with
a duality gap was constructed by R. Freund (private communication).

Complementarity and rank. The exact low-rank theorem described here is
due to Pataki [254], also see Barvinok [36] and Alfakih and Wolkowicz [6]. The
approximate low-rank theorem is due to So et al. [282] which can be seen as a
generalization of the Johnson and Lindenstrauss theorem [177].
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2.7 Exercises

2.1 Find the optimal solution pair of Example 2.1.

2.2 Prove the second statement of Theorem 2.1.

2.3 Verify the weak duality theorem of the three CLP instances in Example
2.2.

2.4 This problem is related to the graph realization problem covered in class.
If there is no anchor in the Euclidean-distance graph, then the problem is called
anchor-free realization. It is clear that the realization cannot be unique since
the configuration may be translated, rotated, or reflected, while the distances are
being preserved. To remove the translation factor, one can add an objective
function to minimize the norm of the solution in the problem formulation:

minimize
∑n
j=1 ‖xj‖2

s.t. ‖xi − xj‖2 = d2
ij , ∀ (i, j) ∈ Nx,

xi ∈ Rd.

a) Show that what this minimization does is to translate the center of gravity
of the point set to the origin, that is, if x̄j, j = 1, ..., n, is the solution of
the problem, then

n∑
j=1

x̄j = 0.

b) Write an SDP relazation to the minimization problem, and write the dual
of the SDP relaxation.

2.5 Let S � 0, X � 0 and SX = 0. Furthermore, let X = V TV . Then
V S = SV T = 0.

2.6 Using the SDP rank reduction theorem to show that the optimality condi-
tions for the global minimizer y∗ of (BD) in Section 1.5.5:

(Q+ µ∗I)y∗ = −b, µ∗ ≥ 0, ‖y∗‖ ≤ 1, µ∗(1− ‖y∗‖) = 0,

and
(Q+ µ∗I) � 0;

are necessary and sufficient.

2.7 Given any matrix A ∈ Rn×m, using the SDP rank reduction theorem to
show that

minimize xTAy
s.t. ‖x‖2 = 1,

‖y‖2 = 1,

is a hidden SDP problem. Note that the minimal value of the problem is the
singular value of A.
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2.8 Consider the SDP problem

minimize C •X
s.t. Ai •X = bi, i = 1, ...,m,

Qj •X = 0, j = 1, ..., q,
X � 0,

where coefficient matrices Qj, j = 1, . . . , q, are positive semidefinite.

a) Suppose that there is an optimal solution X∗ with zero duality gap, show
that there must be an optimal solution matrix with its rank r satisfying
r(r + 1)/2 ≤ m. (Note that the bound is independent of q. )

b) Using the above result to show that the quadratic problem

minimize xTQx + 2cTx
s.t. Ax = 0,

‖x‖2 = 1

is a hidden SDP problem, where given Q is an n-dimensional symmetric
matrix and A is an m× n matrix with m < n.

2.9 Now you have down loaded SEDUMI1.05, DSDP5.8, and/or CVX, and
use them to solve the following SDP problems.

a) The SDP problem

minimize C •X
s.t. eie

T
i •X = 1, i = 1, 2, 3,

(ei − ej)(ei − ej)
T •X = 1, 1 ≤ i < j ≤ 3,

X � 0 ∈ S3,

and check the solution matrix rank when (i) C = I, (ii) C = −I, and (iii)
C = −e3e

T
3 .

b) The SDP problem

minimize C •X
s.t. e1e

T
1 •X = 1,

(ei − ei+1)(ei − ei+1)T •X = 1, i = 1, 2,
X � 0 ∈ S3,

and check the solution rank when (i) C = I, (ii) C = −I, and (iii)
C = −e3e

T
3 .

Here ei is the vector of all zeros except 1 at the ith position.
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Chapter 3

Interior-Point Algorithms

Although conic linear programs are much more general than classical linear
programs, they are not much harder to solve. It has turned out that most
interior-point methods for LP are extentable to solving CLP. As in LP, these
algorithms possess polynomial-time worst-case complexity under certain com-
putation models. They also perform well in practice. We will describe such
extensions in this chapter.

3.1 Central Path and Path-Following

To develop efficient interior-point algorithms, the key is to find a suitable barrier
or potential function, and the central-ray in E most interior to the cone. There is
a general theory on selection of barrier functions for (CLP) or (CLD), depending
on the convex cone involved. In this chapter, we consider self-dual cones (K =
K∗) only and present their barrier functions and central rays.

Definition 3.1 A differentiable function B(X) is called barrier function for a

closed convex cone K if for the sequence {Xk ∈
◦
K}, k = 1, . . .,

Xk → ∂K ⇒ B(Xk)→∞,

where ∂K represents the boundary of K. X • (−∇B(X)) is called the barrier-

coefficient of B(X), denoted by ν; and a point in
◦
K is called the central-ray

point if it is a fixed point of

X = −∇B(X),

denoted by Ic.

No that for LP and SOCP, X ∈ Rn is a vector and we will often write it as x.
For SDP, X ∈ Sn, that is, it is a n-dimensional symmetric matrix.

57
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3.1.1 Logarithmic barrier function for convex cones

We present logarithmic barrier functions for several popular cones.

Example 3.1 The following are logarithmic barrier functions, and their gradi-
ent vectors, Hessian matrices, central-ray points and barrier-coefficients for the
following convex cones.

• The n-dimensional non-negative orthant Rn+:

B(x) = −
n∑
j=1

ln(xj), ∇B(x) = −∆(x)−1e, ∇2B(x) = ∆(x)−2 ∈ Sn.

The central-ray point of B(x) is e, the vector of all ones, and the barrier-
coefficient is

x • (−∇B(x)) = x •∆(x)−1e = n

• The n-dimensional semidefinite cone Sn+:

B(X) = − ln det(X), ∇B(X) = −X−1,

∇2B(X) = {∂2B(X)/∂Xij∂Xkl = X−1
ik X

−1jl} = X−1 ⊗X−1 ∈ Sn
2

,

where ⊗ stands for matrix Kronecker product. The central-ray point of
B(X) is I, the identity matrix, and the barrier-coefficient is

X • (−∇B(X)) = X •X−1 = n

• The n-dimensional second-order cone {x : x1 ≥ ‖x−1‖}:

B(x) = −1

2
ln(x2

1 − ‖x−1‖2), ∇B(x) =
1

δ(x)2

(
−x1

x−1

)
,

∇2B(x) =
1

δ(x)2

(
−1 0
0 I

)
+

2

δ(x)4

(
x1

−x−1

)(
x1

−x−1

)T
,

where δ(x) =
√
x2

1 − ‖x−1‖2. The central-ray point of B(x) is e1, the unit
vector with 1 as its first element and 0 everywhere else, and the barrier-
coefficient is B(x) is

x • (−∇B(x)) = x • −1

δ(x)2

(
−x1

x−1

)
= 1.

• The mixed cone K = K1 ⊕K2, that is, X = [X1;X2] where X1 ∈ K1 and
X2 ∈ K2:

B(X) = B1(X1) +B2(X2)

where B1(·) and B2(·) are barrier functions for K1 and K2, respectively.
The barrier-coefficient is ν1 + ν2, where ν1 and ν2 are barrier-coefficients
of B1(·) and B2(·).
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Lemma 3.1 The following properties hold for the logarithmic barrier functions.

i) They are strongly convex functions, that is, the Hessian matrix of each is
positive definite in the interior of K.

ii) For any scaler |d| < 1,

−d ≤ − ln(1 + d) ≤ −d+
d2

2(1− |d|)
.

iii) For any X ∈
◦
K and D ∈ E, there is a constant γ such that when γ‖D‖∇2B(X) <

1,

∇B(X) •D ≤ B(X +D)−B(X) ≤ ∇B(X) •D +
γ2‖D‖2∇2B(X)

2(1− γ‖D‖∇2B(X))
;

and γ = 1 for LP and SDP and γ =
√

2 for SOCP.

Proof. To prove i), we can show that the Hessian matrix is positive definite
for each of LP, SDP, and SOCP barrier functions. This fact is easy to see for
LP and SDP, so that we give a detailed proof for SOCP as long as δ(x)2 > 0.
Without loss of generality, let x1 = 1. Then, for any y ∈ Rn,

yT∇2B(x)y =
1

δ(x)2
yT
(
−1 0
0 I

)
y +

2

δ(x)4
yT
(

1
−x−1

)(
1
−x−1

)T
y

=
1

δ(x)2
(‖y−1‖2 − y2

1) +
2

δ(x)4
(y1 − xT−1y−1)2.

Now consider

δ(x)2(‖y−1‖2 − y2
1) + 2(y1 − xT−1y−1)2

= (1− ‖x−1‖2)(‖y−1‖2 − y2
1) + 2(y1 − xT−1y−1)2

= (1− ‖x−1‖2)‖y−1‖2 + y2
1(1 + ‖x−1‖2)− 4y1(xT−1y−1) + 2(xT−1y−1)2.

The last term is minimized when y1 = 2(xT−1y−1)/(1 + ‖x−1‖2), so that

(1− ‖x−1‖2)‖y−1‖2 + y2
1(1 + ‖x−1‖2)− 4y1(xT−1y−1) + 2(xT−1y−1)2

≥ (1− ‖x−1‖2)

(
‖y−1‖2 −

2(xT−1y−1)2

1 + ‖x−1‖2

)
≥ (1− ‖x−1‖2)

(
‖y−1‖2 −

2‖x−1‖2‖y−1‖2

1 + ‖x−1‖2

)
= (1− ‖x−1‖2)2 ‖y−1‖2

1 + ‖x−1‖2
.

This quantity if strictly positive if y−1 6= 0. On the other hand, if y−1 = 0 and
y1 6= 0, yT∇2B(x)y is strictly positive as well.
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To prove ii), note that − ln(1 + d) is a convex function in d so that

− ln(1 + d) ≥ (− ln(1 + d))′|d=0 · d =
−1

1 + d
|d=0 · d = −d.

To prove the right site, we use the Taylor expansion

− ln(1 + d) = −d+
d2

2
− d3

3
+
d4

4
− . . .

≤ −d+
|d|2

2
+
|d|3

3
+
|d|4

4
+ . . .

≤ −d+
|d|2

2
+
|d|3

2
+
|d|4

2
+ . . .

= −d+
|d|2

2
(1 + |d|+ |d|2 + . . .)

= −d+
|d|2

2(1− |d|)

We now prove iii), again, the left site is due to the convexity of B(X). To
prove the right site, we consider LP, SDP, and SOCP separately. For LP, first
note that

∇B(x) • d = −
∑
j

(dj/xj) and ‖d‖2∇2B(x) =
∑
j

|dj/xj |2.

Then, using ii) we have

B(x + d)−B(x) =
∑
j

− ln(1 + dj/xj)

≤
∑
j

(
−(dj/xj) +

|dj/xj |2

2(1− |dj/xj |)

)

≤
∑
j

(
−(dj/xj) +

|dj/xj |2

2(1− (
∑
j |dj/xj |2)1/2)

)

=
∑
j

(−dj/xj) +
∑
j

|dj/xj |2

2(1− (
∑
j |dj/xj |2)1/2)


=

∑
j

(−dj/xj) +
1

2(1− (
∑
j |dj/xj |2)1/2)

∑
j

|dj/xj |2


= ∇B(x) • d +
‖d‖2∇2B(x)

2(1− ‖d‖∇2B(x))
.

For SDP, first note that

‖D‖2∇2B(X) = ‖X−1/2DX−1/2‖2 =
∑
j

(λ(X−1/2DX−1/2)j)
2
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where λ(X−1/2DX−1/2)j is the jth eigenvalue of symmetric matrix (X−1/2DX−1/2).
Thus,

B(X +D)−B(X) = − ln det(X +D) + ln det(X)

= − ln det(X−1/2(X +D)X−1/2)

= − ln det(I +X−1/2DX−1/2).

Then, the proof simply follows the proof for the LP case if we treat the eigen-
values of X−1/2DX−1/2 as the elements of d in LP. For both LP and SDP, the
constant γ in iii) is 1.

For SOCP, first note that

‖d‖2∇2B(x) = dT∇2B(x)d

= 1
δ(x)2 (‖d−1‖2 − d2

1) + 2
δ(x)4 (x1d1 − xT−1d−1)2.

(3.1)

Without loss of generality, again we assume x1 = 1. Then,

B(x + d)−B(x)

= −1

2
ln((1 + d1)2 − ‖x−1 + d−1‖2) +

1

2
ln(δ(x)2)

=
−1

2

(
ln
(
1− ‖x−1‖2 + 2(d1 − xT−1d−1) + d2

1 − ‖d−1‖2
)
− ln(δ(x)2)

)
=
−1

2

(
ln
(
δ(x)2 + 2(d1 − xT−1d−1) + d2

1 − ‖d−1‖2
)
− ln(δ(x)2)

)
=
−1

2
ln

(
1 +

1

δ(x)2

(
2(d1 − xT−1d−1) + d2

1 − ‖d−1‖2
))

=
−1

2
ln

((
1 +

1

δ(x)2
(d1 − xT−1d−1)

)2

− 1

δ(x)2

(
(d1 − xT−1d−1)2

δ(x)2
+ ‖d−1‖2 − d2

1

))
.

Similar to the proof of i) for SOCP, the quantity
(d1−xT

−1d−1)2

δ(x)2 + ‖d−1‖2 − d2
1 is

non-negative so that we can define

η(x,d)2 =
(d1 − xT−1d−1)2

δ(x)2
+ ‖d−1‖2 − d2

1.
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Thus,

B(x + d)−B(x)

≤ −1

2
ln

(
(1 +

1

δ(x)2
(d1 − xT−1d−1))2 − η(x,d)2

δ(x)2

)
=
−1

2

(
ln

(
1 +

1

δ(x)2
(d1 − xT−1d−1) +

η(x,d)

δ(x)

)
+ ln

(
1 +

1

δ(x)2
(d1 − xT−1d−1)− η(x,d)

δ(x)

))
=

1

2

(
− ln

(
1 +

1

δ(x)2
(d1 − xT−1d−1) +

η(x,d)

δ(x)

)
− ln

(
1 +

1

δ(x)2
(d1 − xT−1d−1)− η(x,d)

δ(x)

))
.

Let

d+ =
1

δ(x)2
(d1 − xT−1d−1) +

η(x,d)

δ(x)

and

d− =
1

δ(x)2
(d1 − xT−1d−1)− η(x,d)

δ(x)
.

Then, we have

|d+| ≤ 1

δ(x)2
|d1 − xT−1d−1|+

η(x,d)

δ(x)

so that

|d+|2 ≤ 2

(
1

δ(x)4
(d1 − xT−1d−1)2 +

η(x,d)2

δ(x)2

)
= 2

(
1

δ(x)2
(‖d−1‖2 − d2

1) +
2

δ(x)4
(d1 − xT−1d−1)2

)
= 2‖d‖2∇2B(x)

Similarly, |d−|2 ≤ 2‖d‖2∇2B(x). Let ‖d‖∇2B(x) < 1/
√

2 and apply ii). Then

B(x + d)−B(x) ≤ 1

2
(−d+ − d−) +

(d+)2

4(1− |d+|)
+

(d−)2

4(1− |d−|)

≤ ∇B(x) • d +
2‖d‖2∇2B(x)

2(1−
√

2‖d‖∇2B(x))
,

which completes the proof of iii) with γ =
√

2.
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3.1.2 The central path

Similar to LP, for a given parameter µ > 0 we consider (CLP) with the barrier
function added in the objective:

(CLPB) minimize C •X + µB(X)
subjectto AX = b,

X ∈ K;
(3.2)

or (CLD) with the barrier function added in the objective:

(CLDB) maximize bTy − µB(S)
subjectto ATy + S = C,

S ∈ K.
(3.3)

Proposition 3.2 Let both (CLP) and (CLD) have interior feasible solutions.
Then, for any given 0 < µ < ∞, the optimizers of (CLPB) and (CLDB) exist
and they are unique and in the interior of cone K, respectively.

In fact, for given µ, the optimizers of (CLPB) have necessary and sufficient
conditions:

C + µ∇B(X)−ATy = 0
AX = b

Let S = C −ATy. Then the conditions become

S + µ∇B(X) = 0
AX = b

−ATy − S = −C
(3.4)

From the calculation of ∇B(X) and S = −µ∇B(X), we see S ∈
◦
K.

Similarly, for given µ, the optimizers of (CLDB) have necessary and sufficient
conditions:

X + µ∇B(S) = 0
AX = b

−ATy − S = −C
(3.5)

From the calculation of ∇B(S) and X = −µ∇B(S), we see X ∈
◦
K.

A further analysis tells that conditions (3.4) and (3.5) are equivalent: X
in either set of conditions is the optimizer of (CLPB) and (y, S) either set of
conditions is the optimizer of (CLDB). Thus, we need only to look at one of the
two. This is easy to see for LP and SDP, since they can be written respectively
in a symmetric form:

x. · s = µe
Ax = b

−ATy − s = −c

 for LP, where µ =
xT s

n
, (3.6)
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and
XS = µI
AX = b

−ATy − S = −C

 for SDP, where µ =
X • S
n

. (3.7)

For SOCP, let us look at each of the two conditions (3.4) and (3.5). From
Example 3.1, we have

s + µ 1
δ(x)2

(
−x1

x−1

)
= 0

Ax = b
−ATy − s = −c

(3.8)

and

x + µ 1
δ(s)2

(
−s1

s−1

)
= 0

Ax = b
−ATy − s = −c

(3.9)

We like to show that one implies the other. Le us start from (3.8):

s1 =
µ

δ(x)2
x1 and s−1 = − µ

δ(x)2
x−1.

Then,

s2
1 − ‖s−1‖2 =

µ2

δ(x)4
(x2

1 − ‖x−1‖2) =
µ2

δ(x)2
> 0,

which implies s ∈
◦
K. Moreover, we have

µ = δ(x)δ(s) = xT s.

Thus, the first equation can be written as(
s1

s−1

)
+
δ(s)

δ(x)

(
−x1

x−1

)
= 0,

or
δ(s)

δ(x)

(
s1

s−1

)
+

(
−x1

x−1

)
= 0,

or in symmetric form

δ(x)

(
−s1

s−1

)
+ δ(s)

(
x1

x−1

)
= 0,

Ax = b
−ATy − s = −c

(3.10)

which, from δ(x)δ(s) = µ, is exactly the first equation of 3.9.
The optimizers, denoted by (x(µ),y(µ), s(µ)) for (3.6) and (3.10), or

(X(µ),y(µ), S(µ)) for (3.7), form the central path of (CLP) and (CLD) when
mu varies in (0,∞). When µ→ 0, the path tends to the optimal solution set.
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y(.)

The objective hyperplanes

Figure 3.1: The central path of y(µ) in a dual feasible region.

Theorem 3.3 Let (X(µ),y(µ), S(µ)) be on the central path.

i) The central path point (X(µ), S(µ)) is bounded for 0 < µ ≤ µ0 and any given
0 < µ0 <∞.

ii) For 0 < µ′ < µ,

cTX(µ′) < cTX(µ) and bTy(µ′) > bTy(µ).

iii) (X(µ), S(µ)) converges to an interior optimal solution pair for (CLP) and
(CLD), where an interior optimal solution is an optimal solution at which
the number inequality constraints are strictly satisfied the most for LP and
SOCP, or the rank of the optimal solution is maximal for SDP.

Proof. Note that

(X(µ0)−X(µ)) • (S(µ0)− S(µ)) = 0,

since (X(µ0)−X(µ)) in the null space of A and (S(µ0)−S(µ)) in the row space
of A. This can be rewritten as

X(µ) • S(µ0) + S(µ) •X(µ0) = X(µ0) • S(µ0) +X(µ) • S(µ) ≤ 2X(µ0) • S(µ0).

Thus,

X(µ) • S(µ0) ≤ 2X(µ0) • S(µ0) and S(µ) •X(µ0) ≤ X(µ0) • S(µ0),

together with the fact that X(µ0) and S(µ0) are fixed and both in the interior
of the cone, X(µ) and S(µ) must be bounded, which proves i).
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We leave the proof of ii) as an exercise.
We now prove iii). Since X(µ) and S(µ) are both bounded, they have at

least one limit point which we denote by X(0) and S(0). Let X∗ and (y∗, S∗)
be an interior optimal solution for (CLP) and (CLD), respectively. Then,

(X(µ)−X∗) • (S(µ)− S∗) = 0

implies
X(µ) • S∗ + S(µ) •X∗ = X(µ) • S(µ), ∀ 0 < µ ≤ µ0.

Using conditions (3.4) and (3.5), we have

−∇B(S(µ)) • S∗ −∇B(X(µ)) •X∗ =
1

µ
X(µ) • S(µ), ∀ 0 < µ ≤ µ0.

Thus, for all µ ∈ (0, µ0]

−∇B(S(µ))•S∗ ≤ 1

µ
X(µ)•S(µ) and −∇B(X(µ))•X∗ ≤ 1

µ
X(µ)•S(µ). (3.11)

In the case of linear programming, using the definition of ∇B(·) and X(µ) •
S(µ) = nµ we have

∑
j

(
x∗j

x(µ)j

)
≤ n and

∑
j

(
s∗j

s(µ)j

)
≤ n, ∀ 0 < µ ≤ µ0.

Thus, we must have

nx(µ)j ≥ x∗j ≥ 0 and ns(µ)j ≥ s∗j ≥ 0, ∀ j, ∀ 0 < µ ≤ µ0.

This implies that any limit point of x(µ)

x(0)j > 0, ∀ j ∈ {j : x∗j > 0},

and any limit point of s(µ)

s(0)j > 0, ∀ j ∈ {j : s∗j > 0}.

In other words, they are also interior optimal solutions as (x∗, s∗) are.
In the case of semidefinite programming, using the definition of ∇B(·) and

we have X(µ) • S(µ) = nµ we have

X(µ)−1 •X∗ ≤ n and S(µ)−1• ≤ n, ∀ 0 < µ ≤ µ0.

Or
nX(µ) � X∗ and nS(µ) � S∗, ∀ 0 < µ ≤ µ0.

This implies that any limit point of X(µ) has a rank at least as great as X∗,
and any limit point of S(µ) has a rank at least as great as S∗.
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In the case of second-order cone programming, using the definition of ∇B(·)
and X(µ) • S(µ) = 2µ we have for all 0 < µ ≤ µ0,

1

δ(x(µ))2

(
x(µ)1

−x(µ)−1

)
•
(

x∗1
x∗−1

)
≤ 2

and
1

δ(s(µ))2

(
s(µ)1

−s(µ)−1

)
•
(

s∗1
s∗−1

)
≤ 2.

Let x∗ be in the interior of the second-order cone, that is, x∗1 > ‖x∗−1‖. Then

δ(x(µ))2 ≥ x(µ)1x
∗
1 − x(µ)T−1x

∗
−1, ∀ 0 < µ ≤ µ0.

Since ‖x(µ)−1‖ ≤ x(µ)1, for all 0 < µ ≤ µ0,

δ(x(µ))2 ≥ x(µ)1x
∗
1 − ‖x(µ)−1‖‖‖x∗−1‖

≥ x(µ)1x
∗
1 − x(µ)1‖‖x∗−1‖

= x(µ)1(x∗1 − ‖x∗−1‖)
≥ δ(x(µ))(x∗1 − ‖x∗−1‖).

But δ(x(µ)) > 0 for all 0 < µ ≤ µ0, we have

δ(x(µ)) ≥ x∗1 − ‖x∗−1‖ > 0, ∀ 0 < µ ≤ µ0,

so that any limit of x(µ) has δ(x(0)) > 0 and it is in the interior of the second-

order cone.

3.1.3 Path following algorithms

Suppose we have an approximate central path point (X,y, S) in a neighborhood
of (X(µ),y(µ), S(µ)) for a given µ > 0. Then we consider to compute a new
approximate central-path point (X+,y+, S+) corresponding to a chosen µ+

where 0 < µ+ < µ. If one repeats this process, then a sequence of approximate
central-path points (Xk,yk, Sk), corresponding to µ0 > µ1 > ... > µk, ..., would
be generated, and it converges to the optimal solution set as µk → 0. Such an
algorithm is called the central-path following algorithm.

If µ+ is close to µ, we expect (X(µ+),y(µ+), S(µ+)) is also close to (X,y, S),
so that (X,y, S) would be a good initial point for computing (X+,y+, S+) by
numerical procedures such as Newton’s method. Denote by (DX ,dy, DS) the
Newton direction at initial solution (X,y, S):

DX = X+ −X, dy = y+ − y, DS = S+ − S.

Since there are three different sets of conditions to describe the central-path
condition, namely primal system (3.4), dual system (3.5) and primal-dual sym-
metric system, the Newton direction may computed from three different sets of
equations.
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First, (DX ,dy, DS) must meet the equality constraints

(Feasibility)
ADX = 0

−ATdy −DS = 0.
(3.12)

Then, the remaining equation based on the primal system:

(Primal-Newton) DS + µ+∇2B(X)DX = −(S + µ+∇B(X)); (3.13)

the remaining equation based on the dual system:

(Dual-Newton) DX + µ+∇2B(S)DS = −(X + µ+∇B(S)); (3.14)

and the remaining equation based on the primal-dual symmetric system is more
involved

(Primal-Dual-Newton) DS + µ+∇2B(Z)DX = −(S + µ+∇B(X).
(3.15)

where Z ∈ E is chosen to satisfy

S = ∇2B(Z)X. (3.16)

We explain solution Z of (3.16) in more detail.

Example 3.2 The following are solutions Z (LP), (SDP) and (SOCP).

• For LP cone

z = s./x ∈ Rn, that is z =


s1
x1

...
sn
xn

 .

• For SDP cone
Z = X .5(X .5SX .5)−.5X .5 ∈ Sn

• For SOCP cone

z =

(
ζx1 + ηs1

ζx−1 − ηs−1

)
∈ Rn

where

ζ =
2√

δ(x)δ(s) + xT s
and η = ζ

δ(x)

δ(s)
.

One way to solve these systems is to form a normal equation: for example,
pre-multiplying Dual-Newton (3.14) on both sides by A, we have

ADX + µ+A∇2B(S)DS = −A(X + µ+∇B(S)).

Then, using (3.12), it becomes

A∇2B(S)ATdy =
1

µ+
b +A∇B(S), (3.17)

where A∇2B(S)AT is called Gram matrix.
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Example 3.3 The detailed dual Gram matrices for LP, SDP and SOCP are:

• for LP, it is
A∆(s)−2AT ;

• for SDP, it is

AS−2AT :=

 A1S
−1 • S−1A1 · · · A1S

−1 • S−1Am
...

. . .
...

AmS
−1 • S−1A1 · · · AmS

−1 • S−1Am

 ;

• for SOCP, it is

A

(
1

δ(s)2

(
−1 0
0 I

)
+

2

δ(x)4

(
s1

−s−1

)(
s1

−s−1

)T)
AT .

Once have dy calculated, we use (3.12) to calculate DS and (3.14) to calculate
DX .

For Primal-Newton and Primal-Dual-Newton, we pre-multiply first∇2B(X)−1

and ∇2B(Z)−1, respectively; and then pre-multiply A to obtain the normal
equations. Once all Newton directions are calculated, the new approximate
solution would be

X+ = X +DX , y+ = y + dy, S = S0 +DS ,

and we may repeat the Newton step several times to find an approximate solu-
tion (X+,y+, S+) that is in the neighborhood of the exact central-path point
(X(µ+),y(µ+), S(µ+)).

The following theorem further characterizes the path following algorithm.

Theorem 3.4 There is a neighborhood N (µ) of the central path such that for

(X,y, S) ∈ N (µ), one can set µ+ = (1− O(1)√
ν

)µ and apply one Newton step to

calculate (X+,y+, S+) ∈ N (µ+).

3.2 Potential Reduction Algorithms

In practical computation, it is more efficient to generate iterative solutions in
a large neighborhood as long as a merit function is monotonically decreasing,
so that the greater the reduction of the function, the faster convergence of the
iterative solutions to optimality. Such an algorithm is said function-driven. If
the merit function is the objective function itself, a function-driven algorithm is
likely to generate iterative solutions being prematurely too close to the bound-
ary, and the convergence would be slow down in future iterations. A better
driven function should balance the reduction of the objective function as well as
a good position in the (interior) of the feasible region – we now present a poten-
tial function logarithmically combining the objective function and the barrier
function.
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3.2.1 Potential functions

Let X be any interior feasible solution of (CLP) and (y, S) be any interior
feasible solution of (CLP). Then, a primal-dual potential function is defined as

ψρ(X,S) := ρ ln(X • S) +B(X) +B(S), (3.18)

for any positive integer ρ.

Proposition 3.5 For any X ∈
◦
K and S ∈

◦
K∗,

i) if K = Rn+ or K = Sn+

ψn(X,S) := n ln(X • S) +B(X) +B(S) ≥ n ln(n);

ii) if K = Nn
2

ψ1(x, s) := ln(x • s) +B(x) +B(s) ≥ 0;

iii) if K = K1 ⊕K2 equipped with barrier-coefficients ν1 and ν2,

ψν1+ν2(X,S) := (ν1 +ν2) ln(X •S)+B(X)+B(S) ≥ (ν1 +ν2) ln(ν1 +ν2).

Proof. We leave i) as an exercise. To prove ii) of the second-order cone, we see
first

ψ1(x, s) := ln(x • s) +B(x) +B(s) = ln

(
x • s

δ(x)δ(s)

)
.

But
x • s = x1s1 + xT−1s−1 ≥ x1s1 − ‖x−1‖‖s−1‖ > 0.

Thus,

(x • s)2 ≥ (x1s1)2 − 2x1s1‖x−1‖‖s−1‖+ ‖x−1‖2‖s−1‖2

≥ (x1s1)2 − x2
1‖s−1‖2 − s2

1‖x−1‖2 + ‖x−1‖2‖s−1‖2

= (x2
1 − ‖x−1‖2)(s2

1 − ‖s−1‖2)

= δ(x)2δ(s)2,

which proves ii).
To prove iii), we see X = [X1;X2] and S = [S1;S2], B(X) = B1(X1) +

B2(X2), B(S) = B1(S1) +B2(S2),

X • S = X1 • S1 +X1 • S1.

X • S
ν1 + ν2

=
X1 • S1 +X1 • S1

ν1 + ν2

=
ν1

ν1 + ν2

X1 • S1

ν1
+

ν2

ν1 + ν2

X2 • S2

ν2

≥
(
X1 • S1

ν1

)ν1/(ν1+ν2)

·
(
X2 • S2

ν2

)ν2/(ν1+ν2)

.
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Thus,

ln(X • S)− ln(ν1 + ν2) ≥ 1

ν1 + ν2
(ν1 ln(

X1 • S1

ν1
) + ν2 ln(

X1 • S1

ν2
))

≥ 1

ν1 + ν2
(−B(X1)−B(S1)−B(X2)−B(S2)).

Multiplying (ν1 + ν2) on both sides proves iii).

In summary, for any closed convex cone K with a barrier function B(·) of
barrier-coefficient ν, we have

ψν(X,S) = ν ln(X • S)−B(X)−B(S) ≥ ν ln(ν). (3.19)

Thus, for ρ > ν,

ψρ(X,S) = (ρ− ν) ln(X • S) + ψν(X,S)

≥ (ρ− ν) ln(X • S) + ν ln(ν) ≥ (ρ− ν) ln(X • S).

Then, if there is a sequence of (Xk ∈
◦
K,Sk ∈

◦
K) such that ψρ(X

k, Sk) → −∞,
it must be true ln(Xk • Sk)→ −∞ or (Xk • Sk)→ 0. More precisely, we have

Xk • Sk ≤ exp(
ψρ(X

k, Sk)− ν ln(ν)

ρ− ν
). (3.20)

Moreover, we have the following theorem:

Theorem 3.6 Let X ∈
◦
Fp and (y, S) ∈

◦
Fd or, in short, (X,y, S) ∈

◦
F , and let

the level set

Ψ(δ) := {(X,y, S) : ψρ(X,S) ≤ δ}.

Then,

i)

Ψ(δ1) ⊂ Ψ(δ2) if δ1 ≤ δ2.

ii) For every δ, Ψ(δ) is bounded and its closure Ψ̂(δ) has non-empty intersection
with the solution set.

Next we will show that a potential reduction algorithm generates sequences

{Xk,yk, Sk} ∈
◦
F such that

ψν+
√
ν(Xk+1,yk+1, Sk+1) ≤ ψν+

√
ν(Xk,yk, Sk)− .05

for k = 0, 1, 2, .... This indicates that the level sets shrink at least a constant
rate independently of m or n.
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3.2.2 Potential reduction algorithms

The primal-dual potential function of (3.18) can be split into a primal potential

and a dual potential. Then, for any X ∈
◦
Fp and (y, S) ∈

◦
Fd, the primal potential

function is defined as

ψpρ(X) := ρ ln(S •X) +B(X),

where S is dual feasible and fixed; the dual potential function is defined as

ψdρ(S) := ρ ln(X • S) +B(S),

where X is primal feasible and fixed. Here, we let ρ ≥ ν. They related to ψ in
the following way:

ψρ(X,S) = ρ ln(X • S) +B(X) +B(S)

= ψpρ(X) +B(S)

= ψdρ(S) +B(X),

where ρ ≥ ν.
For any interior feasible solution (X,y, S), regardless it is close or not to

the central path, we compute a potential-reduction direction (DX ,dy, DS) as
follows. Again, it first satisfies the feasibility equation (3.12), that is,

ADX = 0
−ATdy −DS = 0.

Then, the remaining equation can drawn from three potential functions: the
primal-based, the dual-based, and the primal-dual-based. The remaining con-
dition based on the primal:

(Primal) DS +∇2B(X)DX = −∇ψpρ(X); (3.21)

the remaining equation based on the dual system:

(Dual) DX +∇2B(S)DS = −∇ψdρ(S); (3.22)

and the remaining equation based on the primal-dual symmetric system is more
involved

(Primal-Dual) DS +∇2B(Z)DX = −∇Xψpρ(X). (3.23)

Once these directions are calculated, the new approximate solution would be

X+ = X + αDX , y+ = y + βdy, S = S + βDS ,

where step-sizes α and β are chosen to make them feasible and the primal-dual
potential function reduced most.
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Example 3.4 Consider LP, SDP and SOCP.

• For LP, the primal, dual and primal-dual potential-reduction directions
would be

(LP-Primal) ds + ∆(x)−2dx = − ρ
xT s

s + ∆(x)−1e;

(LP-Dual) dx + ∆(s)−2ds = − ρ
xT s

x + ∆(s)−1e;

and

(LP-Primal-Dual) ds + ∆(x)−1∆(s)dx = − ρ
xT s

s + ∆(x)−1e

or after pre-multiplying ∆(x)−1 on both sides

(LP-Primal-Dual) ∆(x)ds + ∆(s)dx = − ρ
xT s

(x. · s) + e.

