
Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note #16

First-Order Algorithms for CLP

Yinyu Ye

Department of Management Science and Engineering

Stanford University

Stanford, CA 94305, U.S.A.

http://www.stanford.edu/˜yyye

(LY: Chapters 5.5, 8.2, 8.5, 12.1)

1



Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note #16

First-Order Method/Value-Iteration for MDP/RL I

In contrast to the second-order methods such as Newton’s method, the first-order methods are typically

using just matrix-vector multiplications in each step (e.g., in evaluating the gradient method).

Recall the Fixed-Point Model:

yi = minj∈Ai{cj + γpT
j y}, ∀i

and the LP formulation

maximizey
∑m

i=1 yi

subject to yi − γpT
j y ≤ cj , j ∈ Ai, ∀i.
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First-Order Method/Value-Iteration for MDP/RL II

The Value-Iteration (VI) Method: starting from any y0,

yk+1
i = min

j∈Ai

{cj + γpT
j y

k}, ∀i.

Contraction:

∥yk+1 − y∗∥∞ ≤ γ∥yk − y∗∥∞, ∀k.

where y∗ is the fixed-point or optimal value vector, that is,

y∗i = min
j∈Ai

{cj + γpT
j y

∗}, ∀i.

Monotonicity: If we start from a vector such that

y0i < min
j∈Ai

{cj + γpT
j y

0}, ∀i

(y0 in the interior of the feasible region), then

y∗ ≥ yk+1 ≥ yk, ∀k.
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Dimension Reduction for MDP/RL III

Target Action Sampling: select important actions to update cost-to-go values during the VI process?

Online State-Aggregation: group states into a single “super”-state with similar cost-to-go values during the

VI process?
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First-Order Method/Value-Iteration for MDP/RL IV

One can apply the barrier function to solving the MDP problem, that is, to maximize the berried objective

for a fixed µ as unconstrained optimization:

max
y

bµ(y) = bTy + µ
∑
j

log(cj − aTj y).

Starting an initial interior-feasible solution y0, apply the steepest-ascent algorithm to maximize the

objective.

After the gradient values become “small”, decrease µ by a fixed factor and start the steepest ascent again

– First-Order Path-Following.

One may also directly apply the First-Order Potential-Reduction.
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First-Order Algorithm: the Steepest Descent Method (SDM)

Let f be a differentiable function and assume we can compute gradient (column) vector∇f . We want to

solve the unconstrained minimization problem

min
x∈Rn

f(x).

In the absence of further information, we seek a first-order KKT or stationary point of f , that is, a point x∗

at which∇f(x∗) = 0. Here we choose direction vector dk = −∇f(xk) as the search direction at xk,

which is the direction of steepest descent.

The number αk ≥ 0, called step-size, is chosen “appropriately” as

αk ∈ arg minf(xk − α∇f(xk)).

Then the new iterate is defined as xk+1 = xk − αk∇f(xk).

In some implementations, step-size αk is fixed through out the process – independent of iteration count k
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Step-Size of the SDM for Minimizing Lipschitz Functions

Let f(x) be differentiable every where and satisfy the (first-order) β-Lipschitz condition, that is, for any

two points x and y

∥∇f(x)−∇f(y)∥ ≤ β∥x− y∥ (1)

for a positive real constant β. Then, we have

Lemma 1 Let f be a β-Lipschitz function. Then for any two points x and y

f(x)− f(y)−∇f(y)T (x− y) ≤ β

2
∥x− y∥2. (2)

At the kth step of SDM, we have

f(x)− f(xk) ≤ ∇f(xk)T (x− xk) +
β

2
∥x− xk∥2.

