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The Lagrangian Function and Method

We consider

f∗ := min f(x) s.t. h(x) = 0, x ∈ X. (1)

Recall that the Lagrangian function:

L(x,y) = f(x)− yTh(x).

and the dual function:

ϕ(y) = min
x∈X

L(x,y); (2)

and the dual problem

(f∗ ≥)ϕ∗ := max ϕ(y). (3)

In many cases, one can find y∗ of dual problem (3), a unconstrained optimization problem; then go ahead

to find x∗ using (2).
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The Local Duality Theorem

Suppose x∗ is a local minimizer, and consider the localized (convex) problem

f(x∗) := min f(x) s.t. h(x) = 0, x ∈ X, ∥x− x∗∥2 ≤ ϵ. (4)

Then, the localized Lagrangian function:

Lx∗(x,y, µ(≤ 0)) = f(x)− yTh(x)− µ(∥x− x∗∥2 − ϵ).

and the localized dual function:

ϕx∗(y, µ) = min
x∈X, ∥x−x∗∥2≤ϵ

Lx∗(x,y, µ); (5)

and the localized dual problem

max ϕ(y, µ ≤ 0). (6)

Under certain constraint qualification and local convexity conditions, we must have

f(x∗) = ϕ(y∗, µ∗ = 0) where the localization constraint becomes inactive.

3



Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note #16

The gradient and Hessian of ϕ

Let x(y) be a minimizer of (2). Then

ϕ(y) = f(x(y))− yTh(x(y))

Thus,

∇ϕ(y) = ∇f(x(y))T∇x(y)− yT∇h(x(y))∇x(y)− h(x(y))

= (∇f(x(y))T − yT∇h(x(y)))∇x(y)− h(x(y))

= −h(x(y)).
Similarly, we can derive

∇2ϕ(y) = −∇h(x(y))
(
∇2

xL(x(y),y)
)−1∇h(x(y))T,

where∇2
xL(x(y),y) is the Hessian of the Lagrangian function that is assumed to be positive definite at

any (local) minimizer.
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The Toy Example

minimize (x1 − 1)2 + (x2 − 1)2

subject to x1 + 2x2 − 1 = 0, 2x1 + x2 − 1 = 0.

L(x,y) = (x1 − 1)2 + (x2 − 1)2 − y1(x1 + 2x2 − 1)− y2(2x1 + x2 − 1).

x1 = 0.5y1 + y2 + 1, x2 = y1 + 0.5y2 + 1.

ϕ(y) = −1.25y21 − 1.25y22 − 2y1y2 − 2y1 − 2y2.

∇ϕ(y) =

 2.5y1 + 2y2 + 2

2y1 + 2.5y21 + 2

 ,

∇2ϕ(y) = −

 1 2

2 1

 2 0

0 2

−1  1 2

2 1

T

= −

 2.5 2

2 2.5
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The Augmented Lagrangian Function

In both theory and practice, we actually consider an augmented Lagrangian function (ALF)

La(x,y) = f(x)− yTh(x) +
β

2
∥h(x)∥2,

which corresponds to an equivalent problem of (1):

f∗ := min f(x) + β
2 ∥h(x)∥

2 s.t. h(x) = 0, x ∈ X.

Note that, although at feasibility the additional square term in objective is redundant, it helps to improve

strict convexity of the Lagrangian function.
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The Augmented Lagrangian Dual

Now the dual function:

ϕa(y) = min
x∈X

La(x,y); (7)

and the dual problem

(f∗ ≥)ϕ∗
a := max ϕa(y). (8)

Note that the dual function satisfies 1
β -Lipschitz condition (see Chapter 14 of L&Y).

For the convex optimization case, say h(x) = Ax− b, we have

∇2La(x,y) = ∇2f(x) + β(ATA).
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The Augmented Lagrangian Method

The augmented Lagrangian method (ALM) is:

Start from any (x0 ∈ X,y0), we compute a new iterate pair

xk+1 = arg min
x∈X

La(x,y
k), and yk+1 = yk − βh(xk+1).