Recall that ∆(·) is a diagonal matrix whose diagonal entries are elements
of an input vector.

• For SDP, the primal, dual and primal-dual potential-reduction directions
would be

(SDP-Primal) DS +X−1DXX
−1 = − ρ

X•SS +X−1;

(SDP-Dual) DX + S−1DSS
−1 = − ρ

X•SX + S−1;

and

(SDP-Primal-Dual) DS + Z−1DXZ
−1 = − ρ

X•SS +X−1.

where
Z = X .5(X .5SX .5)−.5X .5.

• For SOCP, the primal, dual and primal-dual directions would be

(SOCP-Primal)

ds +

(
1

δ(x)2

(
−1 0
0 I

)
+ 2

δ(x)4

(
x1

−x−1

)(
x1

−x−1

)T)
dx = − ρ

xT s
s + ∆(x)−1e;

(SOCP-Dual)

dx +

(
1

δ(s)2

(
−1 0
0 I

)
+ 2

δ(x)4

(
s1

−s−1

)(
s1

−s−1

)T)
ds = − ρ

xT s
x + ∆(s)−1e;

and

(SOCP-Primal-Dual)

ds +

(
1

δ(z)2

(
−1 0
0 I

)
+ 2

δ(z)4

(
z1

−z−1

)(
z1

−z−1

)T)
dx = − ρ

xT s
s + ∆(x)−1e

where z is given in (3.2).
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The following theorem characterizes the efficiency of these potential-reduction
algorithms.

Theorem 3.7 For any (X,y, S) ∈
◦
F , there are close-form formula to choose

step-sizes α and β such that

ψρ(X
+,y+, S+) ≤ ψρ(X,y, S)− .05.

3.2.3 Analysis of the primal potential-reduction

Given a pair of (X,y, S) ∈
◦
F , we fix (y, S) and consider only update X. For

direction DX ∈ E , the primal potential function

ψpρ(X +DX) := ρ ln(S • (X +DX)) +B(X +DX).

From the concavity of ρ ln()

ρ ln(S • (X +DX))− ρ ln(S •X) ≤ ρ

S •X
S •DX .

From Lemma 3.1,

B(X +DX)−B(X) ≤ ∇B(X) •DX +
γ2‖DX‖2∇2B(X)

2(1− γ‖DX‖∇2B(X))
.

Combine the two, we have an overestimate function for the potential difference

ψpρ(X +DX)− ψpρ(X)

≤ ρ

Sk •Xk
S •DX +∇B(X) •DX +

γ2‖DX‖2∇2B(X)

2(1− γ‖DX‖∇2B(X))

= ∇ψpρ(X) •DX +
γ2‖DX‖2∇2B(X)

2(1− γ‖DX‖∇2B(X))

where γ = 1 for LP and SDP and γ =
√

2 for SOCP. This overestimate function
is more or less a quadratic in DX . Thus, the Newton step would compute the
direction

minimize ∇ψpρ(X) •DX + 1
2‖DX‖2∇2B(X)

subject to ADX = 0.

The optimality condition of the Newton step is exactly (3.21) with dy (and
DS = −ATdy) as the Lagrangian multiplier vector:

DS +∇2B(X)DX = −∇ψpρ(X).

Let the minimizer be D̄X . Then, since DS •DX = 0,

‖D̄X‖2∇2B(X) = D̄X • ∇2B(X)D̄X = −∇ψpρ(X) • D̄X .
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If ‖D̄X‖2∇2B(X) ≥ 1, we make update

X+ = X +
α

γ

D̄X

‖D̄X‖∇2B(X)

, (3.24)

where α is a constant that will be specified later. Clearly,

γ‖X+ −X‖∇2B(X) ≤ α

so that

ψpρ(X+)− ψpρ(X) ≤ ∇ψpρ(X) • (X+ −X) +
γ2‖X+ −X‖2∇2B(X)

2(1− γ‖X+ −X‖∇2B(X))

= −α
γ
‖D̄X‖∇2B(X) +

α2

2(1− α)

≤ −α
γ

+
α2

2(1− α)
,

where we recall that γ = 1 for LP and SDP, and γ =
√

2 for SOCP from Lemma
3.1. Thus, we can choose an α such that the ψpρ(X+) is reduced by a constant
from ψpρ(X). Moreover, from the relation beween ψpρ(X) and ψρ(X,S), we let
S+ = S so that ψρ(X

+, S+) is reduced by the same constant from ψρ(X,S).
Now we consider the case ‖D̄X‖2∇2B(X) < 1. Note that

DX = −∇2B(X)−1
(
∇ψpρ(X) +DS

)
= −∇2B(X)−1

(
ρ

S•XS +∇B(X) +DS

)
= −∇2B(X)−1

(
ρ

S•X (S + S•X
ρ DS) +∇B(X)

)
= − ρ

S•X∇
2B(X)−1

(
S+ + S•X

ρ ∇B(X)
)
,

where S+ = S + S•X
ρ DS . Then, ‖D̄X‖2∇2B(X) < 1 implies

‖S+ +
S •X
ρ
∇B(X)‖∇2B(X)−1 ≤ S •X

ρ
.

Let (x, y, s) ∈
◦
F . Then consider the primal-dual potential function:

ψn+ρ(x, s) = (n+ ρ) ln(xT s)−
n∑
j=1

ln(xjsj),

where ρ ≥ 0. Let z = bT y, then sTx = cTx− z and we have

ψn+ρ(x, s) = Pn+ρ(x, z)−
n∑
j=1

ln sj .

Recall that when ρ = 0, ψn+ρ(x, s) is minimized along the central path. How-
ever, when ρ > 0, ψn+ρ(x, s) → −∞ means that x and s converge to the
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optimal face, and the descent gets steeper as ρ increases. In this section we
choose ρ =

√
n.

The process calculates steps for x and s, which guarantee a constant reduc-
tion in the primal-dual potential function. As the potential function decreases,
both x and s are forced to an optimal solution pair.

Consider a pair of (xk, yk, sk) ∈
◦
F . Fix zk = bT yk, then the gradient vector

of the primal potential function at xk is

∇Pn+ρ(x
k, zk) =

(n+ ρ)

(sk)Txk
c− (Xk)−1e =

(n+ ρ)

cTxk − zk
c− (Xk)−1e.

We directly solve the ball-constrained linear problem for direction dx:

minimize ∇Pn+ρ(x
k, zk)T dx

s.t. Adx = 0, ‖(Xk)−1dx‖ ≤ α.

Let the minimizer be dx. Then

dx = −αX
kpk

‖pk‖
,

where

pk = p(zk) :== (I −XkAT (A(Xk)2AT )−1AXk)Xk∇Pn+ρ(x
k, zk).

Update

xk+1 = xk + dx = xk − αX
kpk

‖pk‖
, (3.25)

and,

Pn+ρ(x
k+1, zk)− Pn+ρ(x

k, zk) ≤ −α‖pk‖+
α2

2(1− α)
.

Here, we have used the fact

Pn+ρ(x
k+1, zk)− Pn+ρ(x

k, zk)

≤ n+ ρ

cTxk − zk
cT dx − eT (Xk)−1dx +

‖(Xk)−1dx‖2

2(1− ‖(Xk)−1dx‖∞)

= ∇P(xk, zk)T dx +
‖(Xk)−1dx‖2

2(1− ‖(Xk)−1dx‖∞)

= −α‖pk‖+
α2

2(1− α)

Thus, as long as ‖pk‖ ≥ η > 0, we may choose an appropriate α such that

Pn+ρ(x
k+1, zk)− Pn+ρ(x

k, zk) ≤ −δ

for some positive constant δ. By the relation between ψn+ρ(x, s) and Pn+ρ(x, z),
the primal-dual potential function is also reduced. That is,

ψn+ρ(x
k+1, sk)− ψn+ρ(x

k, sk) ≤ −δ.
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However, even if ‖pk‖ is small, we will show that the primal-dual potential
function can be reduced by a constant δ by increasing zk and updating (yk, sk).

We focus on the expression of pk, which can be rewritten as

pk = (I −XkAT (A(Xk)2AT )−1AXk)(
(n+ ρ)

cTxk − zk
Xkc− e)

=
(n+ ρ)

cTxk − zk
Xks(zk)− e, (3.26)

where
s(zk) = c−ATy(zk) (3.27)

and
y(zk) = y2 − cT xk−zk

(n+ρ) y1,

y1 = (A(Xk)2AT )−1b,
y2 = (A(Xk)2AT )−1A(Xk)2c.

(3.28)

Regarding ‖pk‖ = ‖p(zk)‖, we have the following lemma:

Lemma 3.8 Let

µk =
(xk)T sk

n
=
cTxk − zk

n
and µ =

(xk)T s(zk)

n
.

If

‖p(zk)‖ < min

(
η

√
n

n+ η2
, 1− η

)
, (3.29)

then the following three inequalities hold:

s(zk) > 0, ‖Xks(zk)− µe‖ < ηµ, and µ < (1− .5η/
√
n)µk. (3.30)

Proof. The proof is by contradiction.

i) If the first inequality of (3.30) is not true, then ∃ j such that sj(z
k) ≤ 0 and

‖p(zk)‖ ≥ 1− (n+ ρ)

nµk
xjsj(z

k) ≥ 1.

ii) If the second inequality of (3.30) does not hold, then

‖p(zk)‖2 = ‖ (n+ ρ)

nµk
Xks(zk)− (n+ ρ)µ

nµk
e+

(n+ ρ)µ

nµk
e− e‖2

= (
(n+ ρ)

nµk
)2‖Xks(zk)− µe‖2 + ‖ (n+ ρ)µ

nµk
e− e‖2

≥ (
(n+ ρ)µ

nµk
)2η2 + (

(n+ ρ)µ

nµk
− 1)2n (3.31)

≥ η2 n

n+ η2
,

where the last relation prevails since the quadratic term yields the mini-
mum at

(n+ ρ)µ

nµk
=

n

n+ η2
.
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iii) If the third inequality of (3.30) is violated, then

(n+ ρ)µ

nµk
≥ (1 +

1√
n

)(1− .5η√
n

) ≥ 1,

which, in view of (3.31), leads to

‖p(zk)‖2 ≥ (
(n+ ρ)µ

nµk
− 1)2n

≥ ((1 +
1√
n

)(1− .5η√
n

)− 1)2n

≥ (1− η

2
− η

2
√
n

)2

≥ (1− η)2.

The lemma says that, when ‖p(zk)‖ is small, then (xk, y(zk), s(zk)) is in the
neighborhood of the central path and bT y(zk) > zk. Thus, we can increase
zk to bT y(zk) to cut the dual level set Ω(zk). We have the following potential
reduction theorem to evaluate the progress.

Theorem 3.9 Given (xk, yk, sk) ∈
◦
F . Let ρ =

√
n, zk = bT yk, xk+1 be given

by (3.25), and yk+1 = y(zk) in (3.28) and sk+1 = s(zk) in (3.27). Then, either

ψn+ρ(x
k+1, sk) ≤ ψn+ρ(x

k, sk)− δ

or
ψn+ρ(x

k, sk+1) ≤ ψn+ρ(x
k, sk)− δ

where δ > 1/20.

Proof. If (3.29) does not hold, i.e.,

‖p(zk)‖ ≥ min

(
η

√
n

n+ η2
, 1− η

)
,

then

Pn+ρ(x
k+1, zk)− Pn+ρ(x

k, zk) ≤ −αmin

(
η

√
n

n+ η2
, 1− η

)
+

α2

2(1− α)
,

hence from the relation between Pn+ρ and ψn+ρ,

ψn+ρ(x
k+1, sk)− ψn+ρ(x

k, sk) ≤ −αmin

(
η

√
n

n+ η2
, 1− η

)
+

α2

2(1− α)
.

Otherwise, from Lemma 3.8 the inequalities of (3.30) hold:
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i) The first of (3.30) indicates that yk+1 and sk+1 are in
◦
Fd.

ii) Using the second of (3.30) and applying Lemma ?? to vector Xksk+1/µ, we
have

n ln(xk)T sk+1 −
n∑
j=1

ln(xkj s
k+1
j )

= n lnn−
n∑
j=1

ln(xkj s
k+1
j /µ)

≤ n lnn+
‖Xksk+1/µ− e‖2

2(1− ‖Xksk+1/µ− e‖∞)

≤ n lnn+
η2

2(1− η)

≤ n ln(xk)T sk −
n∑
j=1

ln(xkj s
k
j ) +

η2

2(1− η)
.

iii) According to the third of (3.30), we have

√
n(ln(xk)T sk+1 − ln(xk)T sk) =

√
n ln

µ

µk
≤ −η

2
.

Adding the two inequalities in ii) and iii), we have

ψn+ρ(x
k, sk+1) ≤ ψn+ρ(x

k, sk)− η

2
+

η2

2(1− η)
.

Thus, by choosing η = .43 and α = .3 we have the desired result.

Theorem 3.9 establishes an important fact: the primal-dual potential func-
tion can be reduced by a constant no matter where xk and yk are. In practice,
one can perform the line search to minimize the primal-dual potential function.
This results in the following primal-dual potential reduction algorithm.

Algorithm 3.1 Given a central path point (x0, y0, s0) ∈
◦
F . Let z0 = bT y0. Set

k := 0.
While (sk)Txk ≥ ε do

1. Compute y1 and y2 from (3.28).

2. If there exists z such that s(z) > 0, compute

z̄ = arg min
z
ψn+ρ(x

k, s(z)),

and if ψn+ρ(x
k, s(z̄)) < ψn+ρ(x

k, sk) then yk+1 = y(z̄), sk+1 = s(z̄) and
zk+1 = bT yk+1; otherwise, yk+1 = yk, sk+1 = sk and zk+1 = zk.
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3. Let xk+1 = xk − ᾱXkp(zk+1) with

ᾱ = arg min
α≥0

ψn+ρ(x
k − αXkp(zk+1), sk+1).

4. Let k := k + 1 and return to Step 1.

The performance of the algorithm results from the following corollary:

Corollary 3.10 Let ρ =
√
n. Then, Algorithm 3.1 terminates in at most

O(
√
n ln(cTx0 − bT y0)/ε) iterations with

cTxk − bT yk ≤ ε.

Proof. In O(
√
n ln((x0)T s0/ε)) iterations

−
√
n ln((x0)T s0/ε) = ψn+ρ(x

k, sk)− ψn+ρ(x
0, s0)

≥
√
n ln(xk)T sk + n lnn− ψn+ρ(x

0, s0)

=
√
n ln((xk)T sk/(x0)T s0).

Thus, √
n ln(cTxk − bT yk) =

√
n ln(xk)T sk ≤

√
n ln ε,

i.e.,

cTxk − bT yk = (xk)T sk ≤ ε.

P k = PA′(Xk).5∇P(Xk, zk)(Xk).5

= (Xk).5∇P(Xk, zk)(Xk).5 −A′T yk

or

P k =
n+ ρ

Sk •Xk
(Xk).5(C −AT yk)(Xk).5 − I,

and

yk =
Sk •Xk

n+ ρ
(A′A′T )−1A′(Xk).5∇P(Xk, zk)(Xk).5.

Here, PA′ is the projection operator onto the null space of A′, and

A′A′T :=


A′1 •A′1 A′1 •A′2 ... A′1 •A′m
A′2 •A′1 A′2 •A′2 ... A′2 •A′m
... ... ... ...

A′m •A′1 A′m •A′2 ... A′m •A′m

 ∈Mm.
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In view of Corollary ?? and

∇P(Xk, zk) • (Xk+1 −Xk) = −α∇P(Xk, zk) • (Xk).5P k(Xk).5

‖P k‖

= −α (Xk).5∇P(Xk, zk)(Xk).5 • P k

‖P k‖

= −α‖P
k‖2

‖P k‖
= −α‖P k‖,

we have

P(Xk+1, zk)− P(Xk, zk) ≤ −α‖P k‖+
α2

2(1− α)
.

Thus, as long as ‖P k‖ ≥ β > 0, we may choose an appropriate α such that

P(Xk+1, zk)− P(Xk, zk) ≤ −δ

for some positive constant δ.
Now, we focus on the expression of P k, which can be rewritten as

P (zk) := P k =
n+ ρ

Sk •Xk
(Xk).5S(zk)(Xk).5 − I (3.32)

with
S(zk) = C −AT y(zk) (3.33)

and

y(zk) := yk = y2 −
Sk •Xk

n+ ρ
y1 = y2 −

C •Xk − zk

n+ ρ
y1 , (3.34)

where y1 and y2 are given by

y1 = (A′A′T )−1A′I = (A′A′T )−1b,

y2 = (A′A′T )−1A′(Xk).5C(Xk).5.
(3.35)

Regarding ‖P k‖ = ‖P (zk)‖, we have the following lemma resembling Lemma
3.8.

Lemma 3.11 Let

µk =
Sk •Xk

n
=
C •Xk − zk

n
and µ =

S(zk) •Xk

n
.

If

‖P (zk)‖ < min

(
β

√
n

n+ β2
, 1− β

)
, (3.36)

then the following three inequalities hold:

S(zk) � 0, ‖(Xk).5S(zk)(Xk).5 − µI‖ < βµ, and µ < (1− .5β/
√
n)µk.
(3.37)
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Proof. The proof is by contradiction. For example, if the first inequality of
(3.37) is not true, then (Xk).5S(zk)(Xk).5 has at least one eigenvalue less than
or equal to zero, and

‖P (zk)‖ ≥ 1.

The proof of the second and third inequalities are similar to that of Lemma 3.8.

Based on this lemma, we have the following potential reduction theorem.

Theorem 3.12 Given Xk ∈
◦
Fp and (yk, Sk) ∈

◦
Fd, let ρ =

√
n, zk = bT yk,

Xk+1 be given by (??), and yk+1 = y(zk) in (3.34) and Sk+1 = S(zk) in
(3.33). Then, either

ψ(Xk+1, Sk) ≤ ψ(Xk, Sk)− δ

or
ψ(Xk, Sk+1) ≤ ψ(Xk, Sk)− δ,

where δ > 1/20.

Proof. If (3.36) does not hold, i.e.,

‖P (zk)‖ ≥ min

(
β

√
n

n+ β2
, 1− β

)
,

then, since ψ(Xk+1, Sk)− ψ(Xk, Sk) = P(Xk+1, zk)− P(Xk, zk),

ψ(Xk+1, Sk)− ψ(Xk, Sk) ≤ −αmin

(
β

√
n

n+ β2
, 1− β

)
+

α2

2(1− α)
.

Otherwise, from Lemma 3.11 the inequalities of (3.37) hold:

i) The first of (3.37) indicates that yk+1 and Sk+1 are in
◦
Fd.

ii) Using the second of (3.37) and applying Lemma ?? to matrix
(Xk).5Sk+1(Xk).5/µ, we have

n lnSk+1 •Xk − ln detSk+1Xk

= n lnSk+1 •Xk/µ− ln det(Xk).5Sk+1(Xk).5/µ

= n lnn− ln det(Xk).5Sk+1(Xk).5/µ

≤ n lnn+
‖(Xk).5Sk+1(Xk).5/µ− I‖2

2(1− ‖(Xk).5Sk+1(Xk).5/µ− I‖∞)

≤ n lnn+
β2

2(1− β)

≤ n lnSk •Xk − ln detSkXk +
β2

2(1− β)
.
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iii) According to the third of (3.37), we have

√
n(lnSk+1 •Xk − lnSk •Xk) =

√
n ln

µ

µk
≤ −β

2
.

Adding the two inequalities in ii) and iii), we have

ψ(Xk, Sk+1) ≤ ψ(Xk, Sk)− β

2
+

β2

2(1− β)
.

Thus, by choosing β = .43 and α = .3 we have the desired result.

Theorem 3.12 establishes an important fact: the primal-dual potential func-
tion can be reduced by a constant no matter where Xk and yk are. In practice,
one can perform the line search to minimize the primal-dual potential function.
This results in the following potential reduction algorithm.

Algorithm 3.2 Given x0 ∈
◦
Fp and (y0, s0) ∈

◦
Fd. Let z0 = bT y0. Set k := 0.

While Sk •Xk ≥ ε do

1. Compute y1 and y2 from (3.35).

2. Set yk+1 = y(z̄), Sk+1 = S(z̄), zk+1 = bT yk+1 with

z̄ = arg min
z≥zk

ψ(Xk, S(z)).

If ψ(Xk, Sk+1) > ψ(Xk, Sk) then yk+1 = yk, Sk+1 = Sk, zk+1 = zk.

3. Let Xk+1 = Xk − ᾱ(Xk).5P (zk+1)(Xk).5 with

ᾱ = arg min
α≥0

ψ(Xk − α(Xk).5P (zk+1)(Xk).5, Sk+1).

4. Let k := k + 1 and return to Step 1.

The performance of the algorithm results from the following corollary:

Corollary 3.13 Let ρ =
√
n. Then, Algorithm 3.2 terminates in at most

O(
√
n ln(C •X0 − bT y0)/ε) iterations with

C •Xk − bT yk ≤ ε.

Proof. In O(
√
n ln(S0 •X0/ε)) iterations

−
√
n ln(S0 •X0/ε) = ψ(Xk, Sk)− ψ(X0, S0)

≥
√
n lnSk •Xk + n lnn− ψ(X0, S0)

=
√
n ln(Sk •Xk/S0 •X0).

Thus, √
n ln(C •Xk − bT yk) =

√
n lnSk •Xk ≤

√
n ln ε,

i.e.,
C •Xk − bT yk = Sk •Xk ≤ ε.
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3.3 Primal-Dual (Symmetric) Algorithm for LP
and SDP

Another technique for solving linear programs is the symmetric primal-dual

algorithm. Once we have a pair (x, y, s) ∈
◦
F with µ = xT s/n, we can generate

a new iterate x+ and (y+, s+) by solving for dx, dy and ds from the system of
linear equations:

Sdx +Xds = γµe−Xs,
Adx = 0,

−AT dy − ds = 0.
(3.38)

Let d := (dx, dy, ds). To show the dependence of d on the current pair (x, s)
and the parameter γ, we write d = d(x, s, γ). Note that dTx ds = −dTxAT dy = 0
here.

The system (3.38) is the Newton step starting from (x, s) which helps to find
the point on the central path with duality gap γnµ, see Section ??. If γ = 0,
it steps toward the optimal solution characterized by the system of equations
(1.2); if γ = 1, it steps toward the central path point (X(µ),y(µ), S(µ)) charac-
terized by the system of equations (??); if 0 < γ < 1, it steps toward a central
path point with a smaller complementarity gap. In the algorithm presented in
this section, we choose γ = n/(n + ρ) < 1. Each iterate reduces the primal-
dual potential function by at least a constant δ, as does the previous potential
reduction algorithm.

To analyze this algorithm, we present the following lemma, whose proof is
omitted.

Lemma 3.14 Let the direction d = (dx, dy, ds) be generated by equation (3.38)
with γ = n/(n+ ρ), and let

θ =
α
√

min(Xs)

‖(XS)−1/2( xT s
(n+ρ)e−Xs)‖

, (3.39)

where α is a positive constant less than 1. Let

x+ = x+ θdx, y+ = y + θdy, and s+ = s+ θds.

Then, we have (x+, y+, s+) ∈
◦
F and

ψn+ρ(x
+, s+)− ψn+ρ(x, s)

≤ −α
√

min(Xs)‖(XS)−1/2(e− (n+ ρ)

xT s
Xs)‖+

α2

2(1− α)
.

Let v = Xs. Then, we can prove the following lemma (Exercise 3.5):

Lemma 3.15 Let v ∈ Rn be a positive vector and ρ ≥
√
n. Then,√

min(v)‖V −1/2(e− (n+ ρ)

eT v
v)‖ ≥

√
3/4 .
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Combining these two lemmas we have

ψn+ρ(x
+, s+)− ψn+ρ(x, s)

≤ −α
√

3/4 +
α2

2(1− α)
= −δ

for a constant δ. This result will provide a competitive theoretical iteration
bound, but a faster algorithm may be again implemented by conducting a line
search along direction d to achieve the greatest reduction in the primal-dual
potential function. This leads to

Algorithm 3.3 Given (x0, y0, s0) ∈
◦
F . Set ρ ≥

√
n and k := 0.

While (sk)Txk ≥ ε do

1. Set (x, s) = (xk, sk) and γ = n/(n + ρ) and compute (dx, dy, ds) from
(3.38).

2. Let xk+1 = xk + ᾱdx, yk+1 = yk + ᾱdy, and sk+1 = sk + ᾱds where

ᾱ = arg min
α≥0

ψn+ρ(x
k + αdx, s

k + αds).

3. Let k := k + 1 and return to Step 1.

Theorem 3.16 Let ρ = O(
√
n). Then, Algorithm 3.3 terminates in at most

O(
√
n ln((x0)T s0/ε)) iterations with

cTxk − bT yk ≤ ε.

Once we have a pair (X, y, S) ∈
◦
F with µ = S • X/n, we can apply the

primal-dual Newton method to generate a new iterate X+ and (y+, S+) as
follows: Solve for dX , dy and dS from the system of linear equations:

D−1dXD
−1 + dS = R := γµX−1 − S,
AdX = 0,

−AT dy − dS = 0,
(3.40)

where
D = X .5(X .5SX .5)−.5X .5.

Note that dS • dX = 0.
This system can be written as

dX′ + dS′ = R′,
A′dX′ = 0,

−A′T dy − dS′ = 0,

(3.41)

where

dX′ = D−.5dXD
−.5, dS′ = D.5dSD

.5, R′ = D.5(γµX−1 − S)D.5,
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and

A′ =


A′1
A′2
...
A′m

 :=


D.5A1D

.5

D.5A2D
.5

...
D.5AmD

.5

 .

Again, we have dS′ • dX′ = 0, and

dy = (A′A′T )−1A′R′, dS′ = −A′T dy, and dX′ = R′ − dS′ .

Then, assign
dS = AT dy and dX = D(R− dS)D.

Let

V 1/2 = D−.5XD−.5 = D.5SD.5 ∈
◦
Mn

+ .

Then, we can verify that S •X = I • V . We now present the following lemma,
whose proof is very similar to that for LP and 3.14 and will be omitted.

Lemma 3.17 Let the direction dX , dy and dS be generated by equation (3.40)
with γ = n/(n+ ρ), and let

θ =
α

‖V −1/2‖∞‖ I•Vn+ρV
−1/2 − V 1/2‖

, (3.42)

where α is a positive constant less than 1. Let

X+ = X + θdX , y+ = y + θdy, and S+ = S + θdS .

Then, we have (X+, y+, S+) ∈
◦
F and

ψ(X+, S+)− ψ(X,S)

≤ −α
‖V −1/2 − n+ρ

I•V V
1/2‖

‖V −1/2‖∞
+

α2

2(1− α)
.

Applying Lemma 3.15 to v ∈ Rn as the vector of the n eigenvalues of V , we
can prove the following lemma:

Lemma 3.18 Let V ∈
◦
Mn

+ and ρ ≥
√
n. Then,

‖V −1/2 − n+ρ
I•V V

1/2‖
‖V −1/2‖∞

≥
√

3/4.

From these two lemmas we have

ψ(X+, S+)− ψ(X,S)

≤ −α
√

3/4 +
α2

2(1− α)
= −δ

for a constant δ. This leads to Algorithm 3.4.



3.4. DUAL ALGORITHM FOR SDP 87

Algorithm 3.4 Given (X0, y0, S0) ∈
◦
F . Set ρ =

√
n and k := 0.

While Sk •Xk ≥ ε do

1. Set (X,S) = (Xk, Sk) and γ = n/(n + ρ) and compute (dX , dy, dS) from
(3.40).

2. Let Xk+1 = Xk + ᾱdX , yk+1 = yk + ᾱdy, and Sk+1 = Sk + ᾱdS, where

ᾱ = arg min
α≥0

ψ(Xk + αdX , S
k + αdS).

3. Let k := k + 1 and return to Step 1.

Theorem 3.19 Let ρ =
√
n. Then, Algorithm 3.4 terminates in at most

O(
√
n ln(S0 •X0/ε)) iterations with

C •Xk − bT yk ≤ ε.

3.4 Dual Algorithm for SDP

An open question is how to exploit the sparsity structure by polynomial interior-
point algorithms so that they can also solve large-scale problems in practice. In
this paper we try to respond to this question. We show that many large-scale
semidefinite programs arisen from combinatorial and quadratic optimization
have features which make the dual-scaling interior-point algorithm the most
suitable choice:

1. The computational cost of each iteration in the dual algorithm is less that
the cost the primal-dual iterations. Although primal-dual algorithms may
possess superlinear convergence, the approximation problems under con-
sideration require less accuracy than some other applications. Therefore,
the superlinear convergence exhibited by primal-dual algorithms may not
be utilized in our applications. The dual-scaling algorithm has been shown
to perform equally well when only a lower precision answer is required.

2. In most combinatorial applications, we need only a lower bound for the
optimal objective value of (SDP). Solving (SDD) alone would be sufficient
to provide such a lower bound. Thus, we may not need to generate an X
at all. Even if an optimal primal solution is necessary, our dual-scaling
algorithm can generate an optimal X at the termination of the algorithm
with little additional cost.

3. For large scale problems, S tends to be very sparse and structured since it
is the linear combination of C and the Ai’s. This sparsity allows consider-
able savings in both memory and computation time. The primal matrix,
X, may be much less sparse and have a structure unknown beforehand.
Consequently, primal and primal-dual algorithms may not fully exploit
the sparseness and structure of the data.
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These problems include the semidefinite relaxations of the graph-partition
problem, the box-constrained quadratic optimization problem, the 0− 1 integer
set covering problem, etc.

The dual-scaling algorithm, which is a modification of the dual-scaling lin-
ear programming algorithm, reduces the Tanabe-Todd-Ye primal-dual potential
function

Ψ(X,S) = ρ ln(X • S)− ln detX − ln detS.

The first term decreases the duality gap, while the second and third terms keep
X and S in the interior of the positive semidefinite matrix cone. When ρ > n,
the infimum of the potential function occurs at an optimal solution. Also note
that, using the arithmetic-geometric mean inequality, we have

n ln(X • S)− ln detX − ln detS ≥ n lnn.

Let operator A(X) : Sn → <m be defined as

A(X) =


A1 •X
A2 •X

...
Am •X

 .

Since A(X)T y =
∑m
i=1 yi(Ai • X) = (

∑m
i=1 yiAi) • X, the adjoint operator

AT : <m → Sn is

AT (y) =

m∑
i=1

yiAi.

Let z̄ = C •X for some feasible X and consider the dual potential function

ψ(y, z̄) = ρ ln(z̄ − bT y)− ln detS.

Its gradient is

∇ψ(y, z̄) = − ρ

z̄ − bT y
b+A(S−1). (3.43)

For any given y and S = C −AT (y) such that S � 0 and

‖(Sk)−.5
(
AT (y − yk)

)
(Sk)−.5‖ < 1,

using the above lemma, the concavity of the first term in the potential function,
and the fact that

(Sk)−.5S(Sk)−.5−I = (Sk)−.5(S−Sk)(Sk)−.5 = (Sk)−.5
(
AT (y − yk)

)
(Sk)−.5,
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we establish an overestimater for the potential reduction:

ψ(y, z̄k)− ψ(yk, z̄k)
= ρ ln(z̄k − bT y)− ρ ln(z̄k − bT yk)− ln det((Sk)−.5S(Sk)−.5)
≤ ρ ln(z̄k − bT y)− ρ ln(z̄k − bT yk) + trace((Sk)−.5S(Sk)−.5 − I)

+
‖(Sk)−.5(AT (y−yk))(Sk)−.5‖

2(1−‖(Sk)−.5(AT (y−yk))(Sk)−.5‖∞)

= ρ ln(z̄k − bT y)− ρ ln(z̄k − bT yk) +A((Sk)−1)T (y − yk)

+
‖(Sk)−.5(AT (y−yk))(Sk)−.5‖

2(1−‖(Sk)−.5(AT (y−yk))(Sk)−.5‖∞)

≤ ∇ψ(yk, z̄k)T (y − yk) +
‖(Sk)−.5(AT (y−yk))(Sk)−.5‖

2(1−‖(Sk)−.5(AT (y−yk))(Sk)−.5‖∞)
.

(3.44)

Therefore, beginning with a strictly feasible dual point (yk, Sk) and upper
bound z̄k, each iteration solves this following problem.

Minimize ∇ψT (yk, z̄k)(y − yk)
Subject to ‖(Sk)−.5

(
AT (y − yk)

)
(Sk)−.5‖ ≤ α, (3.45)

where α is a positive constant less than 1. For simplicity, in what follows we let

∆k = z̄k − bT yk.

The first order Karusch-Kuhn-Tucker conditions state that the minimum
point, yk+1, of this convex problem satisfies

Mk(yk+1−yk)+β∇ψ(yk, z̄k) = Mk(yk+1−yk)+β(− ρ

z̄k − bT yk
b+A((Sk)−1)) = 0

(3.46)
for a positive value of β, where

Mk =

 A1(Sk)−1 • (Sk)−1A1 · · · A1(Sk)−1 • (Sk)−1Am
...

. . .
...

Am(Sk)−1 • (Sk)−1A1 · · · Am(Sk)−1 • (Sk)−1Am


and

A((Sk)−1) =

 A1 • (Sk)−1

...
Am • (Sk)−1

 .

The matrix Mk is a Gram matrix and is positive definite when Sk � 0 and the
Ai’s are linearly independent. In this paper, it will sometimes be referred to as
M .

Using the ellipsoidal constraint, the minimal solution, yk+1, of (3.45) is given
by

yk+1 − yk =
α√

∇ψT (yk, z̄k)(Mk)−1∇ψ(yk, z̄k)
d(z̄k)y (3.47)

where
d(z̄k)y = −(Mk)−1∇ψ(yk, z̄k). (3.48)
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Unlike linear programming, semidefinite programs require a significant amount
of the time to compute the system of equations used to to determine the step
direction. For arbitrary symmetric matrices Ai, the AHO direction can be
computed in 5nm3 + n2m2 + O(max{m,n}3) operations, the HRVW/KSH/M
direction uses 2nm3 +n2m2 +O(max{m,n}3) operations, and the NT direction
uses nm3 +n2m2/2+O(max{m,n}3) operations. The complexity of computing
the matrix is a full order of magnitude higher than any other step of the algo-
rithm. Fujisawa, Kojima and Nakata explored another technique for computing
primal-dual step directions that exploit the sparsity of the data matrices. How-
ever, it is our belief that only the dual-scaling algorithm can fully exploit the
structure and sparsity of many problems, as explained below.

Generally, Mk
ij = Ai(S

k)−1 • (Sk)−1Aj . When Ai = aia
T
i , the Gram matrix

can be rewritten in the form

Mk =

 (aT1 (Sk)−1a1)2 · · · (aT1 (Sk)−1am)2

...
. . .