The left hand strict convex quadratic function of x establishes a upper bound on the objective reduction.
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Let us minimize the quadratic function

xk+1 = argmin
x
∇f(xk)T (x− xk) +

β

2
∥x− xk∥2,

and let the minimizer be the next iterate. Then it has a close form:

xk+1 = xk − 1

β
∇f(xk)

which is the SDM with the fixed step-size 1
β . Then

f(xk+1)− f(xk) ≤ − 1

2β
∥∇f(xk)∥2, or f(xk)− f(xk+1) ≥ 1

2β
∥∇f(xk)∥2.

Then, after K(≥ 1) steps, we must have

f(x0)− f(xK) ≥ 1

2β

K−1∑
k=0

∥∇f(xk)∥2. (3)

Theorem 1 (Error Convergence Estimate Theorem) Let the objective function p∗ = inf f(x) be finite

and let us stop the SDM as soon as ∥∇f(xk)∥ ≤ ϵ for a given tolerance ϵ ∈ (0 1). Then the SDM
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terminates in 2β(f(x0)−p∗)
ϵ2 steps.

Proof: From (3), after K = 2β(f(x0)−p∗)
ϵ2 steps

f(x0)− p∗ ≥ f(x0)− f(xK) ≥ 1

2β

K−1∑
k=0

∥∇f(xk)∥2.

If ∥∇f(xk)∥ > ϵ for all k = 0, ...,K − 1, then we have

f(x0)− p∗ > K

2β
ϵ2 ≥ f(x0)− p∗

which is a contradiction.

Corollary 1 If a minimizer x∗ of f is attainable, then the SDM terminates in β2∥x0−x∗∥2

ϵ2 steps.

The proof is based on Lemma 1 with x = x0 and y = x∗ and noting∇f(y) = ∇f(x∗) = 0:

f(x0)− p∗ = f(x0)− f(x∗) ≤ β

2
∥x0 − x∗∥2.
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Forward and Backward Tracking Step-Size Method

In most real applications, the Lipschitz constant β is unknown. Furthermore, we like to use a smaller and

localized Lipschitz constant βk, assuming it is bounded away from 0, at iteration k such that the inequality

f(xk + αdk)− f(xk)−∇f(xk)T (αdk) ≤ βk

2
∥αdk∥2

holds, where dk = −∇f(xk), to decide the step-size α = 1
βk .

Consider the following step-size strategy: stat at a good step-size guess α > 0:

(1): If α ≤ 2(f(xk)−f(xk+αdk))
∥dk∥2 then doubling the step-size: α← 2α, stop as soon as the inequality is

reversed and select the latest α with α ≤ 2(f(xk)−f(xk+αdk))
∥dk∥2 ;

(2): Otherwise halving the step-size: α← α/2; stop as soon as α ≤ 2(f(xk)−f(xk+αdk))
∥dk∥2 and return it.

Prove that the selected step-size

α ≥ 1

2βk
.
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First-Order Algorithms for Conic Constrained Optimization (CCO)

Consider the conic nonlinear optimization problem: min f(x) s.t. x ∈ K.

• Nonnegative Linear Regression: given data A ∈ Rm×n and b ∈ Rm

min f(x) =
1

2
∥Ax− b∥2 s.t. x ≥ 0; where∇f(x) = AT (Ax− b).

• Semidefinite Linear Regression: given data Ai ∈ Sn for i = 1, ...,m and b ∈ Rm

min f(X) =
1

2
∥AX − b∥2 s.t. X ≽ 0; where∇f(X) = AT (AX − b).

AX =


A1 •X
...

Am •X

 and ATy =
∑
i=1

yiAi.

Suppose we start from a feasible solution x0 or X0.
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Descent-First and Feasible-Second I

• x̂k+1 = xk − 1
β∇f(x

k)

• xk+1 = ProjK(x̂k+1): Solve minx∈K ∥x− x̂k+1∥2.

For examples:

• if K = {x : x ≥ 0}, then

xk+1 = ProjK(x̂k+1) = max{0, x̂k+1}.