The calculation of x is used to compute the gradient vector of ϕa(y), which is a steepest ascent direction.

The method converges just like the SDM, because the dual function satisfies 1
β -Lipschitz condition.

Other SDM strategies may be adapted to update y (the BB, ASDM, Conjugate, Quasi-Newton ...).
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Analysis of the Augmented Lagrangian Method

Consider the convex optimization case h(x) = Ax− b. Since xk+1 makes KKT condition:

0 = ∇f(xk+1)−ATyk + βAT (Axk+1 − b)

= ∇f(xk+1)−AT (yk − β(Axk+1 − b))

= ∇f(xk+1)−ATyk+1,

we only need to be concerned about whether or not ∥Axk − b∥ converges to zero and how fast it

converges. First, from the convexity of f(x), we have

0 ≤ (∇f(xk+1)−∇f(xk))T (xk+1 − xk)

= (−ATyk+1 +ATyk)T (xk+1 − xk)

= (yk+1 − yk)T (Axk+1 −Axk)

= −β(Axk+1 − b)(Axk+1 − b− (Axk − b)),

which implies that ∥Axk+1 − b∥ ≤ ∥Axk − b∥, that is, the error is non-increasing.
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Again, from the convexity, we have

0 ≤ (∇f(xk+1)−∇f(x∗))T (xk+1 − x∗)

= (ATyk+1 −ATy∗)T (xk+1 − x∗)

= (yk+1 − y∗)T (Axk+1 −Ax∗) = (yk+1 − y∗)T (Axk+1 − b)

= 1
β (y

k+1 − y∗)T (yk − yk+1).

Thus, from the positivity of the cross product, we have

∥yk − y∗∥2 = ∥yk − yk+1 + yk+1 − y∗∥2

≥ ∥yk − yk+1∥2 + ∥yk+1 − y∗∥2

= β∥Axk+1 − b∥2 + ∥yk+1 − y∗∥2.

Sum up from 0 to k of the inequality we have

∥y0 − y∗∥2 ≥ ∥yk+1 − y∗∥2 + β
∑k

l=0 ∥Axl+1 − b∥2

≥ β
∑k

l=0 ∥Axl+1 − b∥2

≥ (k + 1)β∥Axk+1 − b∥2.
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Two-Block Alternating Direction Method with Multipliers

For the ADMM method, we consider structured problem

min f1(x1) + f2(x2) s.t. A1x1 +A2x2 = b, x1 ∈ X1, x2 ∈ X2.

Consider

L(x1,x2,y) = f1(x1) + f2(x2)− yT (A1x1 +A2x2 − b) +
β

2
∥A1x1 +A2x2 − b∥2.

Then, for any given (xk
1 ,x

k
2 ,y

k), we compute a new iterate

xk+1
1 = argminx1∈X1 L(x1,x

k
2 ,y

k),

xk+1
2 = argminx2∈X2 L(x

k+1
1 ,x2,y

k),

yk+1 = yk − β(A1x
k+1
1 +A2x

k+1
2 − b).

Again, we can prove that the iterates converge with the same speed.

The ADMM method resembles the Block Coordinate Descent (BCD) Method ...
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Direct Application of ADMM to Linear Programming I

Consider the standard-form LP

minimizex cTx

s.t. Ax = b,

x ≥ 0.

⇒
minimize(x1,x2) cTx1

s.t. Ax1 = b,

x1 − x2 = 0, x2 ≥ 0.

L(x1,x2,y) = cTx1 − yT (Ax1 − b)− sT (x1 − x2) +
β

2

(
∥Ax1 − b∥2 + ∥x1 − x2∥2

)
.

where y and s are the multiplier vectors of first and second equality constraints in the reformulation.