...
(aTm(Sk)−1a1)2 · · · (aTm(Sk)−1am)2

 (3.49)

and

A((Sk)−1) =

 aT1 (Sk)−1a1

...
aTm(Sk)−1am

 .

This matrix can be computed very quickly without computing, or saving, (Sk)−1.
Instead, Sk can be factored, and then we can use
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Algorithm M: To compute Mk and A((Sk)−1), factor Sk = Lk(Lk)T and do
the following:

For i = 1 : m;

Solve Lkwi = ai;

A((Sk)−1)i = wTi wi and Mk
ii = (A((Sk)−1)i)

2;

For j = 1 : m− 1; Mk
ij = (wTi wj)

2; end;

end.

Solving each of the m systems of equations uses n2 +O(n) floating point op-
erations. Since there are m(m+ 1)/2 vector multiplications, Algorithm M, uses
nm2 + n2m+O(nm) operations after factoring Sk. Note that these operations
can be significantly reduced if Sk is structured and sparse. In applications like
the maximum cut problem, the matrix Sk is indeed very sparse while its inverse
is usually dense, so working with Sk is faster than working with its inverse. Us-
ing matrices of the form Ai = aia

T
i also reduces the complexity of primal-dual

algorithms by a factor of n, but even the quickest direction to compute takes
about twice as long as our dual-scaling direction. Furthermore, they all need to
handle dense X.

Algorithm M needs to store all vectors w1, ..., wm and they are generally
dense. To save storage and exploit the sparsity of ai, ..., am, an alternative
algorithm is

Algorithm M’: To compute Mk and A((Sk)−1), factor Sk = Lk(Lk)T and do
the following:

For i = 1 : m;

Solve Skwi = ai;

A((Sk)−1)i = wTi ai and Mk
ii = (A((Sk)−1)i)

2;

For j = i+ 1 : m; Mk
ij = (wTi aj)

2; end;

end.

Algorithm M’ does not need to store wj but uses one more back-solver for wi.

To find a feasible primal point X, we solve the least squares problem

Minimize ‖(Sk).5X(Sk).5 − ∆k

ρ I‖
Subject to A(X) = b.

(3.50)

This problem looks for a matrix X(z̄k) near the central path. Larger values of
ρ generally give a lower objective value, but provide a solution matrix that is
not positive definite more frequently. The answer to (3.50) is a by-product of
computing (3.48), given explicitly by

X(z̄k) =
∆k

ρ
(Sk)−1

(
AT (d(z̄k)y) + Sk

)
(Sk)−1. (3.51)
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Creating the primal matrix may be costly. However, the evaluation of the
primal objective value C •X(z̄k) requires drastically less work.

C •X(z̄k) = bT yk +X(z̄k) • Sk

= bT yk + trace
(

∆k

ρ (Sk)−1
(
AT (d(z̄k)y) + Sk

)
(Sk)−1Sk

)
= bT yk + ∆k

ρ trace
(
(Sk)−1AT (d(z̄k)y) + I

)
= bT yk + ∆k

ρ

(
d(z̄k)TyA((Sk)−1) + n

)
Since the vectors A((Sk)−1) and d(z̄k)y were previously found in calculating
the dual step direction, the cost of computing a primal objective value is the
cost of a vector dot product! The matrix X(z̄k) never gets computed during
the iterative process, saving time and memory. On the other hand, primal-dual
methods require far more resources to compute the primal variables X.

Defining

P (z̄k) =
ρ

∆k
(Sk).5X(z̄k)(Sk).5 − I, (3.52)

we have the following lemma:

Lemma 3.20 Let µk = ∆k

n = z̄k−bT yk

n , µ = X(z̄k)•Sk

n = C•X(z̄k)−bT yk

n , ρ ≥
n+
√
n, and α < 1. If

‖P (z̄k)‖ < min(α

√
n

n+ α2
, 1− α), (3.53)

then the following three inequalities hold:

1. X(z̄k) � 0;

2. ‖(Sk).5X(z̄k)(Sk).5 − µI‖ ≤ αµ;

3. µ ≤ (1− .5α/
√
n)µk.

Proof. The proofs are by contradiction. If the first inequality is false, then
(Sk).5X(z̄k)(Sk).5 has at least one nonpositive eigenvalue, which by (3.52) im-
plies that ‖P (z̄k)‖ ≥ 1.

If the second does not hold, then

‖P (z̄k)‖2 = ‖ ρ
nµk (Sk).5X(z̄k)(Sk).5 − I‖2

= ‖ ρ
nµk (Sk).5X(z̄k)(Sk).5 − ρµ

nµk I + ρµ
nµk I − I‖2

= ‖ ρ
nµk (Sk).5X(z̄k)(Sk).5 − ρµ

nµk I‖2 + ‖ ρµ
nµk I − I‖2

>
(
ρµ
nµk

)2

α2 +
(
ρµ
nµk − 1

)2

n

≥ α2
(

n
n+α2

)
where the last inequality is true because the quadratic term has a minimum at
ρµ
nµk = n

n+α2 .
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If the third inequality does not hold, then

ρµ

nµk
>

(
1 +

1√
n

)(
1− .5α√

n

)
≥ 1.

which leads to

‖P (z̄k)‖2 ≥
(
ρµ

nµk
− 1

)2

n

≥
((

1 +
1√
n

)(
1− α

2
√
n

)
− 1

)2

n

=

(
1− α

2
− α

2
√
n

)2

≥ (1− α)2.

Focusing on the expression P (z̄k), it can be rewritten as

P (z̄k) = ρ
∆k (Sk).5

(
∆k

ρ (Sk)−1
(
AT (d(z̄k)y) + Sk

)
(Sk)−1

)
(Sk).5 − I

= (Sk)−.5AT
(
d(z̄k)y

)
(Sk)−.5

= (Sk)−.5AT
(
yk+1−yk

β

)
(Sk)−.5

which by (3.45), makes

∇ψT (yk, z̄k)d(z̄k)y = −‖P (z̄k)‖2 (3.54)

and
∇ψT (yk, z̄k)(yk+1 − yk) = −α‖P (z̄k)‖. (3.55)

Updating the dual variables according to

yk+1 = yk +
α

‖P (z̄k+1)‖
d(z̄)y and Sk+1 = C −AT (yk+1), (3.56)

assures the positive definiteness of Sk+1 when α < 1, which assures that they
are feasible. Using (3.55) and (3.44), the reduction in the potential function
satisfies the inequality

ψ(yk+1, z̄k)− ψ(yk, z̄k) ≤ −α‖P (z̄k)‖+
α2

2(1− α)
. (3.57)

The theoretical algorithm can be stated as follows.
DUAL ALGORITHM. Given an upper bound z̄0 and a dual point (y0, S0)
such that S0 = C − AT y0 � 0, set k = 0, ρ > n +

√
n, α ∈ (0, 1), and do the

following:
while z̄k − bT yk ≥ ε do
begin
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1. Compute A((Sk)−1) and the Gram matrix Mk (3.49) using Algorithm M
or M’.

2. Solve (3.48) for the dual step direction d(z̄k)y.

3. Calculate ‖P (z̄k)‖ using (3.54).

4. If (3.53) is true, thenXk+1 = X(z̄k), z̄k+1 = C•Xk+1, and (yk+1, Sk+1) =
(yk, Sk);

else yk+1 = yk + α
‖P (z̄k)‖d(z̄k+1)y, Sk+1 = C − AT (yk+1), Xk+1 = Xk,

and z̄k+1 = z̄k.

endif

5. k := k + 1.

end
We can derive the following potential reduction theorem based on the above

lemma:

Theorem 3.21
Ψ(Xk+1, Sk+1) ≤ Ψ(Xk, Sk)− δ

where δ > 1/50 for a suitable α.

Proof.

Ψ(Xk+1, Sk+1)−Ψ(Xk, Sk) =
(
Ψ(Xk+1, Sk+1)−Ψ(Xk+1, Sk)

)
+
(
Ψ(Xk+1, Sk)−Ψ(Xk, Sk)

)
.

In each iteration, one of the differences is zero. If ‖P (z̄k)‖ does not satisfy
(3.53), the dual variables get updated and (3.57) shows sufficient improvement
in the potential function when α = 0.4.

On the other hand, if the primal matrix gets updated, then using Lemma
?? and the first two parts of Lemma 3.20,

n ln
(
Xk+1 • Sk

)
− ln det

(
Xk+1

)
− ln det

(
Sk
)

= n ln
(
Xk+1 • Sk

)
− ln det

(
Xk+1Sk

)
= n ln

(
Xk+1 • Sk/µ

)
− ln det

(
Xk+1Sk/µ

)
= n lnn− ln det

(
(Sk).5Xk+1(Sk).5/µ

)
≤ n lnn+ ‖(Sk).5Xk+1(Sk).5/µ−I‖

2(1−‖(Sk).5Xk+1(Sk).5/µ−I‖∞)

≤ n lnn+ α2

2(1−α)

≤ n ln
(
Xk • Sk

)
− ln det

(
Xk
)
− ln det

(
Sk
)

+ α2

2(1−α)

Additionally, by the third part of Lemma 3.20

√
n
(
ln(Xk+1 • Sk)− ln(Xk • Sk)

)
=
√
n ln

µ

µk
≤ −α

2

Adding the two inequalities gives

Ψ(Xk+1, Sk) ≤ Ψ(Xk, Sk)− α

2
+

α2

2(1− α)
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By choosing α = 0.4 again, we have the desired result.

This theorem leads to

Corollary 3.22 Let ρ ≥ n +
√
n and Ψ(X0, S0) ≤ (ρ− n) ln(X0 • S0). Then,

the algorithm terminates in at most O((ρ− n) ln(X0 • S0/ε)) iterations.

Proof. In O((ρ− n) ln(X0 • S0/ε)) iterations,

Ψ(Xk, Sk) ≤ (ρ− n) ln(ε)).

Also,

(ρ−n) ln(C•Xk−bT yk) = (ρ−n) ln(Xk•Sk) ≤ Ψ(Xk, Sk)−n lnn ≤ Ψ(Xk, Sk).

Combining the two inequalities,

C •Xk − bT yk = Xk • Sk < ε.

Again, from (3.51) we see that the algorithm can generate an Xk as a by-
product. However, it is not needed in generating the iterate direction, and it is
only explicitly used for proving convergence and complexity.

Theorem 3.23 Each iteration of the dual algorithm uses O(m3 +nm2 +n2m+
n3) floating point iterations.

Proof. Creating S, or S + AT (d(z̄k)), uses matrix additions and O(mn2) op-
erations; factoring it uses O(n3) operations. Creating the Gram matrix uses
nm2 + 2n2m + O(nm) operations, and solving the system of equations uses
O(m3) operations. Dot products for z̄k+1 and ‖P (z̄k)‖, and the calculation of

yk+1 use only O(m) operations. These give the desired result.

3.5 Initialization

A pair of SDP has three alternatives:

(Solvable) AX − b = 0
−AT y + C � 0,

bT y − C •X = 0,
y free, X � 0

or

(Infeasible) AX = 0
−AT y � 0,

bT y − C •X > 0,
y free, X � 0

or neither one has a finite solution. As we discussed earlier, the third case does
not exists under some mild conditions

Now consider an integrated homogeneous system:

(HSDP ) AX − bτ = 0
−AT y + Cτ = S � 0,

bT y − C •X = κ ≥ 0,
y free, X � 0, τ ≥ 0,
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where the three alternatives can be classified as

(Solvable) : (τ > 0, κ = 0)
(Infeasible) : (τ = 0, κ > 0)
(All others) : (τ = κ = 0).

Such a homogeneous system is self-dual – it dual can be written as:

(HSDD) AX ′ − bτ ′ = 0,
AT y′ −Xτ ′ � 0,

−bT y′ + C •X ′ ≤ 0,
y′ free, X ′ � 0, τ ′ ≥ 0,

We have the following theorem:

Theorem 3.24 System (HSDP) is feasible (e.g. all zeros) and any feasible
solution (y,X, τ, S, κ) is self-complementary: X • S + τκ = 0 or(

X 0
0T τ

)(
S 0
0T κ

)
= 0.

Furthermore, it has a max-rank complementary feasible solution, that is,

rank

(
X 0
0T τ

)
+ rank

(
S 0
0T κ

)
is maximal.

Let’s find such a feasible solution starting from X0 = I � 0, S0 = I � 0,
and y0 = 0. Then, we formulate

(HSDP ) min θ
s.t. AX −bτ +b̄θ = 0,

−AT y +Cτ −C̄θ � 0,
bT y −C •X +z̄θ ≥ 0,

y free, X � 0, τ ≥ 0, θ free,

where

b̄ = b−A • I, C̄ = C − I, z̄ = C • I + 1.

Note that (HSDP) may just give us the all-zero solution. To eliminate such a
trivial solution, we add one more constraint to the system:

(HSDP ) min (n+ 1)θ
s.t. AX −bτ +b̄θ = 0,

−AT y +Cτ −C̄θ = S � 0,
bT y −C •X +z̄θ = κ ≥ 0,
−b̄T y +C̄ •X −z̄τ = −(n+ 1),
y free, X � 0, τ ≥ 0, θ free.
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Note that the constraints of (HSDP) form a skew-symmetric system and the
objective coefficient vector is the negative of the right-hand-side vector, so that
it remains a self-dual SDP program.

By combining the constraints, we can derive the last (equality) constraint as

I •X + I • S + τ + κ− (n+ 1)θ = (n+ 1),

which serves indeed as a normalizing constraint for (HSDP) to prevent the all-
zero solution.

Theorem 3.25 Consider problems (HSDP).

i) (HSDP) has a strictly feasible point

y = 0, X = I � 0, τ = 1, θ = 1, S = I � 0, κ = 1.

ii) (HSDP) has an optimal solution and its optimal solution set is bounded.

iii) The optimal value of (HSDP) is zero, and

(y,X, τ, θ, S, κ) ∈ Fh implies that (n+ 1)θ = X • S + τκ.

iv) There is an optimal solution (y∗, X∗, τ∗, θ∗ = 0, S∗, κ∗) ∈ Fh such that

rank

(
X∗ 0
0T τ∗

)
+ rank

(
S∗ 0
0T κ∗

)
is maximal.

Finally, we can derive

Theorem 3.26 Let (y∗, X∗, τ∗, θ∗ = 0, S∗, κ∗) be a max-rank solution for (HSDP).

i) (SDP) and (SDD) are (Solvable) if and only if τ∗ > 0. In this case, X∗/τ∗ is
an optimal solution for (SDP) and (y∗/τ∗, S∗/τ∗) is an optimal solution
for (SDD).

ii) (SDP) or (SDD) is (Infeasible) if and only if κ∗ > 0. In this case, X∗/κ∗ or
y∗/κ∗ or both are certificates for proving infeasibility: if C •X∗ < 0 then
(SDD) is infeasible; if −bT y∗ < 0 then (SDP) is infeasible; and if both
C •X∗ < 0 and −bT y∗ < 0 then both (SDP) and (SDD) are infeasible.

iii) (SDP) and/or (SDD) are in the third alternative if and only if τ∗ = κ∗ = 0.

Thus, one can apply any (feasible) SDP algorithm to solve (HSDP). Since
(HSDP) is self-dual, the algorithm does not need to solve the dual part, so
that the size of the problem is almost as same as the size of a pair of SDP
problems when a pair of feasible solutions is known.
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3.6 Notes

The primal potential reduction algorithm for positive semi-definite programming
is due to Alizadeh [9, 8], in which Ye has “suggested studying the primal-dual
potential function for this problem” and “looking at symmetric preserving scal-

ings of the form X
−1/2
0 XX

−1/2
0 ,” and to Nesterov and Nemirovskii [243], and

the primal-dual algorithm described here is due to Nesterov and Todd [244, 245].
One can also develop a dual potential reduction algorithm.

Other primal-dual algorithms for positive semi-definite programming are in
Alizadeh, Haeberly and Overton [10, 12], Boyd, Ghaoui, Feron and Balakr-
ishnan [58], Helmberg, Rendl, Vanderbei and Wolkowicz [158], Jarre [172], de
Klerk, Roos and Terlaky.[187], Kojima, Shindoh and Hara [192], Monteiro and
Zhang [230], Nesterov, Todd and Ye [246], Potra and Sheng [259], Shida, Shin-
doh and Kojima [278], Sturm and Zhang [288], Tseng [308], Vandenberghe and
Boyd [316, 317], and references therein. Efficient interior-point algorithms are
also developed for optimization over the second-order cone; see Andersen and
Christiansen [17], Lobo, Vandenberghe and Boyd [206], and Xue and Ye [329].
These algorithms have established the best approximation complexity results
for some combinatorial problems.

Primal-dual adaptive path-following algorithms, the predictor-corrector al-
gorithms and the wide-neighborhood algorithms can also be developed for solv-
ing (SDP).

The homogeneous and self-dual initialization model was developed by Ye,
Todd and Mizuno for LP [340] and for SDP by Luo, Sturm and Zhang [212]
and Nesterov, Todd and Ye [246], and it became the foundation algorithm im-
plemented by Sturm [287] and Andersen and Andersen [14].

3.7 Exercises

3.1 For SDP, prove a slightly stronger version of iii) in Lemma 3.1: If D ∈ Sn
such that 0 ≤ ‖D‖∞ < 1 (that is, the largest absolute value of the eigenvalues
of D is less than 1), then

−I •D ≤ − ln det(I +D) ≤ −I •D +
‖D‖2

2(1− ‖D‖∞)
.

3.2 Let x be in the interior of Nn
2 . Then for any d ∈ Rn,

(d1 − xT−1d−1)2

δ(x)2
+ ‖d−1‖2 − d2

1 ≥ 0.

3.3 Prove i) of Proposition 3.5.

3.4 Given S � 0, find the minimizer of the least-squares problem

minimize ‖S1/2XS1/2 − I‖
s.t. AX = 0.
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Given X � 0 find the minimizer of the least-squares problem

minimize ‖X1/2SX1/2 − I‖
s.t. S = C −AT y.

3.5 Let v ∈ Rn be a positive vector and ρ ≥
√
n. Prove√

min(v)‖V −1/2(e− (n+ ρ)

eT v
v)‖ ≥

√
3/4 .

3.6 Prove the following convex quadratic inequality

(Ay + b)T (Ay + b)− cT y − d ≤ 0

is equivalent to a matrix inequality(
I Ay + b

(Ay + b)T cT y + d

)
� 0.

Using this relation to formulate a convex quadratic minimization problem with
convex quadratic inequalities as an (SDD) problem.

3.7 Prove Corollary ??.

3.8 Prove Lemma 3.17.

3.9 Describe and analyze a dual potential algorithm for positive semi-definite
programming in the standard form.

3.10 Prove Theorem 3.24.

3.11 Prove Theorem 3.25.

3.12 Prove Theorem 3.26.

3.13 Let (LP) and (LD) have interior. Prove the dual potential function
Bn+1(y, s, z), where z is a upper bound of z∗, represents the volume of a coordinate-
aligned ellipsoid whose intersection with the affine set {x : Ax = b} contains
the primal level set {x ∈ Fp : cTx ≤ z}.

3.14 Let X,S ∈Mn be both positive definite. Then prove

ψn(X,S) = n ln(X • S)− ln(det(X) · det(S)) ≥ n lnn.

3.15 Consider linear programming and the level set

Ψ(δ) := {(X, y, S) ∈
◦
F : ψn+ρ(x, s) ≤ δ}.

Prove that
Ψ(δ1) ⊂ Ψ(δ2) if δ1 ≤ δ2,

and for every δ Ψ(δ) is bounded and its closure Ψ̂(δ) has non-empty intersection
with the solution set.
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3.16 Prove (ii) of Theorem 3.3.

3.17 Prove Theorem ??.

3.18 Prove Corollary ??. Here we assume that X(µ) 6= X(µ′) and y(µ) 6=
y(mu′).



Chapter 4

SDP for Global Quadratic
and Combinatorial
Optimization

4.1 Approximation

A (randomized) algorithm for a maximization problem is called (randomized)
r-approximation algorithm, where 0 < r ≤ 1, if it outputs a feasible solution
with its (expected) value at least r times the optimum value for all instances of
the problem.

More precisely, let w∗(> 0) be the (global) maximum value of a given prob-
lem instance. Then, a r-approximate maximizer x satisfies

w(x) ≥ r · w∗.

or

E[w(x)] ≥ r · w∗.

A (randomized) algorithm for a minimization problem is called (randomized)
r-approximation algorithm, where 1 ≤ r, if it outputs a feasible solution with
its (expected) value at most r times the optimum value for all instances of the
problem.

More precisely, let w∗(> 0) be the (global) minimal value of a given problem
instance. Then, a r-approximate minimizer x satisfies

w(x) ≤ r · w∗.

or

E[w(x)] ≤ r · w∗.

101
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4.2 Ball-Constrained Quadratic Minimization

Consider a ball constrained quadratic minimization problem

z∗ := Minimize xTQx+ 2qTx
(BQP)

Subject to ‖x‖2 ≤ 1.
(4.1)

Here, the given matrix Q ∈ Mn, the set of n-dimensional symmetric matrices;
vector q ∈ Rn; and ‖.‖ is the Euclidean norm.

4.2.1 Homogeneous Case: q = 0

Matrix-formulation: Let
X = xxT .

z∗ = Minimize Q •X
(BQP)

Subject to I •X ≤ 1,

X � 0, Rank(X) = 1.

SDP-relaxation: Remove the rank-one constraint.

zSDP := Minimize Q •X
(SDP)

Subject to I •X ≤ 1,

X � 0.

The dual of (SDP) can be written as:

zSDP = Maximize y
(DSDP)

Subject to yI + S = Q,

y ≤ 0, S � 0.

From the SDP duality theorem, this pair of SDP problems have an optimal
solution pair and there is no duality gap. That is, X∗ is a minimal matrix
solution to SDP if and only if there exist a feasible dual variable y∗ ≤ 0 such
that

S∗ = Q− y∗I � 0

y∗(1− I •X∗) = 0

S∗ •X∗ = 0.

Obviously, zSDP ≤ z∗. On the other hand, from the SDP rank theorem, the
SDP relaxation has an optimal solution X∗ of rank one, which implies
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Theorem 4.1 The SDP relaxation is exact, meaning

zSDP = z∗.

Moreover, an optimal solution for (BQP) can be computed in strongly polynomial
time from any optimal SDP solution of the relaxation.

4.2.2 Non-Homogeneous Case

Similarly, let
X = (1;x)(1;x)T ∈Mn+1,

Q′ =

(
0 qT

q Q

)
,

I ′ =

(
0 0T

0 I

)
,

and

I1 =

(
1 0T

0 0

)
.

z∗ = Minimize Q′ •X
(BQP)

Subject to I ′ •X ≤ 1,

I1 •X = 1,
X � 0, Rank(X) = 1.

SDP-relaxation: Remove the rank-one constraint.

z∗ = Minimize Q′ •X
(SDP)

Subject to I ′ •X ≤ 1,

I1 •X = 1,
X � 0.

The dual of (SDP) can be written as:

zSDP = Maximize y1 + y2

(DSDP)
Subject to y1I

′ + y2I1 + S = Q′,

y1 ≤ 0, S � 0.

Again, X∗ is a minimal matrix solution to SDP if and only if there exist a
feasible dual variables (y∗1 ≤ 0, y∗2) such that

S∗ = Q′ − y∗1I − y∗2I1 � 0

y∗1(1− I ′ •X∗) = 0

S∗ •X∗ = 0.

Again, zSDP ≤ z∗, and we also have
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Theorem 4.2 The SDP relaxation is exact, meaning

zSDP = z∗.

Moreover, an optimal solution for (BQP) can be computed in strongly polynomial
time from any optimal SDP solution of the relaxation.

Corollary 4.3 Consider the quadratic minimization problem

z∗ := Minimize xTQx+ 2qTx
(BQP)

Subject to ‖x‖2 = 1.
(4.2)

Then, its SDP relaxation is exact. Moreover, an optimal solution for the problem
can be computed in strongly polynomial time from any optimal SDP solution of
the relaxation.

4.3 Quadratically Constrained Quadratic Prob-
lems (QCQP)

These quadratic minimization problems can be generalized to multiple quadrat-
ically constrained quadratic problems.

z∗ := Minimize xTQx
(QP-2)

Subject to xTA1x(≤,=,≥)1,

...,
xTAmx(≤,=,≥)1,

(4.3)

where m is a positive integer.

One application of the problem is the binary least squares problem:

z∗ := Minimize ‖Ax− c‖2
(BLS)

Subject to x2
j = 1, ∀i = 1, ..., n.

The problem can be formulated as a homogeneous problem:

z∗ := Minimize ‖Ax− xn+1c‖2
(BLS)

Subject to x2
j = 1, ∀i = 1, ..., n, n+ 1.
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The matrix-formulation of the QCQP problem would be

z∗ = Minimize Q •X
(QP-2)

Subject to A1 •X(≤,=,≥)1,

...,
Am •X(≤,=,≥)1,
X � 0, Rank(X) = 1.

The SDP-relaxation is to remove the rank-one constraint:

z∗ = Minimize Q •X
(SDP)

Subject to A1 •X(≤,=,≥)1,

...,
Am •X(≤,=,≥)1,
X � 0.

We now consider several special cases of QCQP.

4.3.1 Multiple Ellipsoid-Constrained Quadratic Maximiza-
tion

Consider

(ECQP-m) z∗ := Maximize xTQx
subject to xTAix ≤ 1, i = 1, ...,m.

where Q and Ai, i = 1, . . . ,m, are positive semidefinite, and
∑
iAi is positive

definite.
The SDP relaxation is

(SDP ) zSDP := Maximize Q •X
subject to Ai •X ≤ bi, i = 1, ...,m

X � 0;

and its dual is

(SDD) zSDD := Minimize
∑m
i=1 biyi

subject to S =
∑m
i=1 yiAi −Q

S � 0, yi ≥ 0, i = 1, ...,m.

Obviously, both (SDP) and (SDD) are feasible and each has an interior feasible
region. Thus (SDP) and (SDD) have no duality gap, that is, zSDP = zSDD.
Using the SDP rank theorem and the null-space reduction, we have

Theorem 4.4 For solving (ECQP-m), one can find a feasible solution x such
that

xTQx ≥ 1

r̄
· zSDP

where r̄ is the largest integer r such that r(r + 1) ≤ 2m.
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On the other hand, we can use the randomized rank-reduction as follows.
Let X∗ be an optimal matrix solution of the SDP relaxation, that is,

Ai •X∗ ≤ bi, ∀i = 1, . . . ,m
Q •X∗ ≥ zSDP ≥ z∗

We like to find a rank-1 matrix solution X̂ = xxT such that

Ai • X̂ ≤ α · bi, ∀i = 1, . . . ,m

Q • X̂ ≥ β · z∗

Recall that for any positive semidefinite matrix H, we can compute an random
rank-1 X̂ from X∗ such that

Pr
(
H • X̂ ≤ βTr(H)

)
≤ exp

(
1

2
(1− β + lnβ)

)
and

Pr
(
H • X̂ ≥ αTr(H)

)
≤ exp

(
1

2
(1− α+ lnα)

)
.

Let β = 1
10 and α = 4 ln(4m). Then,

Pr
(
Ai • X̂ ≥ α · bi

)
≤ 1

4m , i = 1, . . . ,m

Pr
(
Q • X̂ ≤ β · z∗

)
≤ 1

2 .

Therefore,

Pr
(
Q • X̂ ≥ β · z∗ and Ai • X̂ ≤ α · bi ∀i = 1, . . . ,m

)
≥ 1− 1

2
− 1

4
=

1

4
.

Or

Pr
(
Q • X̂/α ≥ (β/α) · z∗ and Ai • X̂/α ≤ bi ∀i = 1, . . . ,m

)
≥ 1

4
.

Theorem 4.5 With a positive probability, one can compute a X̂/α = (x/
√
α)(x/

√
α)T =

x̂x̂T where x̂ is feasible for (ECQP-m) and, with high probability,

x̂TQx̂ ≥ (β/α) · z∗ =
1

40 ln(4m)
· z∗.

4.3.2 Binary Quadratic Maximization

(BQP) z∗ := Maximize xTQx
subject to (xj)

2 = 1, j = 1, ..., n.

where Q is assumed to be positive semidefinite. Note that even if the original Q
is not psd, when can still formulate an equivalent problem by Q := Q+|λ|·I � 0
where λ is the minimal eigenvalue of Q.
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The following is the pair of the SDP relaxation:

zSDP := Maimize Q •X
s.t. Ij •X = 1, j = 1, ..., n,

X � 0.

and
zSDP = Minimize eT y

s.t. Diag(y) � Q.

Let X∗ be an optimal matrix solution of the SDP relaxation, and let random
vector

u ∈ N(0, X∗) and x̂ = sign(u)

where

sign(x) =

{
1 if x ≥ 0
−1 otherwise.

Clearly, x̂ is binary, and we have

E[x̂TQx̂] = Q • E[x̂x̂T ] = Q • 2

π
arcsin[X̄].

For any function of one variable f(t) and X ∈ Rn×n, let f [X] ∈ Rn×n be the
matrix with the components f(xij). We have the next technical lemma whose
proof is an exercise.

Lemma 4.6 Let X � 0 and d(X) ≤ 1. Then arcsin[X] � X.

Then, the following theorem holds.

Theorem 4.7 For solving (BQP), we have an approximation ratio 2
π , that is,

one can find a random feasible solution x̂ such that

E[x̂TQx̂] ≥ 2

π
zSDP ≥ 2

π
z∗.

4.3.3 Box Constrained Optimization

In this section we consider a more general QCQP:

q(Q) := minimize q(x) := xTQx
s.t.

∑n
j=1 aijx

2
j = bi, i = 1, . . . ,m,

−e ≤ x ≤ e,

where symmetric matrix Q ∈ Mn, A = {aij} ∈ Rm×n and b ∈ Rm are given
and e ∈ Rn is, again, the vector of all ones. We assume that the problem is
feasible and denote by x(Q) its global minimizer.

The function q(x) has a global maximizer over the bounded feasible set as
well. Let q̄ := −q(−Q) and q := q(Q) denote their maximal and minimal
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objective values, respectively. We now present a “fast” algorithm to compute a
4/7-approximate minimizer: to compute a feasible x̂ such that

q(x̂)− q
q̄ − q

≤ 4/7.

This new criterion is necessary since Q could be indefinite, and the global min-
imal value is 0.

The SDP relaxation would be:

p(Q) := minimize Q •X
s.t. Ai •X = bi, i = 1, . . . ,m,

d(X) ≤ e, X � 0.
(4.4)

Here, Ai = diag(ai), ai = (ai1, . . . , ain), and unknown X ∈ Mn is a symmetric
matrix. Furthermore, d(X) is a vector containing the diagonal components of
X. Note that d(X) ≤ e can be written as Ij •X ≤ 1, j = 1, . . . , n, where Ij is
the all-zero matrix except the jth diagonal component equal to 1.

The dual of the relaxation is

p(Q) = maximize eT z + bT y
s.t. Q � D(z) +

∑m
i=1 yiAi, z ≤ 0,

(4.5)

where D(z) is the diagonal matrix such that d(D(z)) = z ∈ Rn. Note that the
relaxation is feasible and its dual has an interior feasible point so that there is
no duality gap between the primal and dual. Denote by X(Q) and (y(Q), z(Q))
an optimal solution pair for the primal (4.4) and dual (4.5). For simplicity, in
what follows we let x = x(Q) and X = X(Q).

We have the following relations between the QP problem and its relaxation:

Proposition 4.8 Let q := q(Q), q̄ := −q(−Q), p := p(Q), p̄ := −p(−Q),
(ȳ, z̄) = (−y(−Q),−z(−Q)). Then,

i) q̄ is the maximal objective value of xTQx in the feasible set of the QP problem;

ii) p̄ = eT z̄ + bT ȳ and it is the maximal objective value of Q •X in the feasible
set of the relaxation, and D(z̄) +

∑m
i=1 ȳiAi −Q � 0;

iii)
p ≤ q ≤ q̄ ≤ p̄.

Let matrix factorization V = (v1, . . . , vn) ∈ Rn×n, i.e., vj is the jth column

of V , such that X = V TV . Then, we generate a random vector u uniformly
distributed on the unit sphere in Rn and assign

x̂ = Dσ(V Tu), (4.6)

where
D = diag(‖v1‖, . . . , ‖vn‖) = diag(

√
x11, . . . ,

√
xnn),
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and, for any x ∈ Rn, σ(x) ∈ Rn is the vector whose jth component is sign(xj):

sign(xj) =

{
1 if xj ≥ 0
−1 otherwise.

It is easily see that x̂ is a feasible solution for the original QP problem and
we will show that its expected objective value, Euq(x̂), satisfies

Euq(x̂)− q
q̄ − q

≤ π

2
− 1 ≤ 4

7
.

That is, x̂ is a 4/7-approximate minimizer for the QP problem expectantly. One
can generate u repeatedly and choose the best x̂ in the process. Thus, we will
almost surely generate a x̂ that is a 4/7-approximate minimizer.

The proof is based on a lemma below.

Lemma 4.9 Let u be uniformly distributed on the unit sphere in Rn. Then,

q(Q) = minimize Eu(σ(V Tu)TDQDσ(V Tu))
s.t. Ai • (V TV ) = bi, i = 1, . . . ,m,

‖vj‖ ≤ 1, j = 1, . . . , n,

where

D = diag(‖v1‖, . . . , ‖vn‖).

Now we are ready to state the following theorem, where we use “infimum”
to replace “minimum,” since for simplicity we require X to be positive definite
in our subsequent analysis.

Theorem 4.10

q(Q) = infimum 2
πQ • (D arcsin[D−1XD−1]D)

s.t. Ai •X = bi, i = 1, . . . ,m,
d(X) ≤ e, X � 0,

where

D = diag(
√
x11, . . . ,

√
xnn).

Theorem 4.10 and Lemma 4.6 lead to our main result:

Theorem 4.11 We have

i) p̄− q ≥ 2
π (p̄− p).

ii) q̄ − p ≥ 2
π (p̄− p).

iii) p̄− p ≥ q̄ − q ≥ 4−π
π (p̄− p).
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Proof. We prove (i). Recall z̄ = −z(−Q) ≥ 0, ȳ = −y(−Q), p̄ = −p(−Q) =

eT z̄+ bT ȳ, and D(z̄) +
∑m
i=1 ȳiAi−Q � 0. Thus, for any X � 0, d(X) ≤ e and
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D = diag(
√
x11, . . . ,

√
xnn), from Theorem 4.10

π

2
q =

π

2
q(Q)

≤ Q • (D arcsin[D−1XD−1]D)

=

(
Q−D(z̄)−

m∑
i=1

ȳiAi +D(z̄) +

m∑
i=1

ȳiAi

)
•
(
D arcsin[D−1XD−1]D

)
=

(
Q−D(z̄)−

m∑
i=1

ȳiAi

)
•
(
D arcsin[D−1XD−1]D

)
+

(
D(z̄) +

m∑
i=1

ȳiAi

)
•
(
D arcsin[D−1XD−1]D

)
≤

(
Q−D(z̄)−

m∑
i=1

ȳiAi

)
•
(
DD−1XD−1D

)
+

(
D(z̄) +

m∑
i=1

ȳiAi

)
•
(
D arcsin[D−1XD−1]D

)
(since Q−D(z̄)−

m∑
i=1

ȳiAi � 0 and arcsin[D−1XD−1] � D−1XD−1.)