• If K = {X : X ≽ 0}, then factorize X̂k+1 =
∑n

j=1 λjvjv
T
j and let

Xk+1 = ProjK(X̂k+1) =
∑

j:λj>0

λjvjv
T
j .

(The drawback is that the total eigenvalue-factorization may be costly...)

Does the method converge? What is the convergence speed?
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Descent-First and Feasible-Second II

Consider the conic nonlinear optimization problem: min f(x) s.t. Ax = b. that is

K = {x : Ax = b}.

The projection method becomes, starting from a feasible solution x0 and let direction

dk = −(I −AT (AAT )−1A)∇f(xk)

xk+1 = xk + αkdk; (4)

where the stepsize can be chosen from line-search or again simply let

αk =
1

β

and β is the (global) Lipschitz constant.

Does the method converge? What is the convergence speed? See more details in HW3.
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Descent-First and Feasible-Second III

• K ⊂ Rn whose support size is no more than d(< n): x = ProjK(x̂) contains the largest d

absolute entries of x̂ and set the rest of them to zeros.

• K ⊂ Rn
+ and its support size is no more than d(< n): x = ProjK(x̂) contains the largest no more

than d positive entries of x̂ and set the rest of them to zeros.

• K ⊂ Sn whose rank is no more than d(< n): factorize

X̂ =
∑n

j=1 λjvjv
T
j with |λ1| ≥ |λ2| ≥ ... ≥ |λn| then ProjK(X̂) =

∑d
j=1 λjvjv

T
j .

• K ⊂ Sn
+ whose rank is no more than d(< n): factorize

X̂ =
∑n

j=1 λjvjv
T
j with λ1 ≥ λ2 ≥ ... ≥ λn then ProjK(X̂) =

∑d
j=1 max{0, λj}vjv

T
j .

Does the method converge? What is the convergence speed? What if f(·) is not a convex function?
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Multiplicative-Update I: “Mirror” SDM for CCO

At the kth iterate with xk > 0:

xk+1 = xk. ∗ exp(− 1

β
∇f(xk))

Note that xk+1 remains positive in the updating process.

The classical Projected SDM update can be viewed as

xk+1 = argmin
x≥0

∇f(xk)Tx+
β

2
∥x− xk∥2.

One can choose any strongly convex function h(·) and define

Dh(x,y) = h(x)− h(y)−∇h(y)T (x− y)

and define the update as

xk+1 = argmin
x≥0

∇f(xk)Tx+ βDh(x,x
k).

The update above is the result of choosing (negative) entropy function h(x) =
∑

j xj log(xj).
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The Wassestein Barycenter Problem

Find distribution of xi, i = 1, 2, 3, 4 to minimize

min WDl(x) +WDm(x) +WDr(x)

s.t. x1 + x2 + x3 + x4 = 9, xi ≥ 0, i = 1, 2, 3, 4.

The objective is a nonlinear function, but its gradient vector∇WDl(x),∇WDm(x) and∇WDl(x)

are shadow prices of the three sub-transportation problems –popularly used in Hierarchy Optimization.

(Projects #4 on WBC)
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Multiplicative-Update II: Affine Scaling SDM for CCO

At the kth iterate with xk > 0, let Dk be a diagonal matrix such that

Dk
jj = xkj , ∀j

and

xk+1 = argmin
x≥0

∇f(xk)Tx+
β

2
∥(Dk)−1(x− xk)∥2,

or

xk+1 = xk − αk(D
k)2∇f(xk) = xk. ∗ (e− αk∇f(xk). ∗ xk)

where variable step-sizes can be

αk = min{ 1

βmax(xk)2
,

1

2∥xk. ∗ ∇f(xk)∥∞
}.

Is xk > 0, ∀k? Does it converge? What is the convergence speed? See more details in HW.

Geometric Interpretation: inscribed ball vs inscribed ellipsoid.
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Affine Scaling for SDP Cone?