The advantage of such splitting reformulation is that the update of either x1 or x2 has a simple close form

solution.
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Direct Application of ADMM to Dual Linear Programming I

Consider the dual LP

maximize(y,s) bTy

s.t. ATy + s = c, s ≥ 0.

The augmented Lagrangian function would be

L(y, s,x) = −bTy − xT (ATy + s− c) +
β

2
∥ATy + s− c∥2,

where β is a positive parameter, and x is the multiplier vector.
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Direct Application of ADMM to Dual Linear Programming II

The ADMM for the dual is straightforward: starting from any y0, s0 ≥ 0, and multiplier x0,

• Update variable y:

yk+1 = argmin
y

L(y, sk,xk);

• Update slack variable s:

sk+1 = argmin
s≥0

L(yk+1, s,xk);

• Update multipliers x:

xk+1 = xk − β(ATyk+1 + sk+1 − c).

Note that the updates of y is a least-squares problem with constant matrix, and the update of s has a

simple close form. (Also note that x would be non-positive at the end, since we changed maximization to

minimization of the dual.)

To split y into multi blocks and update cyclically in random order?
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Direct Application of ADMM to Dual Linear Programming III

One can also consider to reformulate the dual as

maximizey,s,u1,u2 bTy

s.t. AT
1 y1 − u1 = 0, (v1)

AT
2 y2 − u2 = 0, (v2)

u1 + u2 + s = c, (x)

s ≥ 0;

(9)

with the multiplier v1, v2 and x for the three sets of the equality constraints.

Ld(y1,y2,u1,u2, s,v1,v2,x)

= −bT
1 y1 − bT

2 y2 − vT
1 (A

T
1 y1 − u1)− vT

2 (A
T
2 y2 − u2)− xT (u1 + u2 + s− c)

+β
2

(
∥AT

1 y1 − u1∥2 + ∥AT
2 y2 − u2∥2 + ∥u1 + u2 + s− c∥2

)
.

(10)

Note that yi, i = 1, 2, and s ≥ 0 can be updated independently and in parallel, and ui, i = 1, 2, can

be updated jointly with a close form(?). This is essentially a two-block ADMM!
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Direct Application of ADMM to Dual LP IV: Barrier Regularization

Now consider dual linear program with the logarithmic barrier function

maximizey,s bTy + µ
∑

j ln(sj)

s.t. ATy + s = c,
(11)

where µ is a fixed small positive constant.

The augmented Lagrangian function would be

Lµ(y, s,x) = −bTy − µ
∑
j

ln(sj)− xT (ATy + s− c) +
β

2
∥ATy + s− c∥2,

Apply the path-following idea to the Dual ADMM with barrier.

“An ADMM-Based Interior-Point Method for Large-Scale Linear Programming,”

(https://arxiv.org/abs/1805.12344).
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ADMM for Multi-block Convex Minimization

Why not consider convex minimization problems with three blocks:

min f1(x1) + f2(x2) + f3(x3)

s.t. A1x1 +A2x2 +A3x3 = b

x1 ∈ X1, x2 ∈ X2, x3 ∈ X3

The direct and natural extension of ADMM with null objectives:

xk+1
1 = argmin{L(x1,x

k
2 ,x

k
3 ,y

k) |x1 ∈ X1}

xk+1
2 = argmin{L(xk+1

1 ,x2,x
k
3 ,y

k) |x2 ∈ X2}

xk+1
3 = argmin{L(xk+1

1 ,xk+1
2 ,x3,y

k) |x3 ∈ X3}

yk+1 = yk − β(A1x
k+1
1 +A2x

k+1
2 +A3x

k+1
3 − b)

L(x1,x2,x3,y) =

3∑
i=1

fi(xi)− yT ( 3∑
i=1

Aixi − b
)
+

β

2

∥∥ 3∑
i=1

Aixi − b
∥∥2
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Divergent Example of the Extended ADMM I

Should it converge? (Not easy to analyze the convergence of ADMM with more than two blocks; or the

proving operator theory of two-block cannot be directly extended to the ADMM with three blocks.)