=

(
Q−D(z̄)−

m∑
i=1

ȳiAi

)
•X

+

(
D(z̄) +

m∑
i=1

ȳiAi

)
•
(
D arcsin[D−1XD−1]D

)
= Q •X −

(
D(z̄) +

m∑
i=1

ȳiAi

)
•X

+

(
D(z̄) +

m∑
i=1

ȳiAi

)
•
(
D arcsin[D−1XD−1]D

)
= Q •X − z̄T d(X)−

m∑
i=1

ȳia
T
i d(X)

+z̄T d(D arcsin[D−1XD−1]D) +

m∑
i=1

ȳia
T
i d(D arcsin[D−1XD−1]D)

= Q •X − z̄T d(X)− ȳT b+ z̄T (
π

2
d(X)) + ȳT (

π

2
b)

(since d(D arcsin[D−1XD−1]D) =
π

2
d(X) and aTi d(X) = bi)

= Q •X + (
π

2
− 1)z̄T d(X) + (

π

2
− 1)ȳT b

≤ Q •X + (
π

2
− 1)(z̄T e+ ȳT b)

(since 0 ≤ d(X) ≤ e and z̄ ≥ 0)

= Q •X + (
π

2
− 1)p̄.
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Let X � 0 converge to X, then Q •X → p and we prove (i).
Replacing Q with −Q proves (ii) in the theorem.

Adding the first two inequalities gives (iii) of the theorem.

Similarly, the following corollary can be devised:

Corollary 4.12 Let X = V TV � 0, d(X) ≤ e, Ai•X = bi (i = 1, . . . ,m), D =
diag(

√
x11, . . . ,

√
xnn), and x̂ = Dσ(V Tu) where u with ‖u‖ = 1 is a random

vector uniformly distributed on the unit sphere. Moreover, let X � 0 → X.
Then,

lim
X→X

Eu(q(x̂)) = lim
X→X

2

π
Q • (D arcsin[D−1XD−1]D) ≤ 2

π
p+ (1− 2

π
)p̄.

Finally, we have the following theorem:

Theorem 4.13 Let x̂ be randomly generated from X. Then

Euq(x̂)− q
q̄ − q

≤ π

2
− 1 < 4/7.

Proof. Since

p̄ ≥ q̄ ≥ 2

π
p̄+ (1− 2

π
)p ≥ (1− 2

π
)p̄+

2

π
p ≥ q ≥ p,

we have, from Corollary 4.12,

Euq(x̂)− q
q̄ − q

≤
2
πp+ (1− 2

π )p̄− q
q̄ − q

≤
2
πp+ (1− 2

π )p̄− q
2
π p̄+ (1− 2

π )p− q

≤
2
πp+ (1− 2

π )p̄− p
2
π p̄+ (1− 2

π )p− p

=
(1− 2

π )(p̄− p)
2
π (p̄− p)

=
1− 2

π
2
π

=
π

2
− 1.

4.4 Max-Cut Problem

Consider the Max Cut problem on an undirected graph G = (V,E) with non-
negative weights wij for each edge in E (and wij = 0 if (i, j) 6∈ E), which is the
problem of partitioning the nodes of V into two sets S and V \ S so that

w(S) :=
∑

i∈S, j∈V \S

wij
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is maximized. A problem of this type arises from many network planning, circuit
design, and scheduling applications.

This problem can be formulated by assigning each node a binary variable
xj :

z∗ = Maximize w(x) :=
1

4

∑
i,j

wij(1− xixj)

(MC)
Subject to x2

i = 1, i = 1, ..., n.

The Coin-Toss Method: Let each node be selected to one side, or xi be 1,
independently with probability .5. Then, swap nodes from the majority side to
the minority side using the greedy method.

E[w(x)] ≥ 0.5 · z∗.

4.4.1 SDP relaxation

zSDP := minimize Q •X
s.t. Ij •X = 1, j = 1, ..., n,

X � 0.
(4.7)

The dual is
zSDP = maximize eT y

s.t. Q � D(y).
(4.8)

Let V = (v1, . . . , vn) ∈ Rn×n, i.e., vj is the jth column of V , such that
X∗ = V TV .

Generate a random vector u ∈ N(0, I):

x̂ = sign(V Tu), (4.9)

sign(xj) =

{
1 if xj ≥ 0
−1 otherwise.

4.4.2 Approximation analysis

Then, one can prove from Sheppard [276] (see Goemans and Williamson [127]
and Bertsimas and Ye [52]):

E[x̂ix̂j ] =
2

π
arcsin(X̄ij), i, j = 1, 2, . . . , n.

Lemma 4.14 For x ∈ [−1, 1)

1− (2/π) · arcsin(x)

1− x
≥ .878.

Lemma 4.15 Let X � 0 and d(X) ≤ 1. Then arcsin[X] � X.
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V

V /||V ||

/||V ||

j

i

j

i

arccos(.)

U

= -1

= 1

= 1

= -1

Figure 4.1: Illustration of the product σ(
vTi u
‖vi‖ ) · σ(

vTj u

‖vj‖ ) on the 2-dimensional

unit circle. As the unit vector u is uniformly generated along the circle, the
product is either 1 or −1.
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Theorem 4.16 We have

i) If Q is a Laplacian matrix, then

E(x̂TQx̂) ≥ .878zSDP ≥ .878z∗,

so that

z∗ ≥ .878zSDP .

ii) If Q is positive semidefinite

E(x̂TQx̂) ≥ 2

π
zSDP ≥ 2

π
z∗,

so that

z∗ ≥ 2

π
zSDP .

4.5 Max-Bisection Problem

Consider the Max-Bisection problem on an undirected graph G = (V,E) with
non-negative weights wij for each edge in E (and wij = 0 if (i, j) 6∈ E), which
is the problem of partitioning the even number of nodes in V into two sets S
and V \ S of equal cardinality so that

w(S) :=
∑

i∈S, j∈V \S

wij

is maximized. This problem can be formulated by assigning each node a binary
variable xj :

w∗ := Maximize
1

4

∑
i,j

wij(1− xixj)

(MB)

subject to

n∑
j=1

xj = 0 or eTx = 0

x2
j = 1, j = 1, . . . , n,

where e ∈ <n (n even) is the column vector of all ones, superscript T is the
transpose operator. Note that xj takes either 1 or −1, so that we can choose
either S = {j : xj = 1} or S = {j : xj = −1}. The constraint eTx = 0 ensures
that |S| = |V \ S|.

A problem of this type arises from many network planning, circuit design,
and scheduling applications. In particular, the popular and widely used Min-
Bisection problem sometimes can be solved by finding the Max-Bisection over
the complementary graph of G.
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The Coin-Toss Method: Let each node be selected to one side, or xi be 1,
independently with probability .5. Then, swap nodes from the majority side to
the minority side using the greedy method.

E[w(x)] ≥ 0.5 · z∗.

4.5.1 SDP relaxation

Maximize
1

4

∑
i,j

wij(1−Xij)

Subject to Xii = 1, i = 1, ..., n,∑
i,j Xij = 0,

X � 0.

What complicates matters in Max-Bisection, comparing to Max-Cut, is that
two objectives are actually sought—the objective value of w(S) and the size of
S. Therefore, in any (randomized) rounding method at the beginning, we need
to balance the (expected) quality of w(S) and the (expected) size of S. We want
high w(S); but, at the same time, zero or small difference between |S| and n/2,
since otherwise we have to either add or subtract nodes from S, resulting in a
deterioration of w(S) at the end. Our method is built upon a careful balance
of the two, plus an improved proof technique.

4.5.2 The .651-method of Frieze and Jerrum

We first review the Frieze and Jerrum method, and then proceed with our
improved method.

Let X̄ be an optimal solution of Problem (SDP). Since X̄ is positive semidef-
inite, the randomization method of Goemans and Williamson [127] essentially
generates a random vector u from a multivariate normal distribution with 0
mean and covariance matrix X̄, that is, using (4.9) to generate S = {i : x̂i = 1}
or S = {i : x̂i = −1}.

Then, one can prove Sheppard [276] (see Goemans and Williamson [127],
Frieze and Jerrum [112], and Bertsimas and Ye [52]):

E[x̂ix̂j ] =
2

π
arcsin(X̄ij), i, j = 1, 2, . . . , n, (4.10)

and

1− 2

π
arcsin(X̄ij) ≥ α(1)(1− X̄ij),

where

α(1) := min
−1≤y<1

1− 2
π arcsin(y)

1− y
≥ .878567

which is a special case of Definition (4.22) in Section 5.
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Thus,

E[w(S)] =
1

4

∑
i,j

wij

(
1− 2

π
arcsin(X̄ij)

)
≥ 1

4

∑
i,j

wij · α(1)(1− X̄ij)

= α(1) · wSD

≥ α(1) · w∗; (4.11)

and

E

[
n2

4
− (eT x̂)2

4

]
=

1

4

∑
i,j

(
1− 2

π
arcsin(X̄ij)

)
≥ 1

4

∑
i,j

α(1)(1− X̄ij)

= α(1) · n
2

4
, (4.12)

since ∑
i,j

X̄ij = eeT • X̄ = 0.

However, x̂ may not satisfy eT x̂ = 0, i.e., S may not be a bisection. Then,
using a greedy method, Frieze and Jerrum have adjusted S by swapping nodes
from the majority block into the minority block until they are equally sized.
Note that inequality (4.12) assures that not too many nodes need to be swapped.
Also, in selecting swapping nodes, Frieze and Jerrum make sure that the least
weighted node gets swapped first. More precisely, (w.l.o.g) let |S| ≥ n/2; and for
each i ∈ S, let ζ(i) =

∑
j 6∈S wij and S = {i1, i2, ..., i|S|}, where ζ(i1) ≥ ζ(i2) ≥

... ≥ ζ(i|S|). Then, assign S̃ = {i1, i2, ..., in/2}. Clearly, the construction of

bisection S̃ guarantees that

w(S̃) ≥ n · w(S)

2|S|
, n/2 ≤ |S| ≤ n. (4.13)

In order to analyze the quality of bisection S̃, they define two random vari-
ables:

w := w(S) =
1

4

∑
i,j

wij(1− x̂ix̂j)

and

m := |S|(n− |S|) =
n2

4
− (eT x̂)2

4
=

1

4

∑
i,j

(1− x̂ix̂j)

(since (eT x̂)2 = (2|S| − n)2). Then, from (4.11) and (4.12),

E[w] ≥ α(1) · w∗ and E[m] ≥ α(1) ·m∗, where m∗ =
n2

4
.
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Thus, if a new random variable

z =
w

w∗
+

m

m∗
, (4.14)

then
E[z] ≥ 2α(1), and z ≤ 3

since w/w∗ ≤ 2|S|/n ≤ 2 and m/m∗ ≤ 1.
For simplicity, Frieze and Jerrum’s analysis can be described as follows. They

repeatedly generate samples u ∈ N(0, X̄), create x̂ or S using the randomization
method (4.9), construct S̃ using the swapping procedure, and record the largest
value of w(S̃) among these samples. Since E[z] ≥ 2α(1) and z ≤ 3, they are
almost sure to have one z to meet its expectation before too long, i.e., to have

z ≥ 2α(1). (4.15)

Moreover, when (4.15) holds and suppose

w(S) = λw∗,

which from (4.14) and (4.15) implies that

m

m∗
≥ 2α(1)− λ.

Suppose that |S| = δn; then the above inequality implies

λ ≥ 2α(1)− 4δ(1− δ). (4.16)

Applying (4.13) and (4.16), one can see that

w(S̃) ≥ w(S)

2δ

=
λw∗

2δ

≥ (2α(1)− 4δ(1− δ))w∗

2δ

≥ 2(
√

2α(1)− 1)w∗.

The last inequality follows from simple calculus that δ =
√

2α(1)/2 yields the
minimal value for (2α(1) − 4δ(1 − δ))/(2δ) when 0 ≤ δ ≤ 1. Note that for
α(1) ≥ .878567, 2(

√
2α(1) − 1) > .651. Since the largest w(S̃) in the process

is at least as good as the one who meets z ≥ 2α(1), they proceed to prove a
.651-approximation algorithm for Max-Bisection.

4.5.3 A modified rounding and improved analyses

Our improved rounding method is to use a convex combination of X̄ and a
positive semidefinite matrix P as the covariance matrix to generate u and x̂, i.e,

u ∈ N(0, θX̄ + (1− θ)P ),
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x̂ = sign(u),

S = {i : x̂i = 1} or S = {i : x̂i = −1}
such that |S| ≥ n/2, and then S̃ from the Frieze and Jerrum swapping procedure.

One choice of P is

P =
n

n− 1
(I − 1

n
eeT ),

where I is the n-dimensional identity matrix. Note that I − 1
nee

T is the pro-
jection matrix onto the null space of eTx = 0, and P is a feasible solution for
(SDP). The other choice is P = I, which was also proposed in Nesterov [242],
and by Zwick [348] for approximating the Max-Cut problem when the graph is
sparse.

Again, the overall performance of the rounding method is determined by two
factors: the expected quality of w(S) and how much S need to be downsized.
The convex combination parameter θ used in θX̄ + (1− θ)P provides a balance
between these two factors. Typically, the more use of X̄ in the combination
results in higher expected w(S) but larger expected difference between |S| and
n/2; and the more use of P results in less expected w(S) and more accurate |S|.

More precisely, our hope is that we could provide two new inequalities in
replacing (4.11) and (4.12):

E[w(S)] =
1

4

∑
i,j

wij(1− E[x̂ix̂j ]) ≥ α · w∗ (4.17)

and

E[|S|(n− |S|)] = E

[
n2

4
− (eT x̂)2

4

]
=

1

4

∑
i,j

(1− E[x̂ix̂j ]) ≥ β ·
n2

4
, (4.18)

such that α would be slightly less than α(1) but β would be significantly greater
than α(1). Thus, we could give a better overall bound than .651 for Max-
Bisection.

Before proceed, we prove a technical result. Again, let two random variables

w := w(S) =
1

4

∑
i,j

wij(1− x̂ix̂j) and m := |S|(n− |S|) =
1

4

∑
i,j

(1− x̂ix̂j).

Then, from (4.17) and (4.18),

E[w] ≥ α · w∗ and E[m] ≥ β ·m∗, where m∗ =
n2

4
.

Furthermore, for a given parameter γ ≥ 0, let new random variable

z(γ) =
w

w∗
+ γ

m

m∗
. (4.19)

Then, we have
E[z(γ)] ≥ α+ γβ and z ≤ 2 + γ.

Note that Frieze and Jerrum used γ = 1 in their analyses.
Now we prove the following lemma:
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Lemma 4.17 Assume (4.17) and (4.18) hold. Then, for any given γ ≥ α/(4−
β), if random variable z(γ) meets its expectation, i.e., z(γ) ≥ α+ γβ, then

w(S̃) ≥ 2
(√

γ(α+ γβ)− γ
)
· w∗.

In particular, if

γ =
α

2β
(

1√
1− β

− 1)

(which is greater than α/(4− β) since β > 0), then

w(S̃) ≥ α

1 +
√

1− β
· w∗.

Proof. Suppose
w(S) = λw∗ and |S| = δn,

which from (4.19) and z(γ) ≥ α+ γβ implies that

λ ≥ α+ γβ − 4γδ(1− δ).

Applying (4.13) we see that

w(S̃) ≥ w(S)

2δ

=
λw∗

2δ

≥ α+ γβ − 4γδ(1− δ)
2δ

· w∗

≥ 2(
√
γ(α+ γβ)− γ) · w∗.

The last inequality follows from simple calculus that

δ =

√
α+ γβ

2
√
γ

yields the minimal value for (α+ γβ − 4γδ(1− δ))/(2δ) in the interval [0, 1], if
γ ≥ α/(4− β).

In particular, substitute

γ =
α

2β
(

1√
1− β

− 1)

into the first inequality, we have the second desired result in the lemma.

The motivation to select γ = α
2β ( 1√

1−β − 1) is that it yields the maximal

value for 2(
√
γ(α+ γβ)− γ). In fact, when both α = β = α(1) ≥ .878567 as in

the case of Frieze and Jerrum,

α

1 +
√

1− β
> 0.6515,
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which is just slightly better than 2(
√

2α(1)− 1) ≥ 0.6511 proved by Frieze and
Jerrum. So their choice γ = 1 is almost “optimal”. We emphasize that γ is
only used in the analysis of the quality bound, and is not used in the rounding
method.

4.5.4 A simple .5-approximation

To see the impact of θ in the new rounding method, we analyze the other
extreme case where θ = 0 and

P =
n

n− 1
(I − 1

n
eeT ).

That is, we generate u ∈ N(0, P ), then x̂ and S. Now, we have

E[w(S)] = E

1

4

∑
i,j

wij(1− x̂ix̂j)

 =
1

4

(
1 +

2

π
arcsin(

1

n− 1
)

)∑
i 6=j

wij ≥ .5·w∗

(4.20)
and

E

[
n2

4
− (eT x̂)2

4

]
≥ n2

4
− n

4
+
n(n− 1)

4

2

π
arcsin(

1

n− 1
) ≥ (1− 1

n
) · n

2

4
, (4.21)

where from (4.10) we have used the facts that

E[x̂ix̂j ] =
2

π
arcsin(

−1

n− 1
), i 6= j

and
1

2

∑
i 6=j

wij =
∑
i<j

wij ≥ w∗.

In other words, we have in Lemma 4.17

α = .5 and β = 1− 1

n
.

Comparing (4.20) and (4.21) to (4.11) and (4.12), here the first inequality on
w(S) is worse, .5 vs .878567; but the second inequality is substantially better,
1− 1

n vs .878567; i.e., x̂ here is a bisection with probability almost 1 when n is
large. Using Lemma 4.17, we see that the method is a

α

1 +
√

1− β
>

.5

1 +
√

1/n

approximation method. The same ratio can be established for P = I.
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4.5.5 A .699-approximation

We now prove our main result. For simplicity, we will use P = I in our rounding
method. Therefore, we discuss using the convex combination of θX̄ + (1 − θ)I
as the covariance matrix to generate u, x̂, S and S̃ for a given 0 ≤ θ ≤ 1, i.e.,

u ∈ N(0, θX̄ + (1− θ)P ),

x̂ = sign(u),

S = {i : x̂i = 1} or S = {i : x̂i = −1}

such that |S| ≥ n/2, and then S̃ from the Frieze and Jerrum swapping procedure.
Define

α(θ) := min
−1≤y<1

1− 2
π arcsin(θy)

1− y
; (4.22)

and

β(θ) := (1− 1

n
)b(θ) + c(θ), (4.23)

where

b(θ) = 1− 2

π
arcsin(θ) and c(θ) = min

−1≤y<1

2

π

arcsin(θ)− arcsin(θy)

1− y
.

Note that α(1) = β(1) ≥ .878567 as shown in Goemans and Williamson [127];
and α(0) = .5 and β(0) = 1− 1

n . Similarly, one can also verify that

α(.89) ≥ .835578, b(.89) ≥ .301408 and c(.89) ≥ .660695.

We now prove another technical lemma:

Lemma 4.18 For any given 0 ≤ θ ≤ 1 in our rounding method, inequalities
(4.17) and (4.18) hold for

α = α(θ) and β = β(θ).

Proof. Since 1 − 2
π arcsin(θ) ≥ 0 for any 0 ≤ θ ≤ 1, from definition (4.22) we

have

E[w(S)] =
1

4

∑
i,j

wij

(
1− 2

π
arcsin(X̄ij)

)
≥ 1

4

∑
i,j

wij · α(θ)(1− X̄ij)

= α(θ) · wSD

≥ α(θ) · w∗.

Noting that ∑
i6=j

X̄ij = −n,
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from the definition (4.23) we have

E[|S|(n− |S|)] = E

[
n2

4
− (eT x̂)2

4

]
=

1

4

∑
i 6=j

(
1− 2

π
arcsin(θX̄ij)

)

=
1

4

∑
i 6=j

(
1− 2

π
arcsin(θ) +

2

π
arcsin(θ)− 2

π
arcsin(θX̄ij)

)

=
1

4

∑
i 6=j

(
b(θ) +

(
2

π
arcsin(θ)− 2

π
arcsin(θX̄ij)

))
≥ 1

4

∑
i 6=j

(
b(θ) + c(θ)(1− X̄ij)

)
=

1

4

(
(n2 − n)b(θ) + (n2 − n)c(θ) + nc(θ)

)
=

(
(1− 1

n
)b(θ) + c(θ)

)
· n

2

4

= β(θ) · n
2

4
.

Lemmas 4.17 and 4.18 together imply that for any given θ between 0 and 1,
our rounding method will generate a

w(S̃) ≥ α(θ)

1 +
√

1− β(θ)
· w∗

as soon as (bounded) z(γ) of (4.19) meets its expectation. Thus, we can set θ

to a value θ∗ in [0, 1] such that α(θ)

1+
√

1−β(θ)
is maximized, that is, let

θ∗ = arg max
θ∈[0,1]

α(θ)

1 +
√

1− β(θ)

and

rMB =
α(θ∗)

1 +
√

1− β(θ∗)
.

In particular, if θ = .89 is selected in the new rounding method,

α(.89) > .8355,

and for n sufficiently large (≥ 104)

β(.89) = (1− 1

n
)b(.89) + c(.89) > .9620,
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which imply

rMB =
α(θ∗)

1 +
√

1− β(θ∗)
≥ α(.89)

1 +
√

1− β(.89)
> .69920.

This bound yields the final result:

Theorem 4.19 There is a polynomial-time approximation algorithm for Max-
Bisection whose expected cut is at least rMB times the maximal bisection cut, if
the number of nodes in the graph is sufficiently large. In particular, if parameter
θ = .89 is used, our rounding method is a .699-approximation for Max-Bisection.

The reader may ask why we have used two different formulations in defining
α(θ) of (4.22) and β(θ) of (4.23). The reason is that we have no control on the
ratio, ρ, of the maximal bisection cut w∗ over the total weight

∑
i<j wij , i.e.,

ρ :=
w∗∑
i<j wij

.

Note that ρ ranges from 1/2 to 1. Indeed, using the second derivation in Lemma
4.18, we can also prove that in Lemma 4.17

α ≥ 1

2ρ
b(θ) + c(θ).

Thus, in the worse case ρ = 1, we can only establish

α ≥ 1

2
b(θ) + c(θ).

Then, for θ = .89, we have α ≥ .8113, which is less than .8355 established by
using the first derivation.

However, if ρ ≤ .8, then we have α ≥ .8490. For Max-Bisection on these
graphs, our method is a .710 approximation for setting θ = .89. This bound
can be further improved by setting a smaller θ. In general, the quality bound
improves as ρ decreases. When ρ near 1/2, we have a close to 1 approximation
if θ = 0 is chosen, since b(0) = 1, c(0) = 0, α ≥ 1

2ρ and β ≥ 1− 1
n .

In any case, we can run our rounding method 100 times for parameter θ =
.00, .01, ..., .98, .99 and report the best rounding solution among the 100
tries. This will ensure us to produce a solution with a near best guarantee, but
without the need to know ρ.

4.6 Notes

Semidefinite relaxations have recently appeared in relation to relaxations for 0-1
optimization problems. In [209], a “lifting” procedure is presented to obtain a

problem in <n2

; and then the problem is projected back to obtain tighter in-
equalities. See also [31]. Several of the operators that arise in our applications
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are similar to those that appear in [209]. However, our motivation and approach
is different. A discussion of several applications for semidefinite relaxation ap-
pears in [9]. Also see recent papers by Fujie and Kojima [115] and Polijak, Rendl
and Wolkowicz [256], Zhao, Karisch, Rendl, and Wolkowicz [344], and Skutella
[281].

During the past ten years, there have been several remarkable results on ap-
proximating specific quadratic problems using positive semi-definite program-
ming. Goemans and Williamson [127] proved an approximation result for the
Maxcut problem where ε ≤ 1 − 0.878. Nesterov [242] extended their result to
approximating a boolean QP problem where ε ≤ 4/7. Most of the results are
related to graph partition.

The proof of polynomial-time complexity for solving a single ball constrained
quadratic problem was initially done using non-SDP techniques; see [321], [335]
and Fu, Luo and Ye [114]. Results on QCQP with multiple quadartic constraints
were developed by Ye [336], Nemirovski, Roos and Terlaky [240], Sturm and
Zhang [289], Ye and Zhang [341], etc..

More details on graph partition. Given an undirected graph G = (V,E)
with |V | = n, non-negative weights wij on edges (i, j) ∈ E, and an integer
k (1 < k < n), the maximization graph partition (MAX-GP) problem is to
determine a subset S ⊂ V of k nodes such that an objective function w(S) is
maximized. Some examples of MAX-GP are: Dense-k-Subgraph (DSP), where
the total edge weights of the subgraph induced by S is maximized; Max-Cut
with size k (MC), where the total edge weights of the edges crossing between
S and V \ S is maximized; Max-Not-Cut with size k (MNC), where the total
edge weights of the non-crossing edges between S and V \S is maximized; Max-
Vertex-Cover with size k (MVC), where the total edge weights of the edges
covered by S is maximized.

Since these MAX-GP problems are NP-hard (e.g., see [102] for DSP, [2] for
MC, [153] for MNC, and [255] for MVC), one should not expect to find poly-
nomial time algorithms for computing their optimal solutions. Therefore, we
are interested in how close to optimality one can approach in polynomial time.
A (randomized) polynomial time approximation algorithm for a maximization
problem has a performance guarantee or worst case ratio 0 < r ≤ 1, if it outputs
a feasible solution whose (expected) value is at least r times the maximal value
for all instance of the problem. Such an algorithm is often called (randomized)
r-approximation algorithm. A key step in designing a good approximation al-
gorithm for such a maximization problem is to establish a good upper bound
on the maximal objective value. Linear programming (LP) and semidefinite
programming (SDP) have been frequently used to provide such upper bounds
for many NP-hard problems.

There are several approximation algorithms for DSP. Kortsarz and Peleg
[195] devised an approximation algorithm which has a performance guarantee
O(n−0.3885). Feige, Kortsarz and Peleg [103] improved it to O(n−1/3+ε), for
some ε > 0. The other approximation algorithms have performance guarantees
which are the function of k/n, e.g., a greedy heuristic by Asahiro et.al. [24],
and SDP relaxation based algorithms developed by Feige and Langberg [101]
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and Feige and Seltser [102], and Srivastav and Wolf [285]. The previously best
performance guarantee, k/n for general k and k/n+εk for k ∼ n/2, was obtained
by Feige and Langberg [101]. Moreover, for the case k = n/2, Ye and Zhang
[153], using a new SDP relaxation, obtained an improved 0.586 performance
guarantee from 0.517 of Feige and Langberg [101].

For approximating the MC problem with size k, both LP and SDP based
approximation algorithms have a performance ratio 1/2 for all k, see Ageev
and Sviridenko [2] and Feige and Langberg [101]. For k = n/2, i.e., the Max-
Bisection, Frieze and Jerrum [112] obtained a 0.651-approximation algorithm
(the same bound was also obtained by Andersson [16] in his paper for max-p-
section). Subsequently, this ratio has been improved to 0.699 by Ye [337]. Both
of their approximation algorithms are based on SDP relaxations.

For approximating the MNC problem with size k, the LP-based approxima-

tion algorithm has a performance ratio 1− 2k(n−k)
n(n−1) for all k, and the SDP-based

algorithm has a ratio .5 + εk for k ∼ n/2, see Feige and Langberg [101]. Again,
Ye and Zhang [153] obtained a 0.602-approximation algorithm for MNC when
k = n/2, comparing to .541 of Feige and Langberg [101].

Han et al. [153] has presented an improved method to round an optimal
solution of the SDP relaxation of the MAX-GP problem for general k. This
rounding technique is related to the well-known rounding method introduced by
Goemans and Williamson [127], Feige and Goemans [100] for MAX-DICUT and
MAX 2-SAT, Zwick [347] for constraint satisfaction problems, and Nesterov[242]
and Zwick [348] for MAX-CUT. This kind of randomized algorithm can be de-
randomized by the technique of Mahajan and Ramesh[216].

What complicates matters in the MAX-GP problem, comparing to the MAX-
CUT problem, is that two objectives are sought—the objective value of w(S)
and the size of S. Therefore, in any (randomized) rounding method, we need to
balance the (expected) quality of w(S) and the (expected) size of S. One wants
high w(S); but, at the same time, zero or small difference between |S| and k,
since otherwise we have to either add or subtract nodes from S, resulting in a
deterioration of w(S) at the end. Our improved rounding method is built upon
this balance need.

As consequences of the improved rounding method, they have yielded im-
proved approximation performance ratios for DSP, MC, MNC and MVC, on
a wide range of k. On approximating DSP, for example, our algorithm has
guaranteed performance ratios .648 for k = 3n/5, 0.586 for k = n/2, 0.486 for
k = 2n/5 and 0.278 for k = n/4. For MC and MNC, the performance guarantees
are also much better than 0.5 for a wide range of k. On approximating MVC,
our algorithm has guaranteed performance ratios .845 for k = 3n/5, 0.811 for
k = n/2, and 0.733 for k = 2n/5.



4.7. EXERCISES 127

4.7 Exercises

4.1 Let X be a positive semidefinite matrix of rank r, A be a given symmetric
matrix. Then, there is a decomposition of X

X =

r∑
j=1

xjx
T
j ,

such that for all j,
xTj Axj = A • (xjx

T
j ) = A •X/r.

4.2 Given any matrix A ∈ Rn×m, using the SDP rank reduction theorem to
show that the matrix singular value problem

minimize xTAy
s.t. ‖x‖2 = 1,

‖y‖2 = 1,

is an SDP problem.

4.3 Consider the SDP problem

minimize C •X
s.t. Ai •X = bi, i = 1, ...,m,

Qj •X = 0, j = 1, ..., q,
X � 0,

where coefficient matrices Qj, j = 1, . . . , q, are positive semidefinite.

1. Suppose that there is an optimal solution X∗ with zero duality gap, show
that there must be an optimal solution matrix with its rank r satisfying
r(r + 1)/2 ≤ m. (Note that the bound is independent of q. )

2. Using the above result to show that the quadratic problem

minimize xTQx+ 2cTx
s.t. Ax = b,

‖x‖2 = 1

is an SDP problem, where given Q is an n-dimensional symmetric matrix
and A is an m× n matrix with m < n.

4.4 Prove Lemma 4.6.

4.5 Using the exercise above, prove Theorem 4.7.

4.6 Prove Proposition 4.8.

4.7 Prove Lemma 4.9.
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4.8 Using the exercise above, prove Theorem 4.10.

4.9 The s− t Max-Cut Problem: This is a max-cut problem where we require
that a pair of nodes s and t be separated by the cut.

• Construct the SDP relaxation for the problem.

• Show that the problem can be approximated by the factor 0.878.

• The result holds for more pairs need to be separated.

4.10 Triangle Inequality: In the Max-Cut or other problems, decision variable
xi is either 1 or −1. Thus, for any three variables we have

|xi + xj + xk| ≥ 1

and
|xi − xj |+ |xj − xk| ≥ |xk − xi|

which call triangle-type inequalities. Show how to incoporate these inequalities
in the SDP relaxation of the problem.

4.11 In solving the standard SDP problem with m equality constraints, we have
shown that there is an optimal SDP solution whose rank r satisfying

r(r + 1)

2
≤ m,

and there is a strongly polynomial-time algorithm to find such a solution from
any exactly optimal SDP solution. In reality, one may never generate an ex-
actly optimal SDP solution but an ε-optimal solution X, meaning its minimal
objective value is ε away from the optimal z∗:

C •X ≤ z∗ + ε.

Prove that, from X, one can find an ε-optimal SDP solution whose rank r
satisfies

r(r + 1)

2
≤ m+ 1

in strongly polynomial time. Show how the rank-reduction procedure works.

4.12 Consider the following eigenvalue optimization problem

minimize nλmax(Q+ Diag(ȳ))

subject to eT ȳ = 0

ȳ ∈ Rm,
(4.24)

where λmax(A) is the maximum eigenvalue of the matrix A. Show that this
problem is equivalent to the dual of the SDP relaxation for Max-Cut.
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4.13 Quadratic 0-1 Programming: The following problem is referred as the
Quadratic 0-1 programming

maximize xTBx

subject to x ∈ {0, 1}n. (4.25)

Show that the following matrix representation is equivalent to the above
quadratic 0-1 programming problem (4.25):

maximize B •X

subject to X̄ =

[
1 diag(X)T

diag(X) X

]
� 0,

rank(X̄) = 1,

(4.26)

where diag(A) is the vector of diagnoal elements in A.
Note 1. It suffices to show that both problems have the same feasible region.
Note 2. Problem (4.26) without the rank 1 constraint on X is an SDP

relaxation of (4.25).

4.14 The 2-Catalog Segmentation Problem ([328]): Given a ground set I of n
items, a family {S1, S2, · · · , Sm} of subsets of I and an integer 1 ≤ k ≤ n. The
problem is to find two subsets A1, A2 ⊂ I such that |A1| = |A2| = k to maximize∑m
i=1 max{|Si ∩ A1|, |Si ∩ A2|}. Here I can be the list of goods; there are m

customers where customer i is interested in the goods of Si; A1 and A2 are the
two catalogs one of which could be sent to each of the customers such that the
(total) “satisfaction” is maximized. Find an SDP relaxation to the problem.

4.15 The Sparsest Cut Problem ([23]): Given a graph G = (V,E). For any
cut (S, S̄) with |S| ≤ |V |/2, the edge expansion of the cut is |E(S, S̄)|/|S|. The
problem is to find the S such that |E(S, S̄)|/|S| is the smallest. Find an SDP
relaxation to the problem.
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Chapter 5

SDP for Geometry
Computation

One of the most studied problems in distance geometry is the Graph Realization
problem, in which one is given a graph G = (V,E) and a set of non–negative
weights {dij : (i, j) ∈ E} on its edges, and the goal is to compute a realization
of G in the Euclidean space Rd for a given dimension d, i.e. to place the
vertices of G in Rd such that the Euclidean distance between every pair of
adjacent vertices vi, vj equals to the prescribed weight dij . This problem and its
variants arise from applications in various areas, such as molecular conformation,
dimensionality reduction, Euclidean ball packing, and more recently, wireless
sensor network localization. In this chapter, we discuss SDP formulations of
such Euclidean distance geometry problems.