At the kth iterate with Xk ≻ 0. the new SDM iterate would be

Xk+1 = Xk − αkX
k∇f(Xk)Xk = Xk(I − αk∇f(Xk)Xk).

Choose step-size is chosen such that the smallest eigenvalue of Xk+1 is at most a fraction from the one

of Xk?

Does it converge? What is the convergence speed?
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First-Order Potential Reduction for Linear Least-Squares

Let us solve

min ∥Ax− b∥2

s.t. x ≥ 0

Consider the potential function

ψn+ρ(x) := (n+ ρ) log(∥Ax− b∥2)−
n∑

j=1

log(xj).

Starting from an interior-point solution x) > 0, we apply the SDM method to minimize the potential

function.

Can use the preconditioning to improve the performance.
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First-Order Potential Reduction for LP I

Recall that the joint primal-dual potential function is defined by

ψn+ρ(x, s) := (n+ ρ) log(xT s)−
n∑

j=1

log(xjsj).

At the kth iteration, we compute the direction vectors (dx,dy,ds) using the steepest descent direction:

min ∇xϕ(x
k, sk)Tdx +∇sϕ(x

k, sk)Tds

s.t. Adx = 0

ATdy + ds = 0,

where

∇xϕ(x
k, sk)T =

n+ ρ

(xk)T sk
sk − (Xk)−1e

and

∇sϕ(x
k, sk)T =

n+ ρ

(xk)T sk
xk − (Sk)−1e.
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First-Order Potential Reduction for LP II

More precisely, we have

dx = −(I −AT (AAT )−1A)∇xϕ(x
k, sk),

dy = A∇sϕ(x
k, sk),

ds = −ATA∇sϕ(x
k, sk).

Then, we let

xk+1 = xk + αdx,

yk+1 = yk + αdy,

sk+1 = sk + αds,

for some step-size α such that the potential value is minimized along the directions.

SDP Cone?
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Alternating Primal-Dual Direction Method I

The joint primal-dual potential function can be written as

ψn+ρ(x, s) = (n+ ρ) log(xT s)−
∑n

j=1 log(xjsj)

= (n+ ρ) log(cTx− bTy)−
∑n

j=1 log(xj)−
∑n

j=1 log(sj)

= (n+ ρ) log(cTx− bTy)−
∑n

j=1 log(xj)−
∑n

j=1 log(cj − aTj y)

since s = c−ATy. Then let

ϕ(xk,yk) = (n+ ρ) log(cTx− bTy)−
n∑

j=1

log(xj)−
n∑

j=1

log(cj − aTj y),

∇xϕ(x
k,yk)T =

n+ ρ

cTxk − bTyk
c− (Xk)−1e,

and

∇yϕ(x
k,yk)T = − n+ ρ

cTxk − bTyk
b−A(Sk)−1e
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Alternating Primal-Dual Direction Method II

At the kth iteration, we fix (sk,yk) and compute an approximate minimizer as xk+1 using any iterative

method starting from xk:

minx ϕ(x,yk)

s.t. Ax = b.

One would reduce the potential function by a fixed amount after updating from xk to xk+1 while keep

(yk+1, sk+1) = (yk, sk):

ψn+ρ(x
k+1, sk+1)− ψn+ρ(x

k, sk) ≤ −δ.

Then we update the dual iterate (yk, sk), and do these updates alternatively.
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Alternating Primal-Dual Direction Method III

When fix xk, we compute an approximate minimizer as yk+1 using any iterative method starting from yk:

miny ϕ(xk,y)

which is an unconstrained minimization.

Again, one would reduce the potential function by a fixed amount after updating from yk to

yk+1 (sk+1 = c−ATyk+1) while keep xk+1 = xk:

ψn+ρ(x
k+1, sk+1)− ψn+ρ(x

k, sk) ≤ −δ.

Many iterative methods can be considered: the Steepest Descent, Conjugate Gradient, Quasi-Newton,

Stochastic Gradient, etc.
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