Consider the system of homogeneous linear equations with three variables and null objective functions:

A1x1 +A2x2 +A3x3 = 0, where A = (A1, A2, A3) =


1 1 1

1 1 2

1 2 2

 .
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Then the extended ADMM with β = 1 can be specified as a linear map

3 0 0 0 0 0

4 6 0 0 0 0

5 7 9 0 0 0

1 1 1 1 0 0

1 1 2 0 1 0

1 2 2 0 0 1





xk+1
1

xk+1
2

xk+1
3

yk+1


=



0 −4 −5 1 1 1

0 0 −7 1 1 2

0 0 0 1 2 2

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





xk
1

xk
2

xk
3

yk


.
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Divergent Example of the Extended ADMM II

Or equivalently, 
xk+1
2

xk+1
3

yk+1

 = M


xk
2

xk
3

yk

 ,

where

M =
1

162



144 −9 −9 −9 18

8 157 −5 13 −8

64 122 122 −58 −64

56 −35 −35 91 −56

−88 −26 −26 −62 88


.
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Divergent Example of the Extended ADMM III

The matrix M = VDiag(d)V−1, where d =



0.9836 + 0.2984i

0.9836− 0.2984i

0.8744 + 0.2310i

0.8744− 0.2310i

0


. Note that

ρ(M) = |d1| = |d2| > 1.

Theorem 1 There existing an example where the direct extension of ADMM of three blocks with a real number initial

point is not necessarily convergent for any choice of β. Moreover, for any randomly generated initial point, ADMM

diverges with probability 1.
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Multi-block problems and ADMM

In general, consider a convex optimization problem

min
x∈RN

f1(x1) + · · ·+ fn(xn),

subject to Ax , A1x1 + · · ·+Anxn = b,

xi ∈ Xi ⊂ Rdi , i = 1, . . . , n.

(12)

L(x1, . . . ,xn;y) =
∑
i

fi(xi)− yT (
∑
i

Aixi − b) +
β

2
∥
∑
i

Aixi − b∥2

The direct Cyclic Extension Multi-block ADMM:

x1 ←− argminx1∈X1 L(x1, . . . ,xn;y),
...

xn ←− argminxn∈Xn L(x1, . . . ,xn;y),

y←− y − β(Ax− b),
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How to Make it Work?

There are many “correction” methods to deal with the problem, but ...

Is there a “simple way” to make the ADMM with the multi-block work?

Permute the updating order of xi randomly, and it works for the example – the expected ρ(M) equals

0.9723!
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Randomly Permuted ADMM

Random-Permuted ADMM (RP-ADMM): each round, draw a random permutation σ = (σ(1), . . . , σ(n))

of {1, . . . , n}, and

Update xσ(1) → xσ(2) → · · · → xσ(n) → y.

(This is sample without replacement.)

Interpretation: Force “absolute fairness” among blocks.

Simulation Test Result on solving linear equations: always converges!

Any theory behind the success?

We produced a positive result for ADMM on solving the system of linear equations.
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Random Permuted ADMM for Linear Systems

• Consider solving any square system of linear equation (fi = 0, ∀i).

(S) minx∈RN 0,

s.t. A1x1 + · · ·+Anxn = b,

where A = [A1, . . . , An] ∈ RN×N is full-rank, xi ∈ Rdi and
∑

i di = N .

• RP-ADMM: Pick a permutation σ of {1, . . . , n} uniformly at random, then compute (with β = 1)

xk+1
σ(1), . . . ,x

k+1
σ(n),y

k+1 by
−AT

σ(1)y
k +AT

σ(1)(Aσ(1)x
k+1
σ(1) +

∑n
l=2 Aσ(l)x

k
σ(l) − b) = 0,

. . .