5.1 The basic SDP model

The basic mathematical model of Euclidean distance geometry optimization
can be described as a quadratically constrained optimization problem. Let n
unknown points xj ∈ Rd, j = 1, ..., n. For each pair of (i, j), we are given
Euclidean distance upper bound d̄ij and lower bound dij between the two points
xi and xj , and an objective function of x1, ..., xn. Moreover, we require that
each point xj ∈ Ω where Ω is a convex set. Then, the basic model can be
formulated as:

minimize f(x1, ..., xn)
subject to (dij)

2 ≤ ‖xi − xj‖2 ≤ (d̄ij)
2, ∀i < j

xj ∈ Ω, ∀j,
(5.1)

Note that the ”bounding from below” constraint

‖(xi − xj)‖2 ≥ (dij)
2 (5.2)

131
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is not convex, so that the efficient convex optimization techniques cannot apply
to solving this problem.

Let X = [x1 x2 ... xn] be the d × n matrix that needs to be determined.
Then

‖xi − xj‖2 = eTijX
TXeij ,

where eij is the vector with 1 at the ith position, −1 at the jth position and
zero everywhere else. Let Y = XTX. Then problem (5.1) can be rewritten as:

minimize f(X,Y )
subject to (dij)

2 ≤ eTijY eij ≤ (d̄ij)
2, ∀i < j,

xj ∈ Ω,∀j,
Y = XTX.

(5.3)

Our approach is to relax problem (5.3) to a semidefinite program:

minimize f(X,Y )
subject to (dij)

2 ≤ eTijY eij ≤ (d̄ij)
2, ∀i < j,

xj ∈ Ω,∀j,
Y � XTX.

(5.4)

The last matrix inequality is equivalent to (Boyd et al. [58])

Z :=

(
I X
XT Y

)
� 0.

Then, the problem can be written as a standard SDP problem:

minimize f(Z)
subject to Z(1 : d, 1 : d) = I,

(dij)
2 ≤ (0; eij)

TZ(0; eij) ≤ (d̄ij)
2, ∀i < j,

Z(1 : d, j) ∈ Ω j = d+ 1, ..., d+ n,
Z � 0.

(5.5)

If f(Z) is a convex function of Z, then (5.5) becomes a convex optimization
problem. In particular, if f(Z) is a linear function of Z and Ω is a polyhedron,
then (5.5) is a (linear) semidefinite program.

5.2 Wireless sensor network localization

There has been an increase in the use of semidefinite programming (SDP) for
solving wide range of Euclidean distance geometry problems, such as data com-
pression, metric-space embedding, ball packing, chain folding etc. One appli-
cation of the SDP Euclidean distance geometry model lies in ad hoc wireless
sensor networks which are constructed for monitoring environmental informa-
tion(temperature, sound levels, light etc) across an entire physical space. Typ-
ical networks of this type consist of a large number of densely deployed sensor
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nodes which gather local data and communicate with other nodes within a small
range. The sensor data from these nodes are relevant only if we know what lo-
cation they refer to. Therefore knowledge of of each sensor position becomes
imperative. Generally, the use of a GPS system is a very expensive solution to
this requirement.

Indeed, other techniques to estimate node positions are being developed that
rely just on the measurements of distances between neighboring nodes [53, 67,
81, 118, 163, 165, 247, 270, 271, 272, 275]. The distance information could
be based on criterion like time of arrival, angle of arrival and received signal
strength. Depending on the accuracy of these measurements and processor,
power and memory constraints at each of the nodes, there is some degree of
error in the distance information. Furthermore, it is assumed that we already
know the positions of a few anchor nodes. The problem of finding the positions of
all the nodes given a few anchor nodes and partial distance information between
the nodes is called the position estimation or localization problem.

In particular, the paper [53] describes an SDP relaxation based model for
the position estimation problem in sensor networks. The optimization problem
is set up so as to minimize the error in the approximate distances between the
sensors. Observable traces are developed to measure the quality of the distance
data. The basic idea behind the technique is to convert the non-convex quadratic
distance constraints into linear constraints by introducing relaxations to remove
the quadratic term in the formulation. The performance of this technique is
highly satisfactory compared to other techniques. Very few anchor nodes are
required to accurately estimate the position of all the unknown sensors in a
network. Also the estimation errors are minimal even when the anchor nodes
are not suitably placed within the network. More importantly, for each sensor
the model generates numerical data to measure the reliability and accuracy of
the positions computed from the model, which can be used to detect erroneous
or outlier sensors.

5.2.1 An SDP relaxation model

For simplicity, let the sensor points be placed on a plane. Recall that we have
m known anchor points ak ∈ R2, k = 1, ...,m, and n unknown sensor points
xj ∈ R2, j = 1, ..., n. For every pair of two points, we have a Euclidean distance
measure if the two are within a communication distance range R. Therefore,
say for (i, j) ∈ Nx, we are given Euclidean distance data d̂ij between unknown

sensors i and j, and for (k, j) ∈ Na we know distance d̂kj between anchor k and
sensor j. Note that for the rest of pairs we have only a lower bound R for their
pair-wise distances. Therefore, the localization problem can be formulated as
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an error minimization problem with mixed equalities and inequalities:

minimize
∑
i,j∈Nx, i<j

|αij |+
∑
k,j∈Na

|αkj |
subject to ‖xi − xj‖2 = (d̂ij)

2 + αij , ∀ (i, j) ∈ Nx, i < j,

‖ak − xj‖2 = (d̂kj)
2 + αkj , for (k, j) ∈ Na,

‖xi − xj‖2 ≥ R2, for the rest i < j,
‖ak − xj‖2 ≥ R2, for the rest k, j.

Thus, we relax the problem to a semidefinite program:

minimize
∑
i,j∈Nx, i<j

|αij |+
∑
k,j∈Na

|αkj |
subject to (1; 0; 0)TZ(1; 0; 0) = 1

(0; 1; 0)TZ(0; 1; 0) = 1
(1; 1; 0)TZ(1; 1; 0) = 2

(0; eij)
TZ(0; eij) = (d̂ij)

2 + αij , ∀ (i < j, j) ∈ Nx,
(ak; ej)

TZ(ak; ej) = (d̄kj)
2 + αkj , ∀ (k, j) ∈ Na,

(0; eij)
TZ(0; eij) ≥ R2, ∀ (i < j, j) /∈ Nx,

(ak; ej)
TZ(ak; ej) ≥ R2, ∀ (k, j) /∈ Na,

Z � 0.

(5.6)

The matrix of Z has 2n+ n(n+ 1)/2 unknown variables. Consider the case
that among {k, i, j}, there are 2n+ n(n+ 1)/2 of the pairs where each of them
has same distance upper and lower bounds, and α = 0 for the minimal solution
of (5.6). Then we have at least 2n + n(n + 1)/2 linear equalities among the
constraints. Moreover, if these equalities are linearly independent, then Z has
a unique solution. Therefore, we can show

Proposition 5.1 If there are 2n+ n(n+ 1)/2 distance pairs each of which has
an accurate distance measure and other distance bounds are feasible. Then, the
minimal value of α = 0 in (5.6). Moreover, if (5.6) has a unique minimal
solution

Z̄ =

(
I X̄
X̄T Ȳ

)
,

then we must have Ȳ = (X̄)T X̄ and X̄ equal true positions of the unknown
sensors. That is, the SDP relaxation solves the original problem exactly.

Proof. Let X∗ be the true locations of the n points, and

Z∗ =

(
I X∗

(X∗)T (X∗)TX∗

)
.

Then Z∗ and α = 0 is a feasible solution for (5.6).
On the other hand, since Z̄ is the unique solution to satisfy the 2n+n(n+1)/2

equalities, we must have Z̄ = Z∗ so that Ȳ = (X∗)TX∗ = X̄T X̄.
We present a simple case to show what it means for the system has a unique

solution. Consider n = 1 and m = 3. The accurate distance measures from
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unknown b1 to known a1, a2 and a3 are d11, d21 and d31, respectively. Therefore,
the three linear equations are

y − 2xTa1 = (d11)2 − ‖a1‖2

y − 2xTa2 = (d21)2 − ‖a2‖2

y − 2xTa3 = (d31)2 − ‖a3‖2

This system has a unique solution if it has a solution and the matrix(
1 1 1
a1 a2 a3

)
is nonsingular. This essentially means that the three points a1, a2 and a3 are
not on the same line, and then x̄ = b1 can be uniquely determined. Here, the
SDP method reduces to the so-called triangular method. Proposition 5.1 and
the example show that the SDP relaxation method has the advantage of the
triangular method in solving the original problem.

5.2.2 Probabilistic or error analyses

The case discussed in Proposition 5.1 is deterministic. Alternatively, each xj
can be viewed a random point x̃j since the distance measures contain random
errors. Then the solution to the SDP problem provides the first and second
moment information on x̃j , j = 1, ..., n. Such an interpretation appears to be
first stated in Bertsimas and Ye [52].

Generally, we have
E[x̃j ] ∼ x̄j , j = 1, ..., n

and
E[x̃Ti x̃j ] ∼ Ȳij , i, j = 1, ..., n.

where

Z̄ =

(
I X̄
X̄T Ȳ

)
is the optimal solution of the SDP problem. Thus,

Ȳ − X̄T X̄

represents the co-variance matrix of x̃j , j = 1, ..., n.
These quantities also constitute error management and analyses of the orig-

inal problem data. For example,

tr(Ȳ − X̄T X̄) =

n∑
j=1

(Ȳjj − ‖x̄j‖2),

the total trace of the co-variance matrix, measures the quality of distance sample
data dij and dkj . In particular, individual trace

Ȳjj − ‖x̄j‖2, (5.7)
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which is also the variance of ‖x̃j‖, helps us to detect possible distance measure
errors, and outlier or defect sensors. These errors often occur in real applications
either due to the lack of data information or noisy measurement, and are often
difficult to detect since the true location of sensors is unknown.

We again use the same simple case to illustrate our theory. Consider n = 1
and m = 3. The inexact distance measures from unknown b1 to known a1, a2

and a3 are d11 + ε, d21 + ε and d31 + ε, respectively, where ε is a random error
with zero mean. Therefore, the three linear equations are

ȳ − 2x̄Ta1 + ‖a1‖2 = (d11)2 + 2εd11 + ε2

ȳ − 2x̄Ta2 + ‖a2‖2 = (d21)2 + 2εd21 + ε2

ȳ − 2x̄Ta3 + ‖a3‖2 = (d31)2 + 2εd31 + ε2.

Taking expect values on both sides, we have

E[ȳ]− 2E[x̄]Ta1 + ‖a1‖2 = (d11)2 + E[ε2]

E[ȳ]− 2E[x̄]Ta2 + ‖a2‖2 = (d21)2 + E[ε2]

E[ȳ]− 2E[x̄]Ta3 + ‖a3‖2 = (d31)2 + E[ε2]

or

E[ȳ]− E[x̄]TE[x̄] + ‖E[x̄]− a1‖2 = (d11)2 + E[ε2]

E[ȳ]− E[x̄]TE[x̄] + ‖E[x̄]− a2‖2 = (d21)2 + E[ε2]

E[ȳ]− E[x̄]TE[x̄] + ‖E[x̄]− a3‖2 = (d31)2 + E[ε2].

The solution to the linear equation is

E[x̄] = b1,

and

E[ȳ]− E[x̄]TE[x̄] = E[ε2]

or

E[ȳ] = E[ε2] + ‖b1‖2.

That is, x̄ is a point estimate of b1. Moreover, from

E[ȳ]− E[‖x̄‖2] + E[‖x̄‖2]− ‖b1‖2 = E[ȳ]− ‖b1‖2 = E[ε2],

we have

E[ȳ − ‖x̄‖2] ≤ E[ε2] and E[‖x̄‖2]− ‖b1‖2 ≤ E[ε2],

so that the quantity of y−‖x̄‖2 is a lower bound estimate for the error variance
and the variance of x̄ is also bounded by the error variance. This quantity gives
an interval estimation of b1.

More generally, we have
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Proposition 5.2 Let the noisy measurements

d̂ij = dij + εi + εj , ∀ i 6= j

and

d̂kj = dkj + εj , ∀k, j

where dij are the true distances and εj are independent random errors with zero
mean. Moreover, let the minimal α = 0 in (5.6) and the anchor points are
linear independent. Then, we have

E[x̄j ] = bj and E[Ȳjj ] = ‖bj‖2 + E[ε2j ] ∀ j

and

E[Ȳij ] = (bi)
T bj ∀ i 6= j,

where bj is the true position of xj, j = 1, ..., n, and

Z̄ =

(
I X̄
X̄T Ȳ

)
is the minimizer of (5.6).

Proof. Since α = 0, we have, for all i, j, k,

Ȳii − 2Ȳij + Ȳjj = (dij + εi + εj)
2

Ȳjj − 2x̄Tj ak + ‖ak‖2 = (dkj + εj)
2.

Taking expect values on both sides, we have

E[Ȳii]− 2E[Ȳij ] + E[Ȳjj ] = (dij)
2 + E[ε2i ] + E[ε2j ]

E[Ȳjj ]− E[x̄j ]
TE[x̄j ] + ‖E[x̄j ]− ak‖2 = (dkj)

2 + E[ε2j ].

or

E[Ȳii]− 2E[Ȳij ] + E[Ȳjj ]− ‖E[x̄i]− E[x̄j ]‖2 + ‖E[x̄j ]− E[x̄i]‖2 = (dij)
2 + E[ε2i ] + E[ε2j ]

E[Ȳjj ]− E[x̄j ]
TE[x̄j ] + ‖E[x̄j ]− ak‖2 = (dkj)

2 + E[ε2j ].

Thus,

E[x̄j ] = bj and E[Ȳjj ] = ‖bj‖2 + E[ε2j ] ∀ j

and

E[Ȳij ] = (bi)
T bj ∀ i 6= j

is the solution satisfying these equations.
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5.3 General SDP theory on graph realization

In the previous section, we show that if all accurate distances are given, then
the graph can be localized by solving an SDP problem in polynomial time. In
real applications, only partial distances(or edges) are known to the model. Can
these graph be localized or realized in polynomial time? In this section, we
given a positive answer to a family of uniquely localizable graphs. Informally,
a graph is uniquely localizable in dimension d if (i) it has a unique realization
in Rd, and (ii) it does not have any nontrivial realization whose affine span is
Rh, where h > d. Specifically, we present an SDP model that guarantees to
find the unique realization in polynomial time when the input graph is uniquely
localizable. The proof employs SDP duality theory and properties of interior–
point algorithms for SDP. To the best of our knowledge, this is the first time such
a theoretical guarantee is proven for a general localization algorithm. Moreover,
in view of the hardness result of Aspnes et. al. [25], The result is close to be the
best possible in terms of identifying the largest family of efficiently realizable
graphs. We also introduce the concept of strong localizability. Informally, a
graph is strongly localizable if it is uniquely localizable and remains so under
slight perturbations. We show that the SDP model will identify all the strongly
localizable subgraphs in the input graph.

5.3.1 Preliminaries

For the simplification of our analyses, we ignore the lower bound constraints
and study the Graph Localization problem that is defined as follows: find a
realization of x1, . . . , xn ∈ Rd such that

‖ak − xj‖2 = d̄2
kj ∀ (k, j) ∈ Na

‖xi − xj‖2 = d2
ij ∀ (i, j) ∈ Nx

(5.8)

Recall that m anchor points a1, . . . , am ∈ Rd whose locations are known, and n
sensor points x1, . . . , xn ∈ Rd whose locations we wish to determine. Further-
more, we are given partial accurate Euclidean distance values d̄kj between ak
and xj for (k, j) ∈ Na, and dij between xi and xj for some (i < j, j) ∈ Nx.

Again, we can write the relaxed problem as a standard SDP problem, namely,
find a symmetric matrix Z ∈ R(d+n)×(d+n) to:

maximize 0

subject to Z1:d,1:d = Id

(0; eij)(0; eij)
T • Z = d2

ij ∀ (i, j) ∈ Nx
(ak; ej)(ak; ej)

T • Z = d̄2
kj ∀ (k, j) ∈ Na

Z � 0

(5.9)

where Z1:d,1:d is the d× d principal submatrix of Z. Note that this formulation
forces any possible feasible solution matrix to have rank at least d.
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The dual of the SDP relaxation is given by:

minimize Id • V +
∑

(i,j)∈Nx

yijd
2
ij +

∑
(k,j)∈Na

wkj d̄
2
kj

subject to

(
V 0
0 0

)
+

∑
(i,j)∈Nx

yij(0; eij)(0; eij)
T

+
∑

(k,j)∈Na

wkj(ak; ej)(ak; ej)
T � 0

(5.10)

Note that the dual is always feasible, as V = 0, yij = 0 for all (i, j) ∈ Nx and
wkj = 0 for all (k, j) ∈ Na is a feasible solution.

5.3.2 Analysis of the SDP relaxation

We now investigate when will the SDP (5.9) have an exact relaxation, i.e. when
will the solution matrix Z have rank d. Suppose that problem (5.9) is feasible.
This occurs when, for instance, d̄kj and dij represent exact distance values for
the positions X̄ = [x̄1 x̄2 . . . x̄n]. Then, the matrix Z̄ = (Id; X̄)T (Id; X̄) is a
feasible solution for (5.9). Now, since the primal is feasible, the minimal value
of the dual must be 0, i.e. there is no duality gap between the primal and dual.

Let U be the (d+ n)–dimensional dual slack matrix, i.e.:

U =

(
V 0
0 0

)
+

∑
(i,j)∈Nx

yij(0; eij)(0; eij)
T

+
∑

(k,j)∈Na

wkj(ak; ej)(ak; ej)
T

Then, from the duality theorem for SDP (see, e.g., [10]), we have:

Theorem 5.3 Let Z̄ be a feasible solution for (5.9) and Ū be an optimal slack
matrix of (5.10). Then,

1. complementarity condition holds: Z̄ • Ū = 0 or Z̄Ū = 0;

2. rank(Z̄) + rank(Ū) ≤ d+ n;

3. rank(Z̄) ≥ d and rank(Ū) ≤ n.

An immediate result from the theorem is the following:

Corollary 5.4 If an optimal dual slack matrix has rank n, then every solution
of (5.9) has rank d. That is, problems (5.8) and (5.9) are equivalent and (5.8)
can be solved as an SDP in polynomial time.

Another technical result is the following:
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Proposition 5.5 If every sensor point is connected, directly or indirectly, to
an anchor point in (5.8), then any solution to (5.9) must be bounded, that is,
Yjj is bounded for all j = 1, . . . , n.

Proof. If sensor point xj is connected to an anchor point ak, then we have:

‖xj‖2 − 2aTk xj + ‖ak‖2 ≤ Yjj − 2aTk xj + ‖ak‖2 = d̄2
kj

so that from the triangle inequality ‖xj‖ in (5.9) is bounded. Hence, we have:

Yjj ≤ d̄2
kj + 2‖ak‖‖xj‖ − ‖ak‖2

Furthermore, if xi is connected to xj and Yjj is bounded, we have:

Yii − 2
√
YiiYjj + Yjj ≤ Yii − 2Yij + Yjj = d2

ij

so that from the triangle inequality Yii must be also bounded.
In general, a primal (dual) max–rank solution is a solution that has the

highest rank among all solutions for primal (5.9) (dual (5.10)). It is known
[149, 132, 212] that various path–following interior–point algorithms compute
the max–rank solutions for both the primal and dual in polynomial time. This
motivates the following definition.

Definition 5.1 Problem (5.8) is uniquely localizable if there is a unique local-
ization X̄ ∈ Rd×n and there is no xj ∈ Rh, j = 1, . . . , n, where h > d, such
that:

‖(ak; 0)− xj‖2 = d̄2
kj ∀ (k, j) ∈ Na

‖xi − xj‖2 = d2
ij ∀ (i, j) ∈ Nx

xj 6= (x̄j ; 0) for some j ∈ {1, . . . , n}
The latter says that the problem cannot have a non–trivial localization in some
higher dimensional space Rh (i.e. a localization different from the one obtained
by setting xj = (x̄j ; 0) for j = 1, . . . , n), where anchor points are augmented to
(ak; 0) ∈ Rh, for k = 1, . . . ,m.

We now develop the following theorem:

Theorem 5.6 Suppose that the network is connected. Then, the following
statements are equivalent:

1. Problem (5.8) is uniquely localizable.

2. The max–rank solution matrix of (5.9) has rank d.

3. The solution matrix of (5.9) satisfies Y = XTX.

Proof. The equivalence between 2. and 3. is straightforward.
Now, since any rank d solution of (5.9) is a solution to (5.8), from 2. to 1.

we need to prove that if the max–rank solution matrix of (5.9) has rank d then
it is unique. Suppose not, i.e., (5.9) has two rank–d feasible solutions:

Z1 =

(
Id X1

XT
1 XT

1 X1

)
and Z2 =

(
Id X2

XT
2 XT

2 X2

)
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Then, the matrix Z = αZ1 + βZ2, where α + β = 1 and α, β > 0 is a feasible
solution and its rank must be d, since all feasible solution of (5.9) has rank at
least d but the max–rank is assumed to be d. Therefore, we have:

Z =

(
Id αX1 + βX2

αXT
1 + βXT

2 αXT
1 X1 + βXT

2 X2

)
=

(
Id B
BT BTB

)
where B = αX1+βX2. It follows that (X1−X2)T (X1−X2) = 0, or ‖X1−X2‖ =
0, i.e. Z1 = Z2, which is a contradiction.

Next, we prove the direction from 1. to 2., that is, the rank of a max–rank
solution of (5.9) is d. Suppose that there is a feasible solution Z of (5.9) whose
rank is greater than d. Then, we must have Y � XTX and Y 6= XTX. Thus, we
have the decomposition Y −XTX = (X ′)TX ′, where X ′ = [x′1, . . . , x

′
n] ∈ Rr×n

and r is the rank of Y −XTX. Now, consider the point:

x̃j =

(
xj
x′j

)
∈ Rd+r for j = 1, . . . , n

Then, we have:
‖x̃j‖2 = Yjj , (x̃i)

T x̃j = Yij ∀ i, j;
and there exist at least one x̃j such that ‖x̃j‖ 6= ‖xj‖ or x′j 6= 0. Moreover,
since the network is connected, we conclude from Proposition 5.5 that Yii and
Yij are bounded for all i, j. Hence, we have:

‖(ak; 0)− x̃j‖2 = d̄2
kj ∀ (k, j) ∈ Na

‖x̃i − x̃j‖2 = d2
ij ∀ (i, j) ∈ Nx

In other words, x̃j is a localization of problem (5.8) in Rd+r, which is a contra-
diction.

Theorem 5.6 establishes, for the first time, that as long as problem (5.8) is
uniquely localizable, then the realization can be computed in polynomial time
by solving the SDP relaxation. Conversely, if the relaxation solution computed
by an interior–point algorithm (which generates max–rank feasible solutions)
has rank d (and hence Y = XTX), then X is the unique realization of problem
(5.8). Moreover, as the recent result of Aspnes et. al. [25] shows, the results of
Theorem 5.6 are close to be the best possible, since the problem of computing
a realization of the sensors on the plane is NP–complete in general, even when
the instance has a unique solution on the plane.

5.3.3 Strongly Localizable Problem

Although unique localizability is an useful notion in determining the solvability
of the Sensor Network Localization problem, it is not stable under perturbation.
As we shall see in Section 5.3.4, there exist networks which are uniquely local-
izable, but may no longer be so after small perturbation of the sensor points.
This motivates us to define another notion called strong localizability.
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Definition 5.2 We say problem (5.8) is strongly localizable if the dual of its
SDP relaxation (5.10) has an optimal dual slack matrix with rank n.

Note that if a network is strongly localizable, then it is uniquely localizable from
Theorems 5.3 and 5.6, since the rank of all feasible solution of the primal is d.

We show how we can construct a rank–n optimal dual slack matrix. First,
note that if U is an optimal dual slack matrix of rank n, then it can be written
in the form U = (−XT ; In)TW (−XT ; In) for some positive definite matrix W
of rank n. Now, consider the dual matrix U . It has the form:

U =

(
U11 U12

UT12 U22

)
where U22 is an n×n matrix. Moreover, it can be decomposed as U22 = A+D,
where Aij = yij if i 6= j, Aii = −

∑
j Aij ; and D is a diagonal matrix where

Dii = −
∑

(k,i)∈Na
wki. (If there is no (k, i) ∈ Na, then Dii = 0.) Note that if

we impose the constraints yij ≤ 0 and wki ≤ 0, then both A and D are positive
semidefinite. Moreover, we have the following:

Proposition 5.7 Suppose that the network is connected. Furthermore, suppose
that yij < 0 for all (i, j) ∈ Nx, and that wki < 0 for some (k, i) ∈ Na, with
Na 6= ∅. Then, U22 is positive definite, i.e. it has rank n.

Proof. Since A and D are positive semidefinite, we have xTU22x ≥ 0 for all
x ∈ Rn. We now show that there is no x ∈ Rn\{0} such that xTAx = xTDx =
0. Suppose to the contrary that we have such an x. Then, since D is diagonal,
we have xTDx =

∑n
i=1Diix

2
i = 0. In particular, for Dii > 0, we have xi = 0.

Now, note that:

xTAx =

n∑
i=1

n∑
j=1

xixjAij = −
∑
i<j

(xi − xj)2Aij

Thus, xTAx = 0 implies that xi = xj for all i, j. Since Na 6= ∅, there exists an i
such that Dii > 0, whence xi = 0. It follows that x = 0. Proposition 5.7 gives
us a recipe for putting U into the desired form. First, we set U22 to be a positive
definite matrix. Then, we need to set U12 = −X̄U22, where X̄ is the matrix
containing the true locations of the sensors. We now investigate when this is
possible. Note that the above condition is simply a system of linear equations.
Let Ai be the set of sensors connected to anchor i, and let E be the number of
sensor–sensor edges. Then, the above system has E +

∑
i |Ai| variables. The

number of equations is E + 3m, where m is the number of sensors that are
connected to some anchors. Hence, a sufficient condition for solvability is that
the system of equations are linearly independent, and that

∑
i |Ai| ≥ 3m. In

particular, this shows that the trilateration graphs defined in [91] are strongly
localizable.

We now develop the next theorem.
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Theorem 5.8 If a problem (graph) contains a subproblem (subgraph) that is
strongly localizable, then the submatrix solution corresponding to the subproblem
in the SDP solution has rank d. That is, the SDP relaxation computes a solution
that localizes all possibly localizable unknown points.

Proof. Let the subproblem have ns unknown points and they are indexed as
1, . . . , ns. Since it is strongly localizable, an optimal dual slack matrix Us of
the SDP relaxation for the subproblem has rank ns. Then in the dual problem
of the SDP relaxation for the whole problem, we set V and those w· associated
with the subproblem to the optimal slack matrix Us and set all other w· equal
0. Then, the slack matrix:

U =

(
Us 0
0 0

)
� 0

must be optimal for the dual of the (whole–problem) SDP relaxation, and it
is complementary to any primal feasible solution of the (whole–problem) SDP
relaxation:

Z =

(
Zs ∗
∗ ∗

)
� 0 where Zs =

(
Id Xs

XT
s Ys

)
However, we have 0 = Z • U = Zs • Us and Us, Zs � 0. The rank of Us is ns
implies that the rank of Zs is exactly d, i.e. Ys = (Xs)

TXs, so Xs is the unique
realization of the subproblem.

5.3.4 A Comparison of Notions

In this section, we will show that the notions of unique localizability, strong
localizability and rigidity in R2 are all distinct.

5.3.5 Unique Localizability 6⇒ Strong Localizability

We have already remarked earlier that a strongly localizable graph is neces-
sarily uniquely localizable. However, as we shall see, the converse is not true.

Let G1 be the network shown in Figure 5.1(a). The key feature of G1 is that
the sensor x2 lies on the line joining anchors a1 and a3. It is not hard to check
that this network is uniquely localizable. Now, suppose to the contrary that G1

is strongly localizable. Then, the dual slack matrix U admits the decomposition
U = (−X̄T , I)TW (−X̄T , I). It is easy to verify that:

U12 = (ȳ21a2 + ȳ31a3, ȳ12a1 + ȳ32a3)

U22 =

(
−(ȳ21 + ȳ31)− y12 y12

y12 −(ȳ12 + ȳ32)− y12

)
and the form of U requires that U12 = −X̄U22. This is equivalent to the
following system of equations:

(x̄1 − a2)ȳ21 + (x̄1 − a3)ȳ31 = (x̄1 − x̄2)y12 (5.11)

(x̄2 − a1)ȳ12 + (x̄2 − a3)ȳ32 = −(x̄1 − x̄2)y12 (5.12)
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Since x̄2 lies on the affine space spanned by a1 and a3, equation (5.12) implies
that y12 = 0. However, equation (5.11) would then imply that x̄1 lies on the
affine space spanned by a2 and a3, which is a contradiction. Thus, we conclude
that G1 is not strongly localizable.

x1

a1

a2 a3

x2

(a) A uniquely localizable, but not
strongly localizable network

x2=(0.6,0.7)

a2=(−1,0)

a1=(0,1.4)

x1=(0,0.5)

a3=(1,0)

(b) A rigid network that is not
uniquely localizable

Figure 5.1: A comparison of graph notions

5.3.6 Rigid in R2 6⇒ Unique Localizability

By definition, a uniquely localizable network is rigid in R2. However, the con-
verse is not true. To see this, let G2 be the network shown in Figure 5.1(b).

Note that G2 can be viewed as a perturbed version of G1. It is easy to verify
that G2 is rigid. Thus, by Theorem 5.6, it can fail to be uniquely localizable
only if it has a realization in some higher dimension. Indeed, the above network
has an 3–dimensional realization. The idea for constructing such a realization
is as follows. Let us first remove the edge (x1, x2). Then, reflect the subgraph
induced by a1, x2, a2 across the dotted line. Now, consider two spheres, one
centered at a2 and the other centered at a3, both having radius

√
5/2. The

intersection of these spheres is a circle, and we can move x1 along this circle
until the distance between x1 and x2 equals to the prespecified value. Then, we
can put the edge (x1, x2) back and obtain an 3–dimensional realization of the
network.

More precisely, for the above realization, the reflected version of x2 has co-

ordinates x′2 =
(

173
370 ,

112
185 , 0

)
. Now, let x′1 =

(
0, 23

64 ,
√

495
64

)
. It is straightforward

to verify that:

‖x1 − a2‖2 = ‖x′1 − a2‖2 = 5
4

‖x1 − a3‖2 = ‖x′1 − a3‖2 = 5
4

‖x1 − x2‖2 = ‖x′1 − x′2‖2 = 2
5
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Hence, we conclude that G2 is not uniquely localizable.

It would be nice to have a characterization on those graphs which are rigid
in the plane but have higher dimensional realizations. However, finding such
a characterization remains a challenging task, as such characterization would
necessarily be non–combinatorial, and would depend heavily on the geometry
of the network. For instance, the networks shown in Figure 5.2, while having
the same combinatorial property as the one shown in Figure 5.1(b), are uniquely
localizable (in fact, they are both strongly localizable):

x2

a1

a2 a3

x1

(a)

x1

a1

a2 a3

x2

(b)

Figure 5.2: Strongly localizable networks

5.3.7 Preliminary computational and simulation results

The computational results presented here were generated using the interior-
point algorithm SDP solvers SeDuMi of Sturm and DSDP2.0 of Benson and
Ye. The performance of this technique seems highly satisfactory compared to
other techniques. Very few anchor nodes are required to accurately estimate
the position of all the unknown nodes in a network. Also the estimation errors
are minimal even when the anchor nodes are not suitably placed within the
network.

Simulations were performed on a network of 50 sensors or nodes randomly
generated in a square region of [−.5 .5] × [−.5 .5]. The distances between the
nodes was then calculated. If the distance between two notes was less than a
given radiorange between [0, 1], a random error was added to it

d̂ij = dij · (1 + randn(1) ∗ noisyfactor),

where noisyfactor was a given number between [0, 1], and then both upper and
lower bound constraints were applied for that distance in the SDP model. If the
distance was beyond the given radio− range, only the lower bound constraint,
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≥ 1.001 ∗ radiorange2, was applied. The average estimation error is defined by

1

n
·
n∑
j=1

‖x̄j − aj‖,

where x̄j comes from the SDP solution and aj is the true position of the jth
node. As discussed earlier, we called the trace of Ȳ − X̄T X̄ the total trace.
Connectivity indicates how many of the nodes, on average, are within the radio
range of a sensor.

Also the original and the estimated sensors were plotted. The blue diamond
nodes refer to the positions of the anchor nodes, green circle nodes to the true
locations of the unknown sensors and red star nodes to their estimated positions
from X̄. The discrepancies in the positions can be estimated by the offsets
between the true and the estimated points as indicated by the solid lines, see
Figure 5.3. Even with noisy data measurement, the position estimations for the
sensors are fairly accurate. Figure 5.4 shows the correlation between individual
offset errors (not observable) and individual traces (observable) of corresponding
sensors when the radio range is set at 0.25.
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0.3

0.4

0.5

(a) error:0.023, connectivity:7.8, total
trace:0.16, radio range=0.20.
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0
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0.2
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(b) error:0.002, connectivity:10.5, total
trace:0.04, radio range=0.30.

Figure 5.3: Position estimations with 3 anchors, noisy factor=0, and various
radio ranges.

Several key questions have to be answered for the future research: What is
the minimal radio range such that the network is localizable? How does the
sensor geographical distribution change the minimal radio range? What is the
sensitivity of the distance data? How to filter the data noisy? etc.
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(a) number of anchors=3, radio
range=0.25.
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(b) number of anchors=3, radio
range=0.30.

Figure 5.4: Diamond: the offset distance between estimated and true positions,
Box: the square root of trace Ȳjj − ‖x̄j‖2.

5.4 Other distance geometry problems

We list few other variances of the distance geometry or graph localization prob-
lem.

5.4.1 Metric distance embedding

The basic mathematical model of the metric distance embedding problem can be
described as a quadratically constrained optimization problem. We are given
metric p-norm distances dij for all i, j = 1, ..., n. The problem is to find n
unknown points xj ∈ Rn, j = 1, ..., n such that

‖xi − xj‖2 = (dij)
2 ∀i 6= j

or the error is minimized.
Thus, an optimization problem can be formulated as:

minimize α
subject to (dij)

2 ≤ ‖xi − xj‖2 ≤ α · (dij)2, ∀i < j
xj ∈ Rn, j = 1, ..., n.

(5.13)

Its SDP relaxation becomes

α∗p := minimize α
subject to (dij)

2 ≤ (eije
T
ij) • Y ≤ α · (dij)2, ∀i < j

Y � 0.
(5.14)
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Again

eij = (0, ..., 1, ...,−1, ...)T .

The SDP dual is

α∗p := Maximize
∑
i<j uij(dij)

2

Subject to 0 �
∑
i,j(uij − vij)eijeTij ,∑

i,j vij(dij)
2 = 1

uij , vij ≥ 0.

Result and questions:

• α∗2 = 1, and α∗p ≤ O(log n) for all p.

• Reduce Y ∗’s rank to O(log n) for α∗2 = 1 + ε.

• rank ≤ O(log n) for α∗p ≤ O(log n) for all p.

• Better bound for α∗1?

5.4.2 Molecular confirmation

The basic mathematical model of the molecular confirmation problem can be
described as a quadratically constrained optimization problem as well. For a
pair of (i, j) ∈ N , we are given Euclidean distance upper bound d̄ij and lower
bound dij between points i and j, the problem is to find Y such that

(dij)
2 ≤ (eije

T
ij) • Y ≤ (d̄ij)

2, ∀i < j ∈ N .

Furthermore, it is desired to find other missing dij such that the Euclidean
distance matrix can be completed.

The progem can be formulated as an SDP:

minimize I • Y
subject to (dij)

2 ≤ (eije
T
ij) • Y ≤ (d̄ij)

2, ∀i < j ∈ N
Y � 0.

(5.15)

5.4.3 Euclidean ball parking

The Euclidean ball packing problem is an old mathematical geometry problem
with plenty modern applications in Bio-X and chemical structures. It is a special
case of the Euclidean distance geometry problem, say d = 3, xj ∈ R3 is the
unknown position of the center of ball j, d̄ij = ∞ and dij = ri + rj , where ri
and rj are the radii of balls i and j, respectively; and Ω represents a convex
container where the balls should be packed.
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Say that we want to pack n balls in a box with width and length equal 2R
and like to minimize the height of the box, we can formulate it as

minimize α
subject to ‖xi − xj‖2 ≥ (ri + rj)

2, ∀i 6= j,
−R+ rj ≤ xj(1) ≤ R− rj , ∀j,
−R+ rj ≤ xj(2) ≤ R− rj , ∀j,
rj ≤ xj(3) ≤ α− rj , ∀j,

(5.16)

The first constraint tells that the distance between any two balls should be
greater than or equal to the sum of the two balls’ radii, the second says that
the first coordinate of xj is within the width constraint and the third is for the
length requirement, and the fourth indicates that the ball center has to be above
rj from the bottom and its height is below α− rj where α is to be minimized.

5.4.4 Data dimensionality reduction

Given P , a data point set of p1, ..., pn ∈ Rd, a fundamental question is how to
embed P into Q of q1, ..., qn ∈ Rk, where k � d, such that qjs keep all essential
information of P , such as the norms, distances and angles between pjs. In other
words, find a d−k-dimension subspace such that the projections of pjs onto the
subspace has a minimal “information loss.” We believe that this problem can
be posted as an Euclidean distance geometry problem

Lk := minimize α

subject to
∑n−k
i=1 ((pl)

Txi)
2 ≤ α, ∀l,∑n−k

i=1 ((pl − pm)Txi)
2 ≤ α, ∀l < m,

‖xi‖2 = 1, i = 1, ..., n− k, (xh)Txi = 0, ∀h < i.
(5.17)

Here, x1, ..., xn−k represent the n−k orthogonal bases of a n−k-dimension sub-
space. Thus, (pTl xi; ...; p

T
l xn−k) represents the projection of pl onto the n − k

subspace. After the problem being solved and the subspace is found, the projec-
tions of pls onto the complement k-dimension subspace must have all remaining
information of pls. In fact, the model without pair-wise distance constraints
is called the minimum radius problem, which is a fundamental computational
geometry and statistics problem.

Assume that x1, x2, · · · , xn−k ∈ Rd are the optimal solution of (5.17). Then
one can easily verify that the matrix Y = x1x

T
1 + x2x

T
2 + · · · + xn−kx

T
n−k is a

feasible solution for the following SDP model:

α∗k := minimize α
subject to pTl Y pl ≤ α, ∀l,

(pl − pm)TY (pl − pm) ≤ α, ∀l < m,
tr(Y ) = n− k, I − Y � 0, Y � 0.

(5.18)

It follows that α∗k ≤ Rk(P )2. Then, we can design a rounding procedure to
round Ȳ , a solution to (5.18), into orthogonal n − k bases and prove their
quality.
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Theorem 5.9 We can computed in polynomial time, a (n − k)-subspace such
that, with probability at least 1 − 2

n , its projected value of (5.17) is at most
12 log(n) of the minimal one.

5.5 A special case: The k-radius of P

The outer-radius, Rk(P ), is the minimum of the Euclidean radius of P projected
onto a k-dimensional subspace. Computing the minimal radius is a fundamental
problem in computational convexity with applications in global optimization,
data mining, statistics and clustering, and has received considerable attention
in the computational geometry literature [62, 155].

The square of Rk(P ) can be defined by the optimal value of the following
Euclidean distance minimization:

Rk(P )2 := minimize α

subject to
∑k
i=1((pl)

Txi)
2 ≤ α, ∀pl ∈ P,

‖xi‖2 = 1, i = 1, ..., k, (xi)
Txj = 0, ∀i 6= j ≤ k.

(5.19)
This leads to the following SDP relaxation:

α∗k := minimize α
subject to tr(plp

T
l X) ≤ α, ∀pl ∈ P,

tr(X) = k, I −X � 0, X � 0.
(5.20)

It follows that α∗k ≤ Rk(P )2.

Lemma 5.10 There exists an integer r ≥ k such that we can compute, in
polynomial time, r nonnegative reals λ1, λ2, · · · , λr and r orthogonal unit vectors
v1, v2, · · · , vr such that

(i).
∑r
i=1 λi = k.

(ii). max1≤i≤r λi ≤ 1.

(iii).
∑r
i=1 λi〈p, vi〉2 ≤ Rk(P )2, for any p ∈ P .

Proof. We solve the semidefinte program (5.20), and let X∗ be an optimal
solution of (5.20). We claim that the rank of X∗, say r, is at least k. This follows
from the fact that tr(X∗) = k and I − X∗ � 0. In other words, tr(X∗) = k
implies that the sum of the eigenvalues of X∗ is equal to k, and I − X∗ � 0
implies that the all eigenvalues are less than or equal to 1. Therefore, X∗ has
at least k non-zero eigenvalues, which implies that the rank of X∗ is at least
k. Let λ1, λ2, · · · , λr be the r nonnegative eigenvalues and v1, v2, · · · , vr be the
corresponding eigenvectors. Then we have

∑r
i=1 λi = k and max1≤i≤r λi ≤ 1.

Furthermore, for any p ∈ P ,
r∑
i=1

λi〈p, vi〉2 = tr(ppT
r∑
i=1

λiviv
T
i ) = tr(ppTX∗) ≤ α∗k ≤ Rk(P )2.
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5.5.1 Deterministic First Rounding

In this section, we prove a lemma concerning how to deterministically group the
eigenvalues and their eigenvectors. The proof of the lemma is elementary but it
plays an important role for proving our main result.

Lemma 5.11 The index set {1, 2, · · · , r} can be partitioned into k sets I1, I2, · · · , Ik
such that

(i). ∪ki=1Ii = {1, 2, · · · , r}, and for any i 6= j, Ii ∩ Ij = ∅.

(ii). For any i : 1 ≤ i ≤ k,
∑
j∈Ii λj ≥

1
2 .

Proof. Recall that
∑r
j=1 λj = k and 0 ≤ λj ≤ 1 for all j. Without

loss of generality, we can assume that λ1 ≥ λ2 ≥ · · · ≥ λr. Our partitioning
algorithm is the same as the Longest-Processing-Time heuristic algorithm for
parallel machine scheduling problem. The algorithm works as follows:

STEP 1. For i = 1, 2, · · · , k, set Ii = ∅ and let Li = 0. Let I = {1, 2, · · · , r}.
STPE 2. While I 6= ∅

choose j from I with the smallest index;
choose set i with the smallest value Li;
Let Ii := Ii ∪ {j}, Li := Li + λj and I := I − {j}.

It is clear that when the algorithm stops, the sets I1, I2, · · · , Ik satisfy con-
dition (i). Now we prove condition (2) by contradiction. Assume that there
exists some t such that

∑
j∈It λj <

1
2 .

We now claim that, for all i,
∑
j∈Ii λj ≤ 1. Otherwise, suppose

∑
j∈It′

λj > 1

for some t′. Note that λj ≤ 1 for every j and thus there are at least two
eigenvalues are assigned to It′ . Denote the last eigenvalue by λs′ . It follows
that

∑
j∈It′

λj − λs′ =
∑
j∈It′\{s′}

λj ≤
∑
j∈It λj since, otherwise, we would

have not assigned λs′ to It′ in the algorithm. However, since
∑
j∈It λj <

1
2 , we

must have
∑
j∈It′

λj−λs′ =
∑
j∈It′\{s′}

λj <
1
2 . Thus, λs′ >

∑
j∈It′

λj− 1
2 >

1
2 .

This is impossible since λs′ is the last eigenvalue assigned to It′ , which implies
λs′ ≤ λj for every j ∈ It′ , and we have already proved that there must exist an
l such that s′ 6= l ∈ It′ and λl ≤

∑
j∈It′\{s′}

λj <
1
2 . Therefore,

∑
j∈Ii λj ≤ 1

for all i, and in particular
∑
j∈It λj <

1
2 . It follows that

∑k
i=1

∑
j∈Ii λj < k.

However, we know that, by condition (i),
∑k
i=1

∑
j∈Ii λj =

∑r
j=1 λj = k. This

results a contradiction. Therefore, such t does not exists and we have proved
condition (ii).

Notice that the running time of the partitioning algorithm is bounded by
O(r · k). An alternative way of partitioning the eigenvalues is the following:
First, put the eigenvalues that are greater than or equal to 1/2 into distinct
subsets. If the number of such eigenvalues, say l, is not less than k, then we are
done. Otherwise, arbitrarily put the remaining eigenvalues into k − l subsets
such that the sum of eigenvalues in each subset is greater than or equal to 1/2.
This method is suggested by an anonymous referee.
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5.5.2 Randomized Second Rounding

Assume now that we have found I1, I2, · · · , Ik. Then our next randomized
rounding procedure works as follows.

STEP 1. Generate a r dimensional random vector φ such that each entry of
φ takes value, independently, −1 or 1 with probability 1

2 each way.

STEP 2. For i = 1, 2, · · · , k, let

xi =

∑
j∈Ii φj

√
λj · vj√∑

j∈Ii λj
.

The following Lemmas show that x1, x2, · · · , xk form a feasible solution for
the original problem. In other words, they are k orthogonal unit vectors.

Lemma 5.12 For i = 1, 2, · · · , k, ‖xi‖ = 1.

Proof. Recall that 〈vl, vj〉 = 0 for any l 6= j and ‖vj‖ = 1. By definition,

‖xi‖2 = 〈xi, xi〉

=

〈∑
j∈Ii φj

√
λjvj√∑

j∈Ii λj
,

∑
j∈Ii φj

√
λjvj√∑

j∈Ii λj

〉

=
1∑

j∈Ii λj

〈∑
j∈Ii

φj
√
λjvj ,

∑
j∈Ii

φj
√
λjvj

〉

=
1∑

j∈Ii λj

∑
j∈Ii

〈φj
√
λjvj , φj

√
λjvj〉

=
1∑

j∈Ii λj

∑
j∈Ii

‖φj
√
λjvj‖2

=
1∑

j∈Ii λj

∑
j∈Ii

(φj)
2λj‖vj‖2

=
1∑

j∈Ii λj

∑
j∈Ii

λj

= 1

Lemma 5.13 If s 6= t then 〈xs, xt〉 = 0.
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Proof. The proof is similar as that of Lemma 5.12.

〈xs, xt〉

=

〈∑
j∈Is φj

√
λjvj√∑

j∈Is λj
,

∑
j∈It φj

√
λjvj√∑

j∈It λj

〉

=
1√∑

j∈Is λj ·
∑
j∈It λj

〈∑
j∈Is

φj
√
λjvj ,

∑
j∈It

φj
√
λjvj

〉
= 0.

The last equality holds since for any j ∈ Is and l ∈ It, 〈vj , vl〉 = 0.

Now we establish a bound on the performance of our algorithm. First, let us
introduce Bernstein’s Theorem (see, e.g., [240]), which is a form of the Chernoff
Bound.

Lemma 5.14 Let φ be a random vector whose entries are independent and
either 1 or −1 with probability .5 each way. Then, for any vector e and β > 0,

prob{〈φ, e〉2 > β‖e‖2} < 2 · exp(−β
2

).

Let Cip =
∑
j∈Ii λj〈p, vj〉

2. Then we have

Lemma 5.15 For each i = 1, 2, · · · , k and each p ∈ P , we have

prob{〈p, xi〉2 > 12 log(n) · Cip} <
2

n3
.

Proof. Given i and p, define a |Ii| dimensional vector e such that its entries are√
λj〈p, vj〉, j ∈ Ii, respectively. Furthermore, we define the vector φ|Ii whose

entries are those of φ with indices in Ii. First notice that

‖e‖2 =
∑
j∈Ii

(
√
λj〈p, vj〉)2 =

∑
j∈Ii

λj · 〈p, vj〉2 = Cip.
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On the other hand,

〈p, xi〉2

=

〈
p,

∑
j∈Ii

√
λjvjφj√∑

j∈Ii λj

〉2

=
1∑

j∈Ii λj

〈
p,
∑
j∈Ii

√
λjvjφj

〉2

≤ 2

〈
p,
∑
j∈Ii

√
λjvjφj

〉2

(since
∑
j∈Ii

λj ≥
1

2
)

= 2

∑
j∈Ii

√
λjφj〈p, vj〉

2

= 2 〈φ|Ii , e〉
2

Thus

prob{〈p, xi〉2 > 12 log(n)Cip} ≤ prob{〈φ|Ii , e〉2 > 6 log(n)‖e‖2}.

Therefore, the conclusion of the lemma follows by using Lemma 5.14 and by
letting β = 6 log(n).

Theorem 5.16 We can computed in polynomial time, a (d− k)-flat such that,
with probability at least 1 − 2

n , the distance between any point p ∈ P and F is

at most
√

12 log(n) ·Rk(P ).

Proof. For given i = 1, 2, · · · , k and p ∈ P , consider the event

Bip = {φ|〈p, xi〉2 > 12 log(n) · Cip}

and B = ∪i,pBip. The probability that the event B happens is bounded by∑
i,p

prob{〈p, xi〉2 > 12 log(n) · Cip} <
2kn

n3
≤ 2

n
.

If B does not happen, then for any i and p,

〈p, xi〉2 ≤ 12 log(n) · Cip.

Therefore, for each p ∈ P ,

k∑
i=1

〈p, xi〉2 ≤ 12 log(n)

k∑
i=1

Cip ≤ 12 log(n) ·Rk(P )2.

The last inequality follows from Lemma 5.10. This completes the proof by
taking F as the flat which is orthogonal to the vectors x1, x2, · · · , xk.
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5.6 Distributed SDP computing

The SDP problems presented in this chapter can be solved in a distributed fash-
ion which has not been studied before. Here we describe an iterative distributed
SDP computation scheme to for sensor network localization. We first partition
the anchors into many clusters according to their physical positions, and assign
some sensors into these clusters if a sensor has a direct connection to one of the
anchors. We then solve semidefinite programs independently at each cluster,
and fix those sensors’ positions which have high accuracy measures according
the SDP computation. These positioned sensors become “ghost anchors” and
are used to decide the remaining un-positioned sensors. The distributed scheme
then repeats. A round of the distributed computation method is straightforward
and intuitive:

1. Partition the anchors into a number of clusters according to their geo-
graphical positions. In our implementation, we partition the entire sensor
area into a number of equal-sized squares and those anchors in a same
square form a regional cluster.

2. Each (unpositioned) sensor sees if it has a direct connection to an anchor
(within the communication range to an anchor). If it does, it becomes an
unknown sensor point in the cluster to which the anchor belongs. Note
that a sensor may be assigned into multiple clusters and some sensors are
not assigned into any cluster.

3. For each cluster of anchors and unknown sensors, formulate the error
minimization problem for that cluster, and solve the resulting SDP model
if the number of anchors is more than 2. Typically, each cluster has less
than 100 sensors and the model can be solved efficiently.

4. After solving each SDP model, check the individual trace (5.7) for each
unknown sensor in the model. If it is below a predetermined small tol-
erance, label the sensor as positioned and its estimation x̄j becomes an
“ anchor”. If a sensor is assigned in multiple clusters, we choose the x̄j
that has the smallest individual trace. This is done so as to choose the
best estimation of the particular sensor from the estimations provided by
solving the different clusters.

5. Consider positioned sensors as anchors and return to Step 1 to start the
next round of estimation.

Note that the solution of the SDP problem in each cluster can be carried
out at the cluster level so that the computation is highly distributive. The only
information that needs to be passed among the neighboring clusters is which of
the unknown sensors become positioned after a round of SDP solutions.

In solving the SDP model for each cluster, even if the number of sensors is
below 100, the total number of constraints could be in the range of thousands.
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However, many of those ”bounding away” constraints, i.e., the constraints be-
tween two remote points, are inactive or redundant at the optimal solution.
Therefore, we adapt an iterative active constraint generation method. First,
we solve the problem including only partial equality constraints and completely
ignoring the bounding-away inequality constraints to obtain a solution. Sec-
ondly we verify the equality and inequality constraints and add those violated
at the current solution into the model, and then resolve it with a “warm-start”
solution. We can repeat this process until all of the constraints are satisfied.
Typically, only about O(n + m) constraints are active at the final solution so
that the total number of constraints in the model can be controlled at O(n+m).

5.6.1 Preliminary computational and simulation results

Simulations were performed on networks of 2, 000 to 4, 000 sensor points which
are randomly generated in a square region of [−.5 .5] × [−.5 .5]. We generally
select the first 5−10% of the points as anchors, that is, anchors are also uniformly
distributed in the same random manner. The tolerance for labeling a sensor as
positioned is set at 0.01 · (1 + noisyfactor) · radiorange. One simulation solves
a network localization with 4, 000 sensors, where the entire sensor region is
partitioned into 10× 10 equal-sized squares, that is, 100 clusters, and the radio
range is set at .035. The total solution time for the five round computation on
the single Pentium 1.2 GHz and 500 MB PC, excluding computing d̂ij , is about
four minutes using DSDP2.0. The final solution is ploted in Figure 3.

It is usually the outlying sensors at the boundary or the sensors which do not
have many anchors within the radio range that are not estimated in the initial
stages of the method. Gradually, as the number of well estimated sensors or
’ghost’ anchors grows, more and more of these points are positioned. We have
also estimated the same 4, 000 network using noisy data. It is noted that the
erroneous points are isolated within particular regions. This clearly indicates
that the clustering approach prevents the propagation of errors to other clusters.
We feel that our distributed computation techlogy is promising for solving very
very large scale distance geometry related problems.

5.7 Notes

The distance geometry problem and its variants arise from applications in
various areas, such as molecular conformation, dimensionality reduction, Eu-
clidean ball packing, and more recently, wireless sensor network localization
[5, 53, 81, 161, 271, 275]. In the sensor networks setting, the vertices of G cor-
respond to sensors, the edges of G correspond to communication links, and the
weights correspond to distances. Furthermore, the vertices are partitioned into
two sets – one is the anchors, whose exact positions are known (via GPS, for
example); and the other is the sensors, whose positions are unknown. The goal
is to determine the positions of all the sensors. We shall refer to this problem
as the Sensor Network Localization problem. Note that we can view the Sensor
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Figure 5.5: Third and final round position estimations in the 4, 000 sensor
network, noisy-factor=0, radio-range=0.045, and the number of clusters=100.
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Network Localization problem as a variant of the Graph Realization problem in
which a subset of the vertices are constrained to be in certain positions.

In many sensor networks applications, sensors collect data that are location–
dependent. Thus, another related question is whether the given instance has
a unique realization in the required dimension (say, in R2). Indeed, most
of the previous works on the Sensor Network Localization problem fall into
two categories – one deals with computing a realization of a given instance
[53, 81, 91, 161, 270, 271, 272, 275], and the other deals with determining
whether a given instance has a unique realization in Rd using graph rigidity
[91, 139]. It is interesting to note that from an algorithmic viewpoint, the
two problems above have very different characteristics. Under certain non–
degeneracy assumptions, the question of whether a given instance has a unique
realization on the plane can be decided efficiently [169], while the problem of
computing a realization on the plane is NP–complete in general, even if the given
instance has a unique realization on the plane [25]. Thus, it is not surprising
that all the aforementioned heuristics for computing a realization of a given in-
stance do not guarantee to find it in the required dimension. On another front,
there has been attempts to characterize families of graphs that admit polyno-
mial time algorithms for computing a realization in the required dimension. For
instance, Eren et. al. [91] have shown that the family of trilateration graphs has
such property. (A graph is a trilateration graph in dimension d if there exists
an ordering of the vertices 1, . . . , d+ 1, d+ 2, . . . , n such that (i) the first d+ 1
vertices form a complete graph, and (ii) each vertex j > d+ 1 has at least d+ 1
edges to vertices earlier in the sequence.) However, the question of whether
there exist larger families of graphs with such property is open.

We should mention here that various researchers have used SDP to study
the distance geometry problem (or its variants) before. For instance, Barvinok
[35, 36] has studied this problem in the context of quadratic maps and used
SDP theory to analyze the possible dimensions of the realization. Alfakih and
Wolkowicz [6, 7] have related this problem to the Euclidean Distance Matrix
Completion problem and obtained an SDP formulation for the former. More-
over, Alfakih has obtained a characterization of rigid graphs in [3] using Eu-
clidean distance matrices and has studied some of the computational aspects of
such characterization in [4] using SDP. However, these papers mostly addressed
the question of realizability of the input graph, and the analyses of their SDP
models only guarantee that they will find a realization whose dimension lies
within a certain range. Thus, these models are not quite suitable for our appli-
cation. In contrast, our analysis takes advantage of the presence of anchors and
gives a condition which guarantees that our SDP model will find a realization
in the required dimension. We remark that SDP has also been used to compute
and analyze distance geometry problems where the realization is allowed to have
a certain amount of distortion in the distances [37, 205]. Again, these meth-
ods can only guarantee to find a realization that lies in a range of dimensions.
Thus, it would be interesting to extend our method to compute low–distortion
realizations in a given dimension. For some related work in this direction, see,
e.g., [28].
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The SDP models were first used by [65, 66] for the ad hoc wireless sensor
network localization, and the results described here were based on their work.

The result on the radii of point sets is due to [342], which improves the ratio
of [320] by a factor of O(

√
log d) that could be as large as O(

√
log n). This ratio

also matches the previously best known ratio for approximating the special case
R1(P ) of [240], the width of point set P .

5.8 Exercises

5.1 Find the SDP relaxation to the following minimization problem

minimize
∑
i,j∈Nx, i<j

(αij)
2 +

∑
k,j∈Na

(αkj)
2

subject to ‖xi − xj‖2 = (d̂ij)
2 + αij , ∀ (i, j) ∈ Nx, i < j,

‖ak − xj‖2 = (d̂kj)
2 + αkj , for (k, j) ∈ Na,

‖xi − xj‖2 ≥ R2, for the rest i < j,
‖ak − xj‖2 ≥ R2, for the rest k, j;

and interpret the objective function.

5.2 Find the SDP relaxation to the following minimization problem

minimize
∑
i,j∈Nx, i<j

(αij)
2 +

∑
k,j∈Na

(αkj)
2

subject to ‖xi − xj‖ = d̂ij + αij , ∀ (i, j) ∈ Nx, i < j,

‖ak − xj‖ = d̂kj + αkj , for (k, j) ∈ Na,
‖xi − xj‖2 ≥ R2, for the rest i < j,
‖ak − xj‖2 ≥ R2, for the rest k, j;

and interpret the objective function.

5.3 The Un-Folding Problem: with the same notions, consider the problem

maximize
∑
i ‖xi‖2

subject to ‖ak − xj‖2 = d̄2
kj ∀ (k, j) ∈ Na

‖xi − xj‖2 = d2
ij ∀ (i, j) ∈ Nx

(5.21)

Find the SDP relaxation and its dual, and explain what they are.

5.4 Given one sensor and three anchors in R2, and let the three distances from
the sensor to three anchors are given. Show that the graph is stronly localizable
if and only if the sensor’s position lies in the liner space of the three anchors’
positions.

5.5 Prove that the graphs depicted in Figures 5.2(a) and 5.2(b) are strongly
localizable.

5.6 Suppose for the angle of two edges joint at a point is known. How to inco-
porate this information in the SDP relaxation of the distance geometry problem?
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Chapter 6

SDP for Robust
Optimization

6.1 Robust Optimization

Consider an optimization problem

Minimize f(x, ξ)
(OPT)

Subject to F (x, ξ) ∈ K ⊂ Rm.
(6.1)

where ξ is the data of the problem and x ∈ Rn is the decision vector, and K is
a convex cone.

For deterministic optimization, we assume ξ is known and fixed. In reality,
ξ may not be certain.

• Knowledge of ξ belonging to a given uncertain set U .

• The constraints must be satisfied for every ξ in the uncertain set U .

• Optimal solution must give the best guaranteed value of supξ∈U f(x, ξ).

This leads to the so-called robust counterpart:

Minimize supξ∈U f(x, ξ)
(ROPT)

Subject to F (x, ξ) ∈ K for all ξ ∈ U.
(6.2)

Other methods dealing with data uncertainty include:
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6.1.1 Stochastic Method

Minimize Eξ[f(x, ξ)]
(EOPT)

Subject to Eξ[F (x, ξ)] ∈ K.

6.1.2 Sampling Method

Minimize z
(SOPT)

Subject to F (x, ξk) ∈ K

f(x, ξk) ≤ z
for large sxamples ξk ∈ U.

This problem may be a semin-infinite programming problem.

6.2 Robust Quadratic Optimization

Minimize qTx
(EQP)

Subject to ‖Ax‖2 ≤ 1.
(6.3)

Here, vector q ∈ Rn and A ∈ Rm×n; and ‖.‖ is the Euclidean norm.

6.2.1 Ellipsoid uncertainty

Let A be uncertain and

A = A0 +

k∑
j=1

ujA
j | uTu ≤ 1.

Minimize qTx
(REQP)

Subject to ‖(A0 +
∑k
j=1 ujA

j)x‖ ≤ 1 ∀uTu ≤ 1.

The problem can be rewritten as

Minimize qTx
(REQP)

Subject to ‖(A0 +
∑k
j=1 ujA

j)x‖2 ≤ 1 ∀uTu ≤ 1.

Let
F (x) = (A0x, A1x, · · · Akx).
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Then

‖(A0 +

k∑
j=1

ujA
j)x‖2 =

(
1
u

)T
F (x)TF (x)

(
1
u

)
The problem becomes

Minimize qTx
(REQP)

Subject to

(
1
u

)T ((
1 0
0 0

)
− F (x)TF (x)

)(
1
u

)
≥ 0

∀
(

1
u

)T (
1 0
0 −I

)(
1
u

)
≥ 0.

6.2.2 S-Lemma

Lemma 6.1 Let P and Q be two symmetric matrices such that there exists u0

satisfying (u0)TPu0 > 0. Then the implication that

uTPu ≥ 0⇒ uTQu ≥ 0

holds true if and only if there exists λ ≥ 0 such that

Q � λP.

From the lemma, we immediately see(
1
u

)T ((
1 0
0 0

)
− F (x)TF (x)

)(
1
u

)
≥ 0

∀
(

1
u

)T (
1 0
0 −I

)(
1
u

)
≥ 0

if and only if there is a λ ≥ 0 such that(
1 0
0 0

)
− F (x)TF (x) � λ

(
1 0
0 −I

)
.

This is equivalent to (
1 0
0 0

)
+ λ

(
−1 0
0 I

)
F (x)T

F (x) I

 � 0

which is a SDP constraint since F (x) is linear in x. Here we have used another
technical lemma

Lemma 6.2 Let P a symmetric matrix and A be a rectangle matrix. Then

P −ATA � 0

if and only if (
P AT

A I

)
� 0.
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6.2.3 SDP for Robust QP

Consider λ and x as variables, REQP finally becomes a SDP problem:

Minimize qTx
(REQP)

Subject to

 (
1− λ 0

0 λI

)
F (x)T

F (x) I

 � 0.

6.3 General Robust Quadratic Optimization

Minimize qTx
(EQP)

Subject to −xTATAx+ 2bTx+ γ ≥ 0.
(6.4)

Here, vector q, b ∈ Rn and and A ∈ Rm×n.

6.3.1 Ellipsoid uncertainty

Let A be uncertain and

(A, b, γ) = (A0, b0, γ0) +

k∑
j=1

uj(A
j , bj , γj)| uTu ≤ 1.

Minimize qTx
(REQP)

Subject to −xTATAx+ 2bTx+ γ ≥ 0 ∀uTu ≤ 1.

Let again

F (x) = (A0x, A1x, · · · Akx).

Then

−xTATAx+ 2bTx+ γ =

(
1
u

)T 


γ0 + 2xT b0 γ1/2 + xT b1 · · · γk/2 + xT bk

γ1/2 + xT b1 0 · · · 0
· · · · · · · · · · · ·

γk/2 + xT bk 0 · · · 0

− F (x)TF (x)

( 1
u

)
.
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6.3.2 SDP formulation

From the S-lemma, we immediately see if and only if there is λ ≥ 0 such that
γ0 + 2xT b0 γ1/2 + xT b1 · · · γk/2 + xT bk

γ1/2 + xT b1 0 · · · 0
· · · · · · · · · · · ·

γk/2 + xT bk 0 · · · 0

−F (x)TF (x)) � λ
(

1 0
0 −I

)
;

which is is equivalent to


γ0 + 2xT b0 γ1/2 + xT b1 · · · γk/2 + xT bk

γ1/2 + xT b1 0 · · · 0
· · · · · · · · · · · ·

γk/2 + xT bk 0 · · · 0

+ λ

(
−1 0
0 I

)
F (x)T

F (x) I

 � 0.

which is a SDP constraint since the matrix is linear in x.
Consider λ and x as variables, REQP finally becomes a SDP problem:

Minimize qTx
(REQP)

Subject to




γ0 + 2xT b0 − λ γ1/2 + xT b1 · · · γk/2 + xT bk

γ1/2 + xT b1 λ · · · 0
· · · · · · · · · · · ·

γk/2 + xT bk 0 · · · λ

 F (x)T

F (x) I

 � 0.

6.4 More Robust Quadratic Optimization

Minimize qTx
(EQP)

Subject to −xTATi Aix+ 2bTi x+ γi ≥ 0 i = 1, ..., t.
(6.5)

Here, vector q, bi ∈ Rn and and Ai ∈ Rm×n.

6.4.1 Ellipsoid uncertainty

Let A be uncertain and

(Ai, bi, γi) = (A0
i , b

0
i , γ

0
i ) +

k∑
j=1

uj(A
j
i , b

j
i , γ

j
i )| u

Tu ≤ 1.

Minimize qTx
(REQP)

Subject to −xTATi Aix+ 2bTi x+ γi ≥ 0, i = 1, ..., t, ∀uTu ≤ 1.
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6.4.2 SDP formulation

Let again

Fi(x) = (A0
ix, A

1
ix, · · · Aki x).

Consider λi, i = 1, ..., t, and x as variables, REQP finally becomes a SDP
problem:

Min qTx

s.t.




γ0
i + 2xT b0i − λi γ1

i /2 + xT b1i · · · γki /2 + xT bki
γ1
i /2 + xT b1i λi · · · 0
· · · · · · · · · · · ·

γki /2 + xT bki 0 · · · λi

 Fi(x)T

Fi(x) I

 � 0,

i = 1, ..., t.

6.5 Tool for Robust Optimization

Recall:
Minimize supξ∈U f(x, ξ)

(ROPT)
Subject to F (x, ξ) ≤ 0 for all ξ ∈ U.

(6.6)

Express

ξ = ξ(u) where u ∈ Û .

Then,

sup
ξ∈U

f(x, ξ) = sup
u∈Û

f(x, ξ(u))

In convex cases, we represent

sup
u∈Û

f(x, ξ(u))

by its conic dual problem and let the dual objective function be

φ(λ0, x)

where λ0 is the dual variables. The dual objective function is an upper bound
on f(x, ξ(u)) so we could represent the problem by

Minimize φ(λ0, x)
(ROPT)

Subject to F (x, ξ) ≤ 0 for all ξ ∈ U

dual constraints on λ0.

(6.7)
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We handle the constraints in the exact same manner, and the problem be-
comes

Minimize φ(λ0, x)
(ROPT)

Subject to Φ(λ, x) ∈ C

dual constraints on λ0, λ,

(6.8)

where Φ(λ, x) is, component-wise, the dual objective function of

sup
u∈Û

F (x, ξ(u)),

and C is a suitable cone.

6.5.1 Examples

ax+ b ≤ 0

where

(a, b) = (a0, b0) +

k∑
i=1

ui(a
i, bi)| u ∈ Û .

Case of ‖u‖ ≤ 1:

max
u:‖u‖≤1

a0x+ b0 +

k∑
i=1

ui(a
ix+ bi)

The dual is

Minimize λ

Subject to λ− (a0x+ b0) ≥
√∑k

i=1(aix+ bi)2.

Thus, the robust constraint becomes

0 ≥ λ ≥ (a0x+ b0) +

√√√√ k∑
i=1

(aix+ bi)2.

Case of ‖u‖∞ ≤ 1:

max
u:‖u‖∞≤1

a0x+ b0 +

k∑
i=1

ui(a
ix+ bi)

The dual is

Minimize λ

Subject to λ− (a0x+ b0) ≥
∑k
i=1 |(aix+ bi)|.
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Thus, the robust constraint becomes

0 ≥ λ ≥ (a0x+ b0) +

k∑
i=1

|(aix+ bi)|.

Case of ‖u‖1 ≤ 1:

max
u:‖u‖1≤1

a0x+ b0 +

k∑
i=1

ui(a
ix+ bi)

The dual is

Minimize λ

Subject to λ− (a0x+ b0) ≥ maxi{|(aix+ bi)|}.

Thus, the robust constraint becomes

0 ≥ λ ≥ (a0x+ b0) + max
i
{|(aix+ bi)|}.

6.6 Applications

6.6.1 Robust Linear Least Squares

Minimize ‖Ay − c‖2
y ∈ Y.