−AT
σ(n)y

k +AT
σ(n)(

∑n−1
j=1 Aσ(j)x

k+1
σ(j) +Aσ(n)x

k+1
σ(n) − b) = 0,

yk+1 = yk − (
∑n

i=1 Aix
k+1
i − b)

• WOLG, assume b = 0.
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Main Result: Convergence in Expectation

• After k rounds, RP-ADMM generates zk, an r.v. depending on

ξk = (σ1, . . . , σk), zi = Mσiz
i−1, i = 1, ..., k,

where σi is the picked permutation at i-th round.

• Denote the expected output ϕk , Eξk(z
k)

Theorem 2 The expected output converges to the unique solution, i.e.

{ϕk}k→∞ −→

0
0

 .

• Remark: Expected convergence ̸= convergence, but is a strong evidence for convergence for solving

most problems, e.g., when iterates are bounded.
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The Average Mapping is a Contraction

• The update equation of RP-ADMM for (S) is

zk+1 = Mσz
k,

where Mσ ∈ R2N×2N depend on σ.

• Define the expected update matrix as

M = Eσ(Mσ) =
1

n!

∑
σ

Mσ.

Theorem 3 The spectral radius of M , ρ(M), is strictly less than 1.

• Remark: For A in the divergence example, ρ(Mσ) > 1 for any σ

– Averaging Helps, a lot.

27



Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note #16

Math Problem of Theorem 3

• Define

Q , E(L−1
σ ) =

1

n!

∑
σ

L−1
σ . (13)

• Example:

L(231) =


1 AT

1 A2 AT
1 A3

0 1 0

0 AT
3 A2 1

 .

• Need to prove that, for all A, ρ(M) < 1 where

M =

 I −QATA QAT

−A+AQATA I −AQAT

 .
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Difficulties of Proving Theorem 3

• Difficulty 1: Few tools deal with spectral radius of non-symmetric matrices.

– E.g. ρ(X + Y ) ≤ ρ(X) + ρ(Y ) and ρ(XY ) ≤ ρ(X)ρ(Y ) don’t hold.

– Though ρ(M) < ∥M∥, it turns out ∥M∥ > 2.3 for the counterexample.

• Difficulty 2: M is a complicated function of A.

– n = 3, let (ATA)k,l = bkl, then Q12 = − 1
2b12 +

1
6b13b23.

– n = 4, Q12 = − 1
2!b12 +

1
3! (b13b32 + b14b42)− 1

4! (b13b34b42 + b14b43b32).

• Solution: Symmetrization and Mathematical Induction.
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Two Main Lemmas to Prove Theorem 3

• Step 1: Relate M to a symmetric matrix AQAT .

Lemma 1

y ∈ eig(M)⇐⇒ (1− y)2

1− 2y
∈ eig(AQAT ).

Since Q defined by (13) is symmetric, we have

ρ(M) < 1⇐⇒ eig(AQAT ) ⊆ (0,
4

3
).

• Step 2: Bound eigenvalues of AQAT - prove by math induction.

Lemma 2

eig(AQAT ) ⊆ (0,
4

3
).

• Remark: 4/3 is “almost” tight; for n = 3, maximum≈ 1.18. Increase to 4/3 as n increases.
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More Randomization: Randomly Assembled ADMM

Randomly Assembled ADMM (RA-ADMM) – Random Variable Sampling without Replacement in Each

ADMM round:

1. Set the initial set Nx as all (primal) decision variables.

2. Randomly select a subset of variables from Nx to optimize.

3. Remove this set of variables from Nx and return to Step 1 till Nx is empty.

4. Update the dual multipliers as usual.

Provide much better results for non-convex and discrete/combinatorial optimization (Mihic et al. 2020).
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Extensions and Research Directions

• Non-square system of linear equations: resolved

• Non-separable convex quadratic minimization: resolved

• Theory: Convergence w.h.p.?

• Theory: Generalize to inequality systems or convex optimization at large?

• Theory: Overall complexity of Interior-Point ADMM for LP?

• Theory: More analyses on RA-ADMM?

• Implementation and computation development!
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