If the data (A, c) are from the set

(A, c) = (A0, c0) +

k∑
i=1

ui(A
i, ci)| ‖u‖ ≤ 1,

the robust counter part can be drawn from the earlier disscusion, since the
original problem is a convex QP problem.

6.6.2 Heat dissipation problem

Consider an electric circuit represented as a connected oriented graph Γ with
N arcs, each of which possesses a given conductance sij . Assuming that the
arcs of the circuit are charged with external voltages y and internal voltages v.
These voltages induce currents in the circuit; as a result, the circuit dissipates
heat. According to Kirchoff’s laws, the heat is given by

H = min
v∈Rm

(Qv + Py)TS(Qv + Py),

where Q and P are some matrices given by the topology of the circuit, m is the
number of nodes of the circuit, and S is N ×N diagonal matrix with sij as its
diagonal entries.
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The problem is to choose y such that

min
y∈Y

[
min
v∈Rm

(Qv + Py)TS(Qv + Py)

]
,

where Y is a convex set.
Now if

S = S(u) = S0 +

k∑
i=1

uiS
i| ‖u‖ ≤ 1,

we have a robust optimization counterpart:

min
y∈Y

{
max
u∈Û

[
min
v∈Rm

(Qv + Py)TS(u)(Qv + Py)

]}
.

Since (Qu+Py)TS(u)(Qu+Py) is convex in (y, v) and linear in u, this problem
is equivalent to

min
y∈Y,v∈Rm

[
max
u∈Û

(Qv + Py)TS(u)(Qv + Py)

]
.

6.6.3 Portfolio optimization

Minimize xTV x

Subject to µTx ≥ α

eTx = 1.

Now V and µ may be uncertain, for example,

(V, µ) = (V 0, µ0) +

k∑
i=1

ui(V
i, µi)| ‖u‖ ≤ 1.

The robust counterpart of the portfolio problem is

Minimize maxV ∈V [xTV x]

Subject to minµ∈S [µTx] ≥ α

eTx = 1

6.7 Exercises

6.1 Prove the S-lemma.

6.2 In the linear least squares problem, assume that

(A, c) = (A0, c0) +

k∑
i=1

ui(A
i, ci)| ‖u‖ ≤ 1.
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Construct the robust counterparts of the problem for three norms on u:

‖u‖2 ≤ 1, ‖u‖1 ≤ 1, and ‖u‖∞ ≤ 1.

6.3 In the Heat dissipation problem, assume that

S = S(u) = S0 +

k∑
i=1

uiS
i| ‖u‖ ≤ 1,

and si � 0 for all i = 0, ..., k. Construct the robust counterparts of the problem
for three norms on u:

‖u‖2 ≤ 1, ‖u‖1 ≤ 1, and ‖u‖∞ ≤ 1.

6.4 In the portafolio optimization problem, assume that

(V, µ) = (V 0, µ0) +

k∑
i=1

ui(V
i, µi)| ‖u‖ ≤ 1,

and V i � 0 for all i = 0, ..., k. Construct the robust counterparts of the problem
for three norms on u:

‖u‖2 ≤ 1, ‖u‖1 ≤ 1, and ‖u‖∞ ≤ 1.



Chapter 7

SDP for Quantum
Computation

7.1 Quantum Computation

Quantum Computation uses Quantum Mechanics to enhance computation power.
First concrete result was developed for Integer Factorization by Shor in 1994;
and then for Quantum search algorithm and space reduction by Grover in 1996.
The field is closely linked to Quantum Information Theory and Statistics, Quan-
tum Channels and Optimization.

To describe quantum mechanics, Hilbert sapces and linear operators are
generally used. In this lecture, we restrict ourselves to finite-dimensional real
vector spaces. In classical quantum physics, a quantum state, or a state, is
a column vector v in the N -dimensional vector space RN with norm ||v||2 =√
v · v = 1.

Nowadays, another formalism is widely accepted, in which a state is a postive
semidefinite symmetric matrix V with trace 1 that belongs to RN×N . A matrix
of such property is called a density matrix. For example, a density matrix V
with rank one can be represented as V = vvT , and Tr(V ) = 1. A density matrix
of rank higher than 1 can be written as

V =

N∑
i=1

λiviv
T
i ,

where λi ≥ 0 for all i and
∑
i λi = 1.

A density matrix of rank 1 is called a pure sate, and a density matrix of rank
higher than 1 is called a mixed state. The state V is interpreted as a probalistic
mixture of pure states viv

T
i with mixing probabilities λi.
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7.2 Completely Positive Map

The state of a system may change as time goes on.
Given {A1, A2, · · · , Ak}, where Ai ∈ RM×N , such that

k∑
i=1

AiA
T
i = I,

trace-preserving complete positive (CP) map of V is

T (V ) =

k∑
i=1

AiV A
T
i .

Note that T (V ) ∈ RM×M , so CP is a linear mapping that conveys quantum
states in RN×N to the states in RM×M . In quantum computing, the pure state
is in R2n

or N = 2n, called n-qubit. When n = 1, a unit orthogonal (1; 0) and
(0; 1) represent the classical bits.

A measurement is described as a finite set of symmetric positive semidefinite
matrices {M1,M2, · · · ,Mk} whose sum is an identity matrix, i.e.,

Mi � 0, ∀i = 1, · · · , k, and

k∑
i=1

Mi = I,

called Positive Operator-Valued Measures (POVM).
Given the system in state V and a measurement {M1,M2, · · · ,Mk} per-

formed on the system, we obtain a random varible X with

Pr(X = l) = V •Ml, l = 1, · · · , k.

A fundamental problem is quantum detection theory is to find an optimal
measurement for given mixed states.

Suppose we are given m states V1, V2, · · · , Vm with corresponding prior prob-
abilities ξ1, ξ2, · · · , ξm. For a measurement M = {M1, . . . ,Mk}, we have

P (j|i) = Tr(ViMj).

Let cij(≥ 0) be the cost (penlaty) of taking a true state i to be j. Then the
average cost is

C(M) =
∑
i,j

ξiP (j|i)cij =
∑
j

Tr

[(∑
i

ξiVicij

)
Mj

]
.

Let Wj =
∑
i ξiVicij , j = 1, . . . , k. The problem of minimizing the average

cost can be formulated as the following SDP:

Minimize
∑k
j=1 Tr(WjMj)

Subject to
∑k
j=1Mj = I,

Mj � 0, j = 1, . . . , k.
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What is the dual?

Maximize
∑k
j=1 Tr(U)

Subject to Wj � U, j = 1, . . . , k.

Thus, the optimality Condition becomes

Wi �
k∑
j=1

MjWj =

k∑
j=1

WjMj , i = 1, ..., k.

7.3 Channel Capacity Problem

A classical discrete memoryless channel consists of a set of input symbols A =
{a1, a2, . . . , am}, a set of output symbols B = {b1, b2, . . . , bn} and a set of con-

ditional probabilities Vij = P (bj |ai) with

n∑
j=1

Vij = 1, for i = 1, . . . ,m.

Therefore, V = {Vij} is a stochastic matrix, where Vij is the probability
that bj is received when ai is sent through the channel. The capacity C(V ) of a
channel V , defined as the maximum of rates (speeds) at which information can
be transmitted reliably, is given by following theorem due to Shannon.

The classical channel coding theorem is modeled as:

C(V ) Maximize I(p, V )

Subject to
∑m
i=1 pi = 1, with p = {pi}

pi ≥ 0, i = 1, . . . ,m,

where

I(p, V ) =
∑
i

pi
∑
j

Vij log
Vij∑

k

pkVkj

The Kullback -Leibler divergence, defined as follows

D(q||r) =
∑
j

qj log
qj
rj
,

is a measure of distance between two probability distributions q = (qj) and
r = (rj), and plays an important role in information theory.

Then, the function I(p, V ) can be written in terms of the above Kullback-
Leibler divergence

I(p, V ) =
∑
i

piD(Vi·||pV ),

where r = pV is a distribution defined by rj =
∑
i piVij . With a channgel V

fiexed, I(p, V ) is concave in p = (pi). Hence, the computatution of C(V ) is a
concave maximization problem with linear constraints.
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A quantum memoryless channel consists of a set S1 of input states (or density
matrices) in Rm×m, S2 of output states (or density matrices) in Rn×n, and a
CP (map) Γ : S1 → S2. The capacity C(Γ) of a quantum channel Γ, defined
to be the maximum of rates (speeds) at which reliable transmission of classical
information through the channel Γ is possible.

The Quantum channel coding theorem due to A. S. Holevo is modeled by

C(V ) Maximize I({λi}, {Xi},Γ)

Subject to Xi ∈ S1, i = 1, . . . , d∑d
i=1 λi = 1

λi ≥ 0, i = 1, . . . , d,

where d = n2, and

I({λi}, {Xi},Γ) =
∑
i

λiTr(Γ(Xi))
[
log Tr(Γ(Xi))− log Tr(Γ(X̄))

]
,

with X̄ =
∑
i λiXi.

Observe that I({λi}, {Xi},Γ) can be written in terms of the quantum coun-
terpart of the Kullback-Leibler divergence (often called relative entropy)

D(X||Y ) = Tr(X)[log Tr(X)− log Tr(Y )].

Once the ensemble X = {Xi} is fixed, I({λi}, {Xi},Γ) is a concave function in
λ = {λi}. This is again a convex programming problem.

But, in general, I({λi}, {Xi},Γ) is neither convex nor concave in (λ,X).

7.4 Quantum Interactive Proof System

Interation Between Prover and Verifier.
Consider two CP mappings: given {A1, A2, · · · , Ak} and {B1, B2, · · · , Bl},

where Ai, Bi ∈ RM×N , such that

k∑
i=1

AiA
T
i = I and

l∑
i=1

BiB
T
i = I,

Define

T1(V ) =

k∑
i=1

AiV A
T
i

and

T2(V ) =

l∑
i=1

BiV B
T
i .
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The question is, are there two states V1 and V2 such that

T1(V1) = T2(V2);

or for all V1 and V2

‖T1(V1)− T2(V2)‖ ≥ ε.

An SDP Formulation for this problem is

Minimize t

Subject to I • V1 = I • V2 = 1,

V1, V2 � 0
T1(V1)− T2(V2) + t · I � 0
t · I − T1(V1) + T2(V2) � 0.

7.5 Notes

7.6 Exercises
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Chapter 8

Computational Issues

It is common to have a gap between a theoretical algorithm and its practical
implementation: the theoretical algorithm makes sure that it works for all in-
stances and never fails, while the practical implementation emphasizes average
performance and uses many ad-hoc “tricks.” In this chapter we discuss sev-
eral effective implementation techniques frequently used in interior-point linear
programming software, such as the presolver process, the sparse linear system
solver, the high-order predictor-corrector method, the homogeneous and self-
dual method, and the optimal basis finder. Our goal is to provide additional
theoretical justification for using these techniques and to explain their practical
effectiveness.

8.1 Presolver

One way to eliminate data error and to improve solution efficiency in solving
linear programs is called the “presolver”—a preliminary process to check the
data set (A, b, c) in order to detect inconsistency and to remove redundancy.
This process could reduce the size of the problem as well, because users of many
LP problems likely introduce superfluous variables and redundant constraints
for simplicity and convenience in model formulation.

In general, detecting all inconsistency and redundancy in an LP problem is
computationally intractable. Therefore all presolvers use an arsenal of simple
inspection techniques. These techniques are applied repeatedly until the prob-
lem cannot be reduced any further. Below, we briefly present the most common
inspection procedures.

177
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• Remove empty or all-zero rows and columns.

• Eliminate a fixed variable, the variable has a fixed value, from the problem
by substitution.

• Remove duplicate constraints. Two constraints are said to be duplicate
if they are identical up to a scalar multiplier. One of the duplicate con-
straints is removed from the problem.

Remove duplicate columns. Two columns are said to be duplicate if they
are identical up to a scalar multiplier. (They make duplicate constraints
in the dual.)

• Remove linearly dependent constraints. The presence of linearly depen-
dent rows in A may lead to serious numerical problems in an interior-point
methods, since it implies a rank deficiency in the Newton equation system.

• Remove a singleton row (only one non-zero coefficient in the row) by con-
struction of a simple variable bound. For example, if the ith constraint is
in the form ai1x1 ≤ bi, we can convert it to x1 ≤ bi/ai1 or x1 ≥ bi/ai1,
depending on the sign of ai1,

• Remove a free and singleton column (only one non-zero coefficient in the
column and the associated variable is free). For example, let free variable
x1 appears only in the ith constraint. Then, x1 and the ith constraint can
be eliminated, while the optimal value of x1 can be recovered from the
ith constraint by substitution of the optimal solution of the remaining LP
problem.

A nonnegative but unbounded variable, say, 0 ≤ x1 < +∞ in singleton
column 1, can be used to generate a bound on dual variables yi. Namely,

ai1yi ≤ c1.

This inequality can be used, depending on the sign of ai1, to produce a
lower or upper bound on yi.

• Determine lower and upper limits for every constraint and detect infeasi-
bility. For example, consider the ith (inequality) constraint∑

j

aijxj ≤ bi,

and let each variable xj lie on [0, uj ]. Then compute

bi =
∑

{j: aij<0}

aijuj ≤ 0 and bi =
∑

{j: aij>0}

aijuj ≥ 0. (8.1)

Thus, we must have

bi ≤
∑
j

aijxj ≤ bi. (8.2)
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If bi ≤ bi, then the ith constraint is redundant and can be removed. If
bi > bI , then the problem is infeasible. If bi = bi, the i constraint be-
comes equality and will force all involved variables take values at their
appropriate bounds.

The same technique can be applied to each of the dual constraints.

• Add implicit bound to a free primal variable. For example, suppose the
ith constraint is ∑

j

aijxj = bi,

where ai1 > 0, x1 is a free variable, and all other variables xj lie on [0, uj ].
Then

x1 ≤

bi − ∑
{j 6=1: aij<0}

aijuj

 /ai1

and

x1 ≥

bi − ∑
{j 6=1: aij>0}

aijuj

 /ai1.

The same technique can be applied to a dual free variable.

• Improve the sparsity of A, i.e., reduce the non-zero elements in A. We
could look for a nonsingular matrix M ∈ Rm×m such that the matrix MA
is as sparse as possible. Primal constraints can in such case be replaced
with equivalent

MAx = Mb, (8.3)

which may be more suitable for an interior-point solver. Exact solution
of this sparsity problem is an NP-complete problem but efficient heuristics
usually produce satisfactory non-zero reduction in A.

The application of the above presolver techniques often results in impressive
size-reduction of an initial LP formulation. Thus, it is our hope that the reduced
problem obtained after the presolver can be solved faster. Once a solution is
found, it could be used to recover a complete primal and dual solution to the
original LP problem. This phase is called the postsolver.

8.2 Linear System Solver

The major work in a single iteration of all interior-point algorithms is to solve a
set of linear equations, such as (3.38). It can be reduced to the so-called KKT
system: (

D−2 AT

A 0

)(
dx
−dy

)
=

(
c̄
b̄

)
, (8.4)
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The diagonal matrix D varies in different interior-point methods. Most
general purpose codes use direct methods to solve the KKT system. Two com-
petitive direct methods are: the normal equation approach and the augmented
system approach. The former works with a smaller positive definite matrix, and
the latter requires factorization of a symmetric indefinite matrix. They all use
variants of the symmetric triangular LΛLT decomposition, where L is a lower
triangular matrix and Λ is a block diagonal matrix with blocks of dimension
1 or 2. (The QR decomposition of A uses an orthogonal transformation and
guarantees high accuracy, but it cannot be used in practice due to its costly
operations.)

8.2.1 Solving normal equation

The normal equation approach further reduces (8.4) to the normal equation:

(AD2AT )dy = b̄−AD2c̄. (8.5)

An advantage of this approach is that it works with a positive definite matrix
AD2AT if A has full row rank. Thus the Choleski decomposition of this matrix
exists for any D and numerical stability is assured in the pivoting process.
Moreover, the sparsity pattern in the decomposition is independent of the value
of D and hence it is invariant in all iterations. Consequently, once a good
sparsity preserving pivoting order is chosen, it can be used throughout the entire
iterative process. This argument has been used to justify the application of the
normal equations approach in very first interior-point method implementation.

The success of the Choleski factorization depends on a pivoting order for
preserving sparsity in the Choleski factor L. Its goal is to find a permutation
matrix P such that the factor of PAD2ATPT is as sparse as possible. In
practice, heuristics are used to find such a permutation or ordering. (Finding
an optimal permutation is an NP-complete problem.) After an ordering is found,
the data structure and indirect index addressing of L are setup. This is referred
to as the symbolic phase because no numerical computation is involved.

Two heuristic orderings, minimum degree and the minimum local fill-in, are
particularly useful in implementing interior-point algorithms. They are both
“local” or myopic, i.e. they select a pivot only from a set of currently best
candidates.

Minimum degree ordering

Assume that, in the kth step of the Gaussian elimination, the ith column of the
Schur complement contains di non-zero entries and its diagonal element becomes
a pivot. The kth step of the elimination requires thus

li = (1/2)(di − 1)2, (8.6)

floating-point operations or flops to be executed.
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In what follows, keep in your mind the fact that the decomposed matrix
AD2AT is positive definite so the pivot choice can be limited to the diagonal
elements. In fact, only this choice preserves symmetry.

Note that if the ith diagonal element becomes a pivot, li evaluates flops and
gives an overestimate of the fill-ins, the new non-zeros created in the Schur com-
plement, which can result from the current elimination step. Thus, the “best”
pivot at step k, in terms of the number of flops required to complete the kth
elimination step, is the one that minimizes di among all diagonal elements in the
Schur complement. Interpreting the elimination process as the corresponding
incidence graph elimination, one can see that this strategy chooses a node (di-
agonal element) in the graph which has the minimum degree (di). This is how
the strategy is named. This ordering procedure can be implemented efficiently
both in terms of time speed and storage requirement.

There is also an approximate minimum degree ordering available. The
method is faster while generates the same quality ordering.

Minimum local fill-in ordering

In general, li of (8.6) considerably overestimates the number of fill-ins in the
kth step of the Gaussian elimination, because it does not take into account
the fact that in many positions of the predicted fill-ins, non-zero entries already
exist. It is possible that another pivot candidate, although may not minimize di,
would produce least fill-ins in the remaining Schur complement. The minimum
local fill-in ordering chooses such a pivot. Generally, the minimum local fill-in
procedure produces an ordering resulting in a sparser factorization but at a
higher cost, because it chooses the pivot that produces the minimum number of
fill-ins among all remaining pivot candidates.

Pros and cons

Solving the normal equation is proved to be a reliable approach to solutions
of most practical linear programs. However, it suffers two drawbacks. First,
the normal equation behaves badly whenever a primal linear program contains
free variables. In order to transform such a problem to the standard form, a
free variable is usually replaced with the difference of two nonnegative variables:
x = x+−x−. Interior-point algorithms typically generate iterates in which both
x+ and x− converge to∞, although their difference is kept relatively close to the
optimal value of x. This results in a serious ill-condition in the normal matrix
and a loss of accuracy in solving (8.5). A remedy used in many implementations
is to prevent excessive growth of x+ and x− by enforcing bounds on x+ and x−.

Second, a more serious drawback of the normal equation approach is that it
looses sparsity from the presence of dense columns in A. The reason is that a
single dense column in A with p non-zero elements creates a complete dense sub-
matrix of size p× p in AD2AT after a symmetric row and column permutation.
Special care has to be taken in this case.
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Assume that

A = (AS , AD), (8.7)

where AS ∈ Rm×n−k is sparse and AD ∈ Rm×k is dense. Then, we need to treat
AD separately. The most popular way in solving the normal equation employs
the Schur complement mechanism. It is based on separating the normal matrix

AD2AT = ASD
2
SA

T
S + ADD

2
DA

T
D, (8.8)

into the presumably sparse part ASD
2
SA

T
S and the significantly denser sym-

metric rank-k matrix ADD
2
DA

T
D. A Choleski decomposition is computed for

the sparse part and the dense rank-k matrix is then updated by the Sherman-
Morrison-Woodbury formula (see Exercise 1.1).

This method is not guaranteed to work correctly because the sparse part may
be rank deficient, since AS may not have full row rank. Whenever this hap-
pens, the Choleski decomposition of ASD

2
SA

T
S does not exist and the Sherman-

Morrison-Woodbury update is not well defined. Therefore in a practical im-
plementation diagonal elements are selectively added to ASD

2
SA

T
S to make the

decomposition exist. We observe that the rank deficiency of ASD
2
SA

T
S cannot

exceed k, the number of dense columns. This method usually works in satisfac-
tion for a small number of dense columns.

This is how we do it. If unacceptably small pivots are encountered during
the Choleski decomposition of ASD

2
SA

T
S , we add a “regularizing” diagonal term

to each of them. Consequently, instead of computing the decomposition of
ASD

2
SA

T
S , we compute the decomposition of another matrix ASD

2
SA

T
S +σEET ,

where positive number σ is a regularizing term and E is a matrix built from unit
columns where each non-zero appears in the row corresponding to regularized
pivots, that is,

LΛLT = ASD
2
SA

T
S + σEET . (8.9)

L is used as a stable “working basis” in the Sherman-Morrison-Woodbury up-
date of the Schur complement to compute

(AD2AT )−1 = (LΛLT + (ADD
2
DA

T
D − σEET ))−1.

In many cases, choosing σ = 1 seems sufficient.

Summing up, it is possible to overcome the dense column difficulty arisen in
the normal equation approach. But there remains a question to decide which
columns should be treated as dense ones. A naive selection rule, which is based
on counting the number of non-zero elements in a column, does not necessar-
ily identify all the “troubling” columns—the columns make the decomposition
dense. This motivated researchers to directly solve the augmented system of
the Newton equation (8.4), which allows more freedom in selecting pivots.
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8.2.2 Solving augmented system

The augmented system approach is a well understood technique to solve a least-
squares problem. It applies a factorization to a symmetric indefinite matrix

LΛLT =

(
D−2 AT

A 0

)
, (8.10)

where Λ is an indefinite block diagonal matrix where each block is either 1× 1
or 2× 2.

In contrast to solving the normal equation in which the sparsity ordering and
the numerical factorization are separated, the factorization of (8.10) is computed
dynamically. In other words, the choice of a pivot is concerned with both
sparsity and stability of the triangular factor L. Thus, the factorization of the
augmented system is at least as stable as that of the normal equation. Moreover,
due to greater freedom in the choice of a pivot order, the augmented system
factorization may produce a significantly sparser factor than that of the normal
equation. Indeed the latter is actually a special case of (8.10) in which the
first n pivots are chosen solely from D2, regardless their stability and sparsity
outcome.

The stable property of solving the augmented system has motivated many
researchers to incorporate this approach into their implementation. There are
other advantages for this approach, such as easy handling of free variables and
dense columns, and its effortless extension to solving convex quadratic program-
ming problems.

However, efficiency of the augmented system approach depends highly on
keeping a consistent pivot ordering. One should avoid reordering pivots on
every iteration and try to use the current pivot order in subsequent iterations
as much as possible. The order is only updated occasionally when the KKT
system has changed considerably.

One specific pivoting rule is again detecting “dense” columns in A and piv-
oting early those diagonal elements of D−2 which are not associated with the
dense columns. One can set a density threshold to partition A into the sparse
and dense parts as in (8.7).

A fixed threshold value approach works well only in a case when dense
columns are easily identifiable, i.e., when the number of non-zero in each of
them exceeds significantly the average number of entries in sparse columns.
Whenever more complicated sparsity structure appears in A, a more sophisti-
cated heuristic is needed.

Instead of the simple column partition (8.7), one may consider more com-
plicated sparsity structure and the following partition of A:

A =

(
A11 A12

A21 A22

)
. (8.11)

Here A11 is supposed sparse and is assumed to create a sparse normal ma-
trix A11A

T
11, A12 is a small set of “troubling” columns (either dense columns
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or columns associated with free variables), and (A21 A22) represents a set of
“troubling” rows.

Once the partition (8.11) is determined, (8.4) becomes
D−2

1 AT11 AT21

D−2
2 AT12 AT22

A11 A12

A21 A22




dx1

dx2

dy1
dy2

 =


c̄1
c̄2
b̄1
b̄2

 .

The structure of this system shows immediately which block, such as D−2
1 , can

be inexpensively pivoted out, and which block, such as D−2
2 , should be pivoted

lately.
The elimination of D−2

1 causes very limited fill-ins and reduces the KKT
system to  D−2

2 AT12 AT22

A12 −A11D
2
1A

T
11 −A11D

2
1A

T
21

A22 −A21D
2
1A

T
11 −A21D

2
1A

T
21

 . (8.12)

The elimination of D−2
2 should be delayed after all attractive pivot candidates

from A11D
2
1A

T
11 and A21D

2
1A

T
21 blocks are exploited.

8.2.3 Numerical phase

So far we have extensively discussed the symbolic phase—the pivoting rule and
pivoting order. Now we turn our attention to the numerical phase of a sparse
symmetric system solver. This is a well developed area both in theory and
in computational practice. Here we demonstrate several implementation tech-
niques of the numerical factorization phase in the normal equation approach.
These methods could be applied to the general symmetric decomposition of the
augmented system as well.

Let M = AD2AT and consider its Choleski factorization LΛLT = M , where
L is a lower triangular matrix and Λ is a diagonal matrix. The basic formulae
for computing the column j of L, denoted by L.j , and the pivot Λjj are:

Λ11 = M11,
L.1 = 1

Λjj
M.1,

Λjj = Mjj −
∑j−1
k=1 L

2
jk j ≥ 2,

L.j = 1
Λjj

(
Mj −

∑j−1
k=1(ΛkkLjk)Lk

)
j ≥ 2.

(8.13)

Several methods have been developed to compute the factorization. They all
exploit sparsity of the matrix but use different storage techniques in computa-
tions. These calculations can be organized either by rows or by columns. During
the row-Choleski factorization the rows of the Choleski factor L are computed
one by one.

The commonly used factorization is the column-Choleski factorization in
which the columns of L are computed one by one as in (8.13). Its efficient
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implementations can be found, for example, in the Yale Sparse Matrix Package
and Waterloo SPARSPAK. This method is also called left-looking factoriza-
tion, because the computation of column L.j follows the left-to-right order. Its
implementation uses dynamic linked lists to look at all “left” columns when
computing the current pivot and column, and a double precision work array
to accumulate the column modifications and to resolve the non-zero matching
between different columns.

Another commonly used approach is the submatrix-Choleski factorization,
also referred to as the right-looking factorization. In this approach, once a
column L.j has been computed, we immediately update its contributions to all
subsequent columns, i.e. to all columns on its right side using (8.13). In this
method the matching of non-zero during the process is not trivial, but several
solutions have been found. Interest in this method has been increased in the past
few years because of its ability to better exploit high performance architecture
and memory hierarchy.

We now present several numerical “tricks” that work very well in interior-
point methods. These techniques all based on using matrix-vector operations in
a “dense” mode (assuming matrices and vectors are complete dense) to reduce
the overhead computation and book-keeping map in a sparse mode using indirect
index addressing and sophisticated memory referencing.

Figure 8.1: Illustration of dense sub-factors in a Choleski factorization.

Dense window

The most straightforward improvement of the factorization is exploitation of
a dense window. In practice, some triangular sub-factors become completely
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dense near the end of the Choleski factorization; see Figure 8.1. Therefore, we
can treat these blocks complete dense and use dense matrix factorization, even
though there may still be some zeros in this block. This is called a dense window.
In doing so we avoid the overhead of sparse computation, such as indirect index
addressing and memory referencing. It might also be beneficial to treat some
almost-dense columns complete dense and to include them in a dense window.

Supernode

It is often observed that several columns in L tend to have the same sparsity
pattern below the diagonal. Such a block of columns is called a supernode and
it can be treated as a dense submatrix. The supernode name comes from the
elimination graph representation of the Choleski decomposition, because these
nodes (columns) more-or-less share the same set of adjacent nodes and they can
be grouped as a single “super” node (share the same addressing), as illustrated
below:

Supernode Type 1 Supernode Type 2

∗
∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗





∗
∗
∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗


Both types of supernodes can be exploited in a similar manner within the numer-
ical factorization. Similar to the dense window technique, the use of supernodes
increases the portion of matrix-vector operations in the dense mode, and thereby
saves on indirect addressing and memory referencing. Specifically, the following
operations take advantage of supernodes:

• When column j is a member of a supernode, the operation of computing
L.j and other columns of the supernode are done in the dense mode.

• When column j is not a member of a supernode but it has a summation
term from a set of columns that belong to a supernode, a temporary work
array is used to accumulate the sum from the whole supernode in the
dense mode before the term is added to L.j .

Sometime it is even beneficial to treat some zeros as non-zeros in L to create
supernodes. The introduction of zeros does not necessarily lead to an increase
in the memory allocation. This is due to the fact that only indexes of the last
column in a supernode are booked, so there is a saving in index addressing.

Cache memory

Computers has a memory hierarchy consisting a slow and large main memory
and a fast and small cache memory. Computation will be more efficient if
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memory references are stored in the cache memory so they can be fetched faster.
Thus, it is advisable to set an upper bound on the number of non-zeros in each
supernode to such that they can be all stored in the cache memory during the
dense mode matrix-vector operations. One should leave 5 percent of the cache
memory for overhead.

Of course, such partition of large supernodes leads to more overhead com-
putation. An advise is to also impose a lower bound on the size of supernodes
since the extra work in constructing the work array may not pay off if the size
of the supernode is too small.

Block Choleski factorization

Another possibility is to partition L into smaller, presumably dense blocks. For
example, try to divide L into block diagonal dense submatrices. This technique
is very effective in some cases, because a typical Choleski factor contains many
such blocks, the largest of which is usually the dense window located at the
bottom of L. Consider the following matrix:

AD2AT =

(
M11 MT

21

M21 M22

)
,

with an additional simplifying assumption that the blocks L11 and L22 of L are
dense matrices. The Choleski factorization of this matrix can be computed in
the following steps:

1. Factorize L11Λ11L
T
11 = M11.

2. Compute L21 = M21(L−1
11 )T .

3. Compute M̂22 = M22 − L21Λ11L
T
21.

4. Factorize L22Λ22L
T
22 = M̂22.

The advantage of this procedure is that steps 1 and 4 can be performed in the
dense mode.

Loop unrolling

Dense mode computation can be further specialized to exploit a loop unrolling
technique. Let a be the target column, b the source column, and α the multiplier
kept in a single register. Then the steps performed by a computer to execute
the transformation a← a+ α · b can be written as follows:

1. Read a(i) from the memory.

2. Read b(i) from the memory.

3. Compute a(i) + α · b(i).

4. Store the result in the memory.
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Consequently, three memory references in steps 1, 2, and 4 are associated with
only one arithmetic multiplication in step 3.

During a typical inner loop of the factorization, several multiple columns
are added to a single column; see (8.13). This opens a possibility to unroll
the loop over the multiple column transformation. Let a be the target column,
b, c, d, e, f and g the source columns, and α(1), . . . , α(6) their multipliers kept
in a single register. A loop rolling technique to compute

a← a+ α(1)b+ α(2)c+ α(3)d+ α(4)e+ α(5)f + α(6)g

is to execute the above procedure 6 times and uses total 18 memory references
and 6 multiplications. However, a 6-step loop unrolling technique consists of first
reading a, b, c, d, e, f, g, then performing 6 multiplications, and finally storing
new a. This execution needs only eight memory references. Hence, 10 memory
references have been saved compared with the loop rolling execution. The loop
unrolling technique generally makes considerable time savings on many different
computer architectures.

8.2.4 Iterative method

An alternative to solve the KKT system (8.4) or the normal equation (8.5)
is the iterative method, e.g., the conjugate gradient method. This method
automatically exploits the sparse structure of the system because it neither uses
nor stores any inverse matrix. Its effectiveness highly depends on the selection of
an appropriate and simple preconditioner. In solving general linear programs the
iterative method seems not competitive with the direct method, but it becomes
highly successful in solving special LP problems such as network-flow problems.

Consider the network-flow problem, where Amatrix is the node-arc incidence
matrix for a network with m + 1 nodes and n arcs (For ease of notation, an

arbitrary row in A is assumed to have been deleted so that A has full row rank
m). Let A = (AB , AN ) where AB is a basis of A. Then,

AD2AT =
(
ABD

2
BA

T
B +AND

2
NA

T
N

)
.

If the diagonal components of DB are all greater than or equal to the diagonal
components of DN , then we expect that ABD

2
BA

T
B becomes a dominate block

and it is a good estimation of AD2AT . The following theorem indicates “why”,
whose proof is derived from Exercise 8.1.

Theorem 8.1 Choose π so that Aπ contains a basis of A and Dii ≥ Djj for
all i ∈ π and j 6∈ π. Then,

(2m3 + 1)I � (AπD
2
πA

T
π )−.5(AD2AT )(AπD

2
πA

T
π )−.5 � I.

Thus, ABD
2
BA

T
B is a reasonable preconditioner for AD2AT , where B is a

basis of π. Note that AB can be reordered as a triangular matrix so that the
Choleski factor of ABD

2
BA

T
B is AB itself after a permutation. Furthermore, B

can be found by the maximum-spanning tree algorithm where Djj is the weight
of arc j. This algorithm is very cost-effective.
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8.3 High-Order Method

If a direct approach is used to solve the KKT system, in each iteration a ma-
trix factorization (8.4) or (8.5) is computed and followed by several backsolve
steps. The factorization phase, O(n3) operations for a dense matrix, consumes
the major amount of work, and the backsolve phase, at most O(n2) opera-
tions, is usually significantly easier in theory as well as in practice. An obvious
idea, known from different applications of the Newton method, is to reuse the
factorization in several subsequent iterations or, equivalently, to repeat several
backsolves to generate a better next iterate. We call such an approach a high-
order method. The goal is to reduce the total number of interior point iterations
and therefore the total number of factorizations as well.

8.3.1 High-order predictor-corrector method

The second-order predictor-corrector strategy has two components: one is an
adaptive choice of the barrier parameter γ and the other is the computation
of a sort of second-order approximation to the central path. For simplicity we
illustrate the algorithm with a feasible starting point.

The first step of the predictor-corrector strategy is to compute the predictor
direction of the predictor-corrector algorithm in Section ??. Recall that the
predictor direction solves the Newton equation system (3.38) for γ = 0 and
is denoted with dp := d(xk, sk, 0). It is easy to show that if a step of size
θ is taken along this direction, then the complementarity gap is reduced by
the factor (1 − θ). Therefore, the larger step can be made, the more progress
can be achieved. On the other hand, if the step-size in this direction is small,
then the current point is probably too close to the boundary. In this case the
barrier parameter should not be reduced too much in order to move a way from
boundary like the corrector step.

Thus, it is reasonable to use this possible complementarity gap reduction
in the predictor step to adjust the new barrier parameter γ. After the predic-
tor direction is computed, the maximum step-sizes θp and θd along this direc-
tion in the primal and dual spaces are determined to preserve nonnegativity of
(x(θp), s(θd)). The possible new complementarity gap

nµ+ := (x+ θpd
p
x)T (s+ θdd

p
s).

Then, the barrier parameter is chosen using the heuristic

γ :=
(µ+

µk

)2

min{µ
+

µk
, η} (8.14)

for a constant η ∈ (0, 1). We could come back to compute the actual direction
d(xk, sk, γ) from (3.38) where γ is given above. But we like to do more, which
is the second component of the second-order predictor-corrector method.

Note that we ideally want to compute a direction such that the next iterate
is perfectly centered for γµk, i.e.,

(Xk +Dx)(sk + ds) = γµke.
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The above system can be rewritten as

Skdx +Xkds = −Xksk + γµke−Dxds. (8.15)

Observe that in the “first-order” direction d = d(xk, sk, γ) in equation (3.38),
we have ignored the second order term Dxds on the right-hand side and it
becomes the residual error. This needs to be corrected: Instead of setting the
second order term equal to zero, we would approximate DXds on the right-hand
side using the available predictor direction Dp

xd
p
s . The actual direction d is then

computed from system (8.15) with parameter γ chosen through (8.14). (Again,
the matrix of the system is already factorized and it is “free” now.) We finally
choose the next iterate

(xk+1, sk+1) = (x(θ̄p), s(θ̄d)) ∈ N−∞(η)

for η close to 1.
We should note here that the second-order predictor-corrector method basi-

cally tries to approximate the second-order Taylor expansion of the central path.
A single iteration of the method needs two solves of the same large but sparse
linear system for two different right hand sides. The benefit of the method is,
we obtain a good estimate for the barrier parameter γ and a second-order ap-
proximation to the central path. Indeed computational practice shows that the
additional solve cost of this method is more than offset by a reduction in the
total number of iterations (factorizations).

Why not use even higher-order Taylor expansions? Indeed, in solving many
large scale linear programs where the factorization is extremely expensive and
the need to save on the number of factorizations becomes more important, a
high-order predictor-corrector method is beneficial. We will explain the method
in the next section.

8.3.2 Analysis of a high-order method

Now we would like to provide some theoretical justification for using the tech-
niques involved in the high-order method.

One theoretical support of the method is already seen in Section ??, where
we showed that A(Xk+1)2AT only differs slightly from A(Xk)2AT , and it is
sufficient to inverse a matrix AD2AT to generate next iterate where D is still
close to Xk. This justifies that the normal matrix could be used repeatedly.

Another support relates to the neighborhoods used in the high-order method.
Among all existing path-following (infeasible or feasible) LP algorithms, the the-
oretical iteration complexity of small-neighborhood (N2) algorithms is O(

√
nL),

and the complexity of wide-neighborhood (N∞ or N−∞) algorithms is at least
O(nL). In contrast, wide-neighborhood algorithms outperform small-neighborhood
ones by a big margin in practice. It seems that smaller neighborhoods generally
restrict all iterates moved by a short step and they might be too conservative
for solving real LP problems.
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To support using the wide-neighborhood and high-order Taylor expansions,
we present a r-order Taylor expansion primal-dual path-following algorithm

that is based on N−∞(β) where β is any fixed constant in (0, 1). We show that

its iteration complexity is O(n
r+1
2r L) where r ∈ [1, n]. Again, each iteration uses

O(n3) arithmetic operations. Note that if we let r = O(n), then this iteration
bound is asymptotical O(

√
nL) as n increases.

Algorithm 8.1 Given (x0, s0) ∈ N−∞(η) with η ∈ (0, 1), and integer r ≥ 1 and
γ ∈ (0, 1). Set k := 0.

While (xk)T sk > ε do:

1. First-order step: Solve for the first order direction d(1) := d(xk, sk, γ) from
(3.38).

2. High-order steps: For j = 2, 3, . . . , r, solve for the jth order direction from

A d
(j)
x = 0,

−AT d
(j)
y −d(j)

s = 0,
(8.16)

and

Xkd
(j)
s + Skd

(j)
x = −

∑j−1
t=1 D

(t)
x d

(j−t)
s . (8.17)

3. Compute the largest θk so that

x(θ) = xk +
∑r
j=1(θ)jd

(j)
x ,

y(θ) = yk +
∑r
j=1(θ)jd

(j)
y ,

s(θ) = sk +
∑r
j=1(θ)jd

(j)
s ,

lies in N−∞(η) for θ ∈ [0, θk]. Let

(yk+1, xk+1, sk+1) := (y(θk), x(θk), s(θk)).

4. Let k := k + 1 and return to Step 1.

Note that for r = 1, Algorithm 8.1 is identical to the wide-neighborhood
algorithm in Section ??. For r = 2, it is close to the second-order predictor-
corrector strategy described earlier; see Exercise 8.2.

In general, the step-size selection involves locating roots for each of n + 1
polynomials with degree 2r, which with specified error is in the complexity class
NC and can be solved efficiently in theory. In practice, we need to locate only
an approximate step-size. (Even for the case r = 1, one will never obtain the
exact αk since it is generally irrational.)

We will have a lower bound for θk:

θk ≥ const

(n+ 1)
r+1
2r

,
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where

const =
1− η

4(1− γ)
r
√
ηγ .

Thus, we need only to compute an approximate step-size, θ̄, such that

(x(θ̄), s(θ̄)) ∈ N−∞(η),

and

θk − θ̄ ≤ .001const

n+ 1
≤ 0.001θk,

that is, θ̄ will be at least a fraction, .999, of the exact step-size θk, and it
approaches above θk as n→∞.

We may compute such an approximate step-size using the bisection method.
We know that the step-size must be in[

const

(n+ 1)
r+1
2r

,
1

1− γ

]
.

Obviously, the total number of operations of this process is of order nr(log n).
Even when r = n, the cost, n2(log n), is well below n3.

We now present the main complexity result.

Theorem 8.2 Given any initial point in N−∞(η) for any constant η ∈ (0, 1),

Algorithm 8.1, with any constant 0 < γ < 1, will terminate in O(n
r+1
2r log((x0)T s0/ε))

iterations, where r ∈ [1, n], and each iteration uses O(n3) arithmetic operations.

As we can see that if r = n and n increases, the iteration complexity of
the algorithm tends to O(

√
n log((x0)T s0/ε)) asymptotically. Furthermore, a

popular choice for γ in practice is not a constant but γ = O(1/n). Interestingly,
the asymptotical iteration complexity of the algorithm for such a choice of γ is
still O(

√
n log((x0)T s0/ε)). More precisely, we have

A number of implications and points can be drawn from the main result:

• The high-order Taylor expansion method, where iterative points move
along a high-order polynomial curve, has been used in practice and par-
tially analyzed in theory. The main result indicates that the use of this
method also significantly improves the worst-case iteration complexity.
The result provides a further theoretical base for using this approach.

• The order r of Taylor expansion has a diminishing role in improving the
worst-case complexity result. Thus, we probably expect only the first few
order steps really make a difference in algorithm performance. This seems
what is observed in practice.

• The result also provides a justification for using the wider neighborhood
N−∞, coupled with a high-order method. The theoretical complexity based
on wider neighborhoods is not much worse than that based on smaller
neighborhoods. We hope this is a significant step to bridge the gap be-
tween theory and practice.
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• The result also indicates how insensitive of the value of γ, the centering
weight, is in high-order power-series methods. Virtually, γ can be set to
any positive number if iterative points move along a high-order polynomial
curve. This implies that the method has a sufficient self-centering function
even γ is close to 0. Note that, when γ = 0, the algorithm becomes the
pure Newton method for the LP optimality condition.

8.4 Homogeneous and Self-Dual Method

In Section ?? we described a homogeneous and self-dual method to solve (LP)
and (LD) simultaneously. From the implementation point of view, each iteration
of the method solves the linear system (??) and (??).

It can be shown that (Exercise 8.4)

dθ = γ − 1.

Then eliminating ds and dκ, we face the KKT system of linear equations: XkSk −XkAT Xkcτk

AXk 0 −τkb
−τkcTXk τkbT τkκk

 (Xk)−1dx
dy

(τk)−1dτ



=


γµke−Xksk

0
γµk − τkκk

0

+ (1− γ)

 −Xk c̄
b̄
τkz̄

 .

Thus, the dimension of the system is increased only by 1 over the case when
strictly feasible points for both (LP) and (LD) are known and used for starting
primal-dual interior-point algorithms. (It seems that the benefit of knowing a
starting interior point is not great.)

All implementation techniques discussed earlier for feasible-starting interior
point algorithms can be used in the homogeneous and self-dual method. For
example, If the second-order predictor-corrector scheme is used, it means that
we have 3 solves instead of 2 for each factorization. Again, the additional solve
cost is still more than offset by a reduction in the total number of iterations
(factorizations), and all favorable features discussed in Section ?? of the method
are retained.

It is also possible to take different step-sizes to update x and s. In doing so
special attention should be paid to update τ since it couples both the primal
and dual.

8.5 Optimal-Basis Identifier

Contrary to the simplex algorithm an interior-point algorithm never generates
the exact optimal solution during its iterative process; instead it generates an
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infinite sequence converging towards an optimal solution. Thus, the algorithm
discussed produces an approximate optimal basic solution only if the optimal
solution is unique (which is very rare in practice). In fact, in the case that either
multiple primal or dual solutions exist, the sequence converges to the analytic
center of the optimal face as discussed before. Therefore, an important problem
is to generate an optimal basic solution from of interior-point algorithms, which
is desirable in solving many practical problems.

It can be shown that if a pair of exact primal and dual solutions is known,
then an optimal basic solution can be produced in strongly polynomial time
using a simplified a pivoting or simplex method. We now discuss a algorithm
which combines the termination scheme in Section ?? and the pivoting method
to produce an optimal basic solution.

Consider solving (LP). It is well-known that any optimal solution
(x∗, y∗, z∗) must satisfy the complementarity slackness condition x∗jz

∗
j = 0 for

each j. Moreover, it is known from Theorem 1.17 that there exists a strictly
complementary solution that satisfies x∗j+z∗j > 0 for each j, and the complemen-
tarity partition (P ∗, Z∗) is unique. The pair (P ∗, Z∗), where Z = {1, . . . , n}\P
for any index set P , determines an optimal partition.

Recall that (B,N) denote a partition of the variables into basic and non-
basic variables. (B,N) is an optimal basis, if B is non-singular and

xB = A−1
B b ≥ 0; xN = 0

and

y = A−TB cB ; sB = cB −ABy = 0; sN = cN −ATNy ≥ 0.

8.5.1 A pivoting algorithm

Given a complementary solution pair, a pivoting algorithm can construct an
optimal basis in less than n pivoting steps. Below we shall discuss the algorithm
and its implementation. For convenience we assume that a set of artificial
variables has been added to the problem (LP). Let V = {n+1, . . . , n+m} denote
the set of artificial variables; naturally, we must have xV = 0 in any optimal
solution. Furthermore, we assume that a strictly complementary solution is
known. Hence, we assume that:

• We know the complementarity partition (P ∗, Z∗) and V ⊆ Z∗.

• We know an optimal primal solution x∗ such that Ax∗ = b, x∗Z∗ = 0 and
x∗P∗ ≥ 0.

• We know an optimal dual solution (y∗, s∗) such thatAT y∗+s∗ = c, s∗Z∗\V ≥
0 and s∗P∗ = 0.

The algorithm consists of a primal and a dual phase. We start with a description
of the primal phase.
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Let (B,N) be any partition of the variables of the problem (LP) into basic
and non-basic parts. Let

xB := A−1
B (b−Nx∗N ) = x∗B ≥ 0.

Here solution x∗B is called a super-basic solution since some of non-basic variables
x∗N may not be zero, and variables of x∗N that are not zero are called super-non-
basic variables. For each of super-non-basic variables, the primal phase is to
either move it to zero or pivot it into basis B using the simplex (pivoting) step.
The resulting basis will be primal optimal, because it is feasible and it is still
complementary with respect to the dual optimal solution (y∗, s∗). Each moving
or pivoting step reduces the number of super-non-basic variables at least by one.
Since the number of super-non-basic variables cannot exceed |P ∗|, the primal
phase terminates after at most |P ∗| steps.

Now we will formally state the primal phase.

Algorithm 8.2

1. Choose a basis B and let x = x∗.
2. While(∃ j ∈ P ∗ \B : xj 6= 0)
3. Use a primal ratio test to move variable xj to zero if we

can keep A−1
B (b−NxN ) ≥ 0, or pivot it into the basis.

4. Update x, or (B,N) and x.
5. end while
6. B is a primal optimal basis.

It is always possible to choose an initial basis B in Step 1. One possible choice
is B = V , the set of artificial variables. Algorithm 8.2 can be viewed as a sim-
plified version of the primal simplex method, because there is no pricing step in
selecting an incoming variable and those incoming candidates are predetermined
from x∗P∗ .

The dual phase of the algorithm is similar to the primal phase because, in
this case, a super-basic dual solution is known, which means that some of the
reduced costs of s∗B might not be zero. Similarly to the primal phase, those
non-zero reduced costs in s∗B can either be moved to zero or the corresponding
primal variable has to be pivoted out of basis B. The dual phase can be stated
as follows:

Algorithm 8.3

1. Choose a basis B and let y = y∗, s = c−AT y.
2. While(∃ j ∈ Z∗ ∩B : sj 6= 0)
3. Use the dual ratio test to move variable sj to zero if we

can keep cN +NTB−T (sB − cB) ≥ 0, or pivot it out of the basis.
4. Update (y, s) or (B,N) and (y, s).
5. end while
6. B is a dual optimal basis.
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If the initial basis B of the dual phase is primal optimal, i.e, x∗B := B−1b ≥ 0 and
x∗Z∗ = 0, then it remains primal optimal throughout all steps of Algorithm 8.3
because x∗N = 0 and all pivots are primal degenerate. Once Algorithm 8.3
terminates, the final basis is both primal and dual feasible and hence optimal.
Algorithm 8.3 can be viewed as a simplified version of the dual simplex method,
because there is no pricing step in selecting an outgoing variable and those
outgoing candidates are predetermined from s∗Z∗ . Furthermore, the number of
moves or pivots in the dual phase cannot exceed |Z∗|.

In summary, Algorithms 8.2 and 8.3 generate an optimal basis after at most
n moving or pivoting steps. In practice, the total number of steps is dependent
on the level of primal and dual degeneracy of the problem.

8.5.2 Theoretical and computational issues

The algorithm presented in the previous subsection assumes that an exact op-
timal solution is known. This assumption is never met in practice, because the
primal-dual algorithm only generates a sequence of solutions converging towards
an optimal solution. Furthermore, due to the finite precision of computations,
the solution returned by an interior-point algorithm is neither exactly feasible
nor exactly complementary.

Let (xk, yk, zk) be the iterate generated by an algorithm on iteration k and
(P k, Zk) be a guess of the complementarity partition generated on iteration k.
Now define the following perturbed problem:

minimize (ck)Tx s.t. Ax = bk; x ≥ 0, (8.18)

where

bk = P kxkPk ; ckPk = (P k)T yk and ckZk = (P̄ k)T yk + zkZk .

Assume that variables in (8.18) are reordered such that x = (xPk , xZk) then the
vector (x, y, s) = ((xkPk , 0), yk, (0, zkZk)) is a strictly complementary solution to
(8.18). Moreover, if xk converges towards an optimal primal solution and P k

converges towards P ∗, then bk converges towards b and, similarly, ck converges
towards c. Therefore the two problems (LP) and (8.18) will eventually become
close and share some same optimal bases according to Exercises 8.3 and the
following theorem.

Theorem 8.3 Let B be an optimal basis for LP (A, bk, ck). Then, there is
0 < t̄ <∞ such that B must be also an optimal basis for the original LP (A, b, c)
when (xk)T sk ≤ 2−t̄. Furthermore, if LP (A, b, c) has rational data, then t̄ ≤
O(L).

This advocates for an application of the above basis identification procedure
to the perturbed problem (8.18), since an optimal complementary solution to
problem (8.18) is known, and it will be an optimal basis for (LP) when problem
(8.18 is near (LP).
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An important practical issue is how to select P k that equals to the comple-
mentarity partition P ∗. A trivial one is

P k = {j : xkj ≥ zkj }. (8.19)

A more practically effective choice is

P k = {j : |dxdj |/xkj ≤ |ds
d
j |/skj }, (8.20)

where (ddx, d
d
s) is the primal-dual predictor direction. These quantities are scal-

ing invariant. It uses the relative variable change to indicate the optimal parti-
tion. This indicator is justified by the theory of Section ??, where they converges
to 1 for j ∈ P ∗ and to 0 otherwise.

Another question is the choice of the right time to start the pivoting pro-
cedure. According to Theorem 8.3 the generated basis can only be expected
to be the correct optimal basis of (LP) if the interior point solution is almost
optimal and P k is a good guess for P ∗. A reasonable and practical criterion
is the moment when fast (quadratic) convergence of the primal-dual gap µk to
zero occurs, which is also consistent to the theory of Section ??.

8.6 Notes

The use of a presolver is an old but effective idea, see for example, Brearley et
al. [?]; its role was acknowledged in many simplex algorithm optimizers. The
simplex method for LP works with sparse submatrices of A (bases) [?] while any
interior-point algorithm needs an inversion of a considerably denser matrix AAT .
Consequently, the potential savings resulting from an initial problem reduction
may be larger in interior-point implementations. This is the reason why the
presolve analysis has recently enjoyed great attention [?, ?, ?, ?, ?, ?, 215, ?].
An additional important motivation is that large-scale LP problems are solved
routinely nowadays and the amount of redundancy is increasing with the size
of the problem.

When discussing the disadvantages of the normal equations approach in
Section 8.2.1, we have mentioned the negative consequences of splitting free
variables. Sometimes it is possible to generate a finite explicit bound on a
free variable [?] and avoid the need of splitting it. Subramanian et al. [?] and
Andersen [?] report that in some cases the computational saving from removing
the linearly dependent constraints are significant.

Exact solution of the sparsity problem of Section 8.1 is an NP–complete
problem ([?]) but efficient heuristics [?, ?, ?] usually produce satisfactory non-
zero reductions in A. The algorithm of [?], for example, looks for such a row of
A that has a sparsity pattern being the subset of the sparsity pattern of other
rows and uses it to pivot out non-zero elements from other rows. Also, the
postsolver analysis has been discussed extensively in [?].

Most general purpose interior-point codes use the direct method [?] to solve
the KKT system. Two competitive direct methods are: the normal equation
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approach [?, ?] and the augmented system approach. The former works with
a smaller positive definite matrix, and the latter requires factorization of a
symmetric indefinite matrix.

The normal equation approach was used among very first “professional”
interior-point implementations [?, ?, ?]. The success of their application of the
Choleski factorization relies on the quality of a pivoting order for preserving
sparsity [?, ?]. To find an optimal order or permutation is an NP-complete
problem [331]). Two effective heuristics described in this book, the minimum
degree and the minimum local fill-in order rules, are due to Duff [?] and George
and Liu [?, ?]. In the minimum-degree order li is actually the Markowitz merit
function applied to a symmetric matrix [?]. For details, the reader is referred to
an excellent summary in [?]. Another efficient technique to determine the pivot
order has been proposed in Mészáros [?]. The remedy to the rank deficiency
arising in the Schur complement mechanism is due to Andersen [?]. His approach
employs an old technique due to Stewart [?].

The augmented system approach is an old and well understood technique to
solve a least squares problem [?, ?, ?, ?]. It consists in the application of the
Bunch-Parlett [?] factorization to the symmetric indefinite matrix. Mehrotra’s
augmented system implementation [?, ?], for example, is based on the Bunch-
Parlett factorization [?] and on the use of the generalized Markowitz [?] count of
type (8.6) for 2×2 pivots. Maros and Mészáros [?] give a detailed analysis of this
issue as well. The stable condition of the augmented system approach motivated
many researchers to incorporate it into their LP codes; see [?, ?, ?, ?, ?]. Other
advantages include easy handling of free variables and dense columns, and a
straightforward extension to solving convex quadratic programming problems
[?, ?, ?].

In the numerical factorization, George and Liu [?] demonstrate how the
Choleski factorization can be organized either by rows or by columns. Several
enhancements can be found in [?, ?] and [?, ?]. The Yale Sparse Matrix Package
is due to [?] and the Waterloo SPARSPAK Package is due to [?].

Lustig et al. [?] explored the supernode in their implementation. The effect
of the supernodal method is highly hardware-dependent and several results can
be found in the literature: the efficiency of the supernodal decomposition on
the shared-memory multiprocessors is discussed by Esmond and Peyton [?], the
exploitation of the cache memory on high-performance workstations is studied
by Rothberg and Gupta [?] in the framework of the right-looking factorization,
while the case of the left-looking factorization is investigated by Mészáros [?].

The iterative becomes highly successful in solving special LP problems, such
as network-flow problems; see [?, ?, ?]. Theorem 8.1 is proved by Kaliski [?].

The first high-order method was incorporated into a dual affine-scaling method
of AT&T’s Korbx system [?]. An efficient high-order method was proposed by
Mehrotra; his second-order predictor-corrector strategy [221] was incorporated
in almost all primal-dual interior-point implementations. As shown in Mehro-
tra [?], the improvement from using orders higher than 2 seems very limited.
Recently, Gondzio [?] has proposed a new way to exploit higher order informa-
tion in a primal-dual algorithm and shown considerable improvement in solving
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large-scale problems. His approach applies multiple centrality corrections and
combines their use with a choice of reasonable, well-centered targets that are
supposed to be easier to reach than perfectly centered (but usually unreachable)
analytic centers. The idea to use targets that are not analytic centers comes
from Jansen, Roos, Terlaky and Vial [?]. They define a sequence of traceable
weighted analytic centers, called targets, that go from an arbitrary interior point
to a point close to the central path. The algorithm follows these targets and con-
tinuously (although very slowly) improves the centrality of subsequent iterates.
The targets are defined in the space of the complementarity products.

Another high-order approach, due to Domich et al. [?] uses three indepen-
dent directions and solves an auxiliary linear program in a three dimensional
subspace to find a search direction. The method of Sonnevend et al. [?] uses
subspaces spanned by directions generated by higher order derivatives of the
feasible central path, or earlier computed points of it as a predictor step. This
is later followed by one (or more) centering steps to take the next iterate suf-
ficiently close to the central path. Hung and Ye [?] has studied theoretically
higher order predictor-corrector techniques, incorporated them in the homoge-
neous self-dual algorithm, and proved Theorem 8.2.

The fact of Exercise 8.4 was proved by Xu et al. [?], who also first im-
plemented the homogeneous and self-dual algorithm and presented favorable
computational results in solving both feasible and infeasible LP problems. Ex-
tensive implementation results were recently given by Andersen and Andersen
[14]. They even discussed how the solution resulted from the homogeneous and
self-dual model can be used in diagnosing the cause of infeasibility.

Recovering an optimal basis from a near-optimal solution is necessary in
solving integer programming problems. We would also like to note that there
are LP applications in which an optimal interior-point solution is preferable;
see, e.g., Christiansen and Kortanek [?] and Greenberg [?].

Bixby and Lustig solve the basis-recovering problem using a Big-M version
of Megiddo’s procedure [?]. Their procedure drives both complementarity and
feasibility to zero. Andersen and Ye [?] propose an alternative solution to this
problem, which is the perturbed problem construction described in this book.
For a discussion of linear algebra issues related to implementing the simplex or
pivoting algorithm we refer the reader to the papers [?, ?].

There are some open implementation issues. In many practical applications
of linear programming, a sequence of closely related problems is solved, such as
in branch and bound algorithms for integer programming an in column gener-
ation (cutting planes) methods. Obviously when two closely related problems
are solved the previous optimal solution should be and could be used to solve
the new problem faster. In the context of the simplex algorithm this aim is
achieved by starting from the previous optimal basic solution, which is called
the “warm-start.” In the context of interior-point methods, an effective warm
start procedure is difficult to find. Some hope comes from a particular applica-
tion demonstrated in [130].
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8.7 Exercises

8.1 Let A be the node-arc incidence matrix with m+ 1 nodes and n arcs (For
ease of notation, an arbitrary row in A is assumed to have been deleted so that
A has full row rank m), and let D be an n×n positive diagonal matrix. Choose
π so that Aπ contains a basis of A and Dii ≥ β ≥ Djj for all i ∈ π and j 6∈ π.
Then,

λ(AπD
2
πA

T
π ) ≥ βm−2

and
λ̄(AD2AT −AπD2

πA
T
π ) ≤ 2βm.

8.2 In Algorithm 8.1, let

4x = xk+1 − xk =
∑r
j=1(θk)jd

(j)
x ,

4y = yk+1 − yk =
∑r
j=1(θk)jd

(j)
y ,

4s = sk+1 − sk =
∑r
j=1(θk)jd

(j)
s .

Show that (4x,4s,4y) satisfy

1.

Xk4s+ Sk4x = θk(γµke−Xksk)−
r∑
j=2

(θk)j

(
j−1∑
t=1

D(t)
x d(j−t)

s

)
.

2.
(xk)T4s+ (sk)T4x = θk(γ − 1)(xk)T sk,

4xT4s = 0.

3.
µk+1 = [1− θk(1− γ)]µk.

8.3 Let B be an optimal basis for LP (A, bk, ck) of Section 8.5.2. There there
is a positive number ζ(A, b, c) > 0 such that when

∥∥bk − b∥∥ < ζ(A, b, c) and∥∥ck − c∥∥ < ζ(A, b, c), B is also an optimal basis for LP (A, b, c), i.e., both solu-
tions x̄B of Bx̄B = b and s̄ = c−AT ȳ, where BT ȳ = cB, are nonnegative.

8.4 In solving system of equations (??) and (??) of Section ??, shown that

dθ = γ − 1.
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[33] I. Bárány and Füredi. Computing the volume is difficult. In Proceedings
of the 18th Annual ACM Symposium on Theory of Computing, page 442-
447, ACM, New York, 1986.

[34] G. Barequet and S. Har-Peled, “Efficiently Approximating the Minimum-
Volume Bounding Box of a Point Set in Three Dimensions,” J. Algo-
rithms, 38:91-109, 2001.

[35] A. Barvinok. Problems of Distance Geometry and Convex Properties of
Quadratic Maps. Disc. Comp. Geom. 13:189–202, 1995.

[36] A. Barvinok. A Remark on the Rank of Positive Semidefinite Matrices
Subject to Affine Constraints. Disc. Comp. Geom. 25(1):23–31, 2001.



204 BIBLIOGRAPHY

[37] A. Barvinok. A Course in Convexity. AMS, 2002.

[38] D. A. Bayer and J. C. Lagarias. The nonlinear geometry of linear pro-
gramming, Part I: Affine and projective scaling trajectories. Transactions
of the American Mathematical Society, 314(2):499–526, 1989.

[39] D. A. Bayer and J. C. Lagarias. The nonlinear geometry of linear pro-
gramming, Part II: Legendre transform coordinates. Transactions of the
American Mathematical Society, 314(2):527–581, 1989.

[40] D. A. Bayer and J. C. Lagarias. Karmarkar’s linear programming algo-
rithm and Newton’s method. Math. Programming, 50:291–330, 1991.

[41] M. Bellare and P. Rogaway. The complexity of approximating a nonlinear
program. Math. Programming, 69:429-442, 1995.

[42] S. J. Benson and Y. Ye. DSDP User Guide. http://www-
unix.mcs.anl.gov/∼ benson, November 2000.

[43] S. J. Benson, Y. Ye, and X. Zhang. Mixed linear and semidefinite pro-
gramming for combinatorial optimization. Optimization Methods and
Software, 10:515–544, 1999.

[44] S. J. Benson, Y. Ye, and X. Zhang. Solving large scale sparse semidefinite
programs for combinatorial optimization. SIAM Journal of Optimization,
10:443–461, 2000.

[45] A. Ben-Tal, M. Kocvara, A. Nemirovski, and J. Zowe. Free material opti-
mization via semidefinite programming: the multiload case with contact
conditions. SIAM Review, 42(4):695–715, 2000.

[46] A. Ben-Tal and A. Nemirovski. Robust truss topology design via semidef-
inite programming. SIAM J. Optim., 7(4):991–1016, 1997.

[47] A. Ben-Tal and A. Nemirovski. Structural design via semidefinite pro-
gramming. In Handbook on Semidefinite Programming, pages 443–467.
Kluwer, Boston, 2000.

[48] A. Ben–Tal and A. S. Nemirovskii. Interior point polynomial time
method for truss topology design. SIAM J. Optimization, 4:596–612,
1994.

[49] D. P. Bertsekas and J. N. Tsitsiklis. Introduction to Linear Optimization.
Athena Scientific, Belmont, MA, 1997.

[50] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont,
MA, 1995.

[51] D. Bertsimas and J. Nino-Mora. Optimization of multiclass queuing
networks with changeover times via the achievable region approach: part
ii, the multi-station case. Mathematics of Operations Research, 24(2),
May 1999.



BIBLIOGRAPHY 205

[52] D. Bertsimas and Y. Ye. Semidefinite relaxations, multivariate normal
distributions, and order statistics. Handbook of Combinatorial Optimiza-
tion (Vol. 3), D.-Z. Du and P.M. Pardalos (Eds.) pp. 1-19, (1998 Kluwer
Academic Publishers).

[53] P. Biswas, Y. Ye. Semidefinite Programming for Ad Hoc Wireless Sensor
Network Localization. Proc. 3rd IPSN 46–54, 2004.

[54] R. G. Bland, D. Goldfarb and M. J. Todd. The ellipsoidal method: a
survey. Operations Research, 29:1039–1091, 1981.

[55] L. Blum, M. Shub and S. Smale. On a theory of computations over
the real numbers: NP-completeness, recursive functions and universal
machines. Proc. 29th Symp. Foundations of Computer Science, 387–397,
1988.

[56] H.L. Bodlaender, P. Gritzmann, V. Klee and J. Van Leeuwen, “The
Computational Complexity of Norm Maximization”, Combinatorica, 10:
203-225, 1990.

[57] K. H. Borgwardt. The Simplex Method: A Probabilistic Analysis.
Springer, Berlin, 1987.

[58] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix
Inequalities in System and Control Science. SIAM Publications. SIAM,
Philadelphia, 1994.

[59] B. Borchers. CSDP, a C library for semidefinite programming. Opti-
mization Software and Methods, 11:613–623, 1999.

[60] B. Borchers. SDPLIB 1.0 : A collection of semidefinite programming test
problems. Technical report, Faculty of Mathematics, Institute of Mining
and Technology, New Mexico Tech, Socorro, NM, USA, July 1998.

[61] B. Borchers. Presentation at the Seventh DIMACS Implementation Chal-
lenge Piscataway, NJ, November 2, 2000.

[62] A. Brieden, P. Gritzmann, R. Kannan, V. Klee, L. Lovasz and M. Si-
monovits, “Deterministic and Randomized Polynomial-time Approxima-
tion of Radii,” To appear in Mathematika.

[63] A. Brieden, P. Gritzmann, R. Kannan, V. Klee, L. Lovasz and M. Si-
monovits, “Approximation of Diameters: Randomization Doesn’t Help,”
In Proc. IEEE Symp. Foundations of Comp. Sci., 244-251, 1998.

[64] A. Brieden, “Geometric Optimization Problems Likely Not Contained in
APX,” Discrete Comput. Geom., 28:201-209, 2002.

[65] P. Biswas and Y. Ye. Semidefinite Programming for Ad Hoc Wireless Sen-
sor Network Localization. Management Science and Engineering, Stan-
ford, CA 94305, September 2003.



206 BIBLIOGRAPHY

[66] P. Biswas and Y. Ye. A distributed method for solving semideinite pro-
grams arising from Ad Hoc Wireless Sensor Network Localization. Man-
agement Science and Engineering, Stanford, CA 94305, October 2003.

[67] N. Bulusu, J. Heidemann, D. Estrin. GPS-less low cost outdoor localiza-
tion for very small devices. TR 00-729, Computer Science, University of
Southern California, April, 2000.

[68] S. Burer and R. D. C. Monteiro. An efficient algorithm for solving the
MAXCUT SDP relaxation. Manuscript, School of Industrial and Sys-
tems Engineering, Georgia Institute of Technology, Atlanta, GA USA,
December 1998.

[69] S. Burer, R. D. C. Monteiro, and Y. Zhang. Solving semidefinite pro-
grams via nonlinear programming. part I: Transformations and deriva-
tives. Technical Report TR99-17. Department of Computational and
Applied Mathematics, Rice University, TX, September 1999.

[70] S. Burer, R. D. C. Monteiro, and Y. Zhang. Solving semidefinite pro-
grams via nonlinear programming. part II: Interior point methods for a
subclass of SDPs. Technical Report TR99-23. Department of Computa-
tional and Applied Mathematics, Rice University, TX, October 1999.

[71] G. Calafiore and M. Indri. Robust calibration and control of robotic
manipulators. In American Control Conference, pages 2003–2007, 2000.

[72] S. A. Cook. The complexity of theorem-proving procedures. Proc. 3rd
ACM Symposium on the Theory of Computing, 151–158, 1971.

[73] R. W. Cottle and G. B. Dantzig. Complementary pivot theory in math-
ematical programming. Linear Algebra and its Applications, 1:103-125,
1968.

[74] R. Cottle, J. S. Pang, and R. E. Stone. The Linear Complementarity
Problem, chapter 5.9 : Interior–point methods, pages 461–475. Academic
Press, Boston, 1992.

[75] G. B. Dantzig. Linear Programming and Extensions. Princeton Univer-
sity Press, Princeton, New Jersey, 1963.
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methods for semidefinite programming based on Monteiro and Tsuchiya
directions and their variants,” Technical Report, School of Ind. and Sys-
tems Engineering, Georgia Institute of Technology, Atlanta, 1997.

[230] R. D. C. Monteiro and Y. Zhang. A unified analysis for a class of path-
following primal-dual interior-point algorithms for semidefinite program-
ming. School of ISyE, Georgia Tech, GA 30332, 1995.
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partial derivatives, 11
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potential reduction algorithm, 84
potential reduction theorem, 78, 82
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primal-dual algorithm, 84
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quadratic convergence, 22, 197
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real number model, 20, 27
redundant constraints, 177
residual error, 190
→, 5
R++, 3
Rn++, 3

Rn, 3
Rn+, 3

Schur complement, 23, 180, 182
SDP

potential reduction algorithm, 83
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scaling matrix D, 85
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Semidefinite programming
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∈, 5
◦
Ω, 6
6∈, 5
open set, 6
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strong duality theorem, 17
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superlinear convergence, 22
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symmetric indefinite matrix, 183
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Taylor expansion theorem, 12
the conjugate gradient, 22
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