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First-Order Method/Value-lteration for MDP/RL | '

In contrast to the second-order methods such as Newton’s method, the first-order methods are typically
using just matrix-vector multiplications in each step (e.g., in evaluating the gradient method).

Recall the Fixed-Point Model:

yi = minjea,{c; +p;y}, Vi

and the LP formulation

__ m
maximizey, ) ._ Y

subjectto  y; — vp;‘-Fy < ¢, 7€ A, Vi
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First-Order Method/Value-lteration for MDP/RL Il '

The Value-lteration (VI) Method: starting from any yO,

E+1 . , T. k :

y; = min{c; +yp;y"}, Vi
Contraction:

k41

7"t — ¥ [loo <AIY" — ¥ |lcos VE.

where y™ is the fixed-point or optimal value vector, that is,
* : T * .
- = min{c; + Yp; V1.
Y; jeAi{ i +Pi Yy )
Monotonicity: If we start from a vector such that

0 . T_0 .
Y < ]nggg{cj +YP;y ), Vi

(y0 in the interior of the feasible region), then

y* >yl > yF vk
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Dimension Reduction for MDP/RL Il '

Target Action Sampling: select important actions to update cost-to-go values during the VI process?

Online State-Aggregation: group states into a single “super’-state with similar cost-to-go values during the
VI process?
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First-Order Method/Value-lteration for MDP/RL IV '

One can apply the barrier function to solving the MDP problem, that is, to maximize the berried objective

for a fixed [+ as unconstrained optimization:

max b.(y) =bly + u Z log(c; — ajTy).
J

Starting an initial interior-feasible solution yO, apply the steepest-ascent algorithm to maximize the

objective.

After the gradient values become “small”, decrease (i by a fixed factor and start the steepest ascent again

— First-Order Path-Following.

One may also directly apply the First-Order Potential-Reduction.
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First-Order Algorithm: the Steepest Descent Method (SDM) I

Let f be a differentiable function and assume we can compute gradient (column) vector V f . We want to

solve the unconstrained minimization problem

L2 150

*

In the absence of further information, we seek a first-order KKT or stationary point of f, that is, a point x
at which V f (x*) = 0. Here we choose direction vector d¥ = —V f(x") as the search direction at x",

which is the direction of steepest descent.

The number o/* > (), called step-size, is chosen “appropriately” as
of € argminf(x" — aV f(x")).

Then the new iterate is defined as x* ™1 = x* — oV f(x").

In some implementations, step-size o is fixed through out the process — independent of iteration count k
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Step-Size of the SDM for Minimizing Lipschitz Functions I

Let f(X) be differentiable every where and satisfy the (first-order) [-Lipschitz condition, that is, for any

two points X and y
IVix) =Vl <Blx—yl (1)

for a positive real constant (3. Then, we have

Lemma 1 Let f be a 3-Lipschitz function. Then for any two points X and y

F(x) — F(y) ~ V)T (x —y) < 5 x— vl @

At the kth step of SDM, we have
Fx) — Fc) < V10T (e x) + 5 — x|

The left hand strict convex quadratic function of x establishes a upper bound on the objective reduction.
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Let us minimize the quadratic function

B

x* = argmin Vf(x")7 (x = x*) + Z[lx - x|,

|x — x
and let the minimizer be the next iterate. Then it has a close form:

1
xPtl = xF — ZV f(xF)

B

which is the SDM with the fixed step-size % Then

fFxF — f(xF) < —%HW(X%)H% o fxF) — fFY) > V)2

Then, after (> 1) steps, we must have

Theorem 1 (Error Convergence Estimate Theorem) Let the objective function p* = inf f (X) be finite
and let us stop the SDM as soon as ||V f (x*)|| < e for a given tolerance ¢ € (0 1). Then the SDM

8
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Oy =
terminates in 22U (’22) p’)

steps.

Proof: From (3),

0 *
after K = QB(f(tQ)_p ) steps

K—1
) = p* > F() — F(xK) %Zuw 2.

If ||V f(x%)|| > eforallk = 0,..., K — 1, then we have

Fx0) — p" >%e > f(x0) = p

which is a contradiction.

Corollary 1 If a minimizer x* of f is attainable, then the SDM terminates in

2 0 * |12
X —X
571l = | steps.

The proof is based on Lemma 1 with x = x" and y = x* and noting V f(y) = V f(x*) = 0:

F) = p* = F(x%) — fx7) < D x — x|,
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Forward and Backward Tracking Step-Size Method I

In most real applications, the Lipschitz constant 5 is unknown. Furthermore, we like to use a smaller and
localized Lipschitz constant 6’“, assuming it is bounded away from 0, at iteration k such that the inequality

k
k k k kN\NT k k|2
e+ ad®) — f(xM) = V(M) (ad") < - lad”|
holds, where d¥ = —V f(x*), to decide the step-size o = BL’“
Consider the following step-size strategy: stat at a good step-size guess o > 0:

k k k
(1): fa < 2UE )HC{,ST‘CQ +247) then doubling the step-size: v +— 20, stop as soon as the inequality is

N k k
reversed and select the latest o with v < 2/ )HCJ;"STIZ taod?)).

k k k
(2): Otherwise halving the step-size: v <— «v/2; stop as soon as v < 2(/(x )H(];ST‘CQ +ad?)) and return it.

Prove that the selected step-size
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First-Order Algorithms for Conic Constrained Optimization (CCO) I

Consider the conic nonlinear optimization problem: min f(x) st x € K.

e Nonnegative Linear Regression: givendata A € R " andb € R™

1
min f(x) = §HAX —b|[?st.x >0; where Vf(x) = A" (Ax —b).

e Semidefinite Linear Regression: givendata A; € S" fori = 1,...,mandb € R

min f(X) = %HAX —b|?st. X =0; where Vf(X)=A'(AX —b).

Al o X
AX = and Aly = ZyZAZ
A eX i=1

Suppose we start from a feasible solution x” or XV,

11
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Descent-First and Feasible-Second | '

o xFtl —xk lVf(xk)

o x*T1 = Projj (X*T1): Solve minyc g [|x — %FTH||2.
For examples:
o if K = {x: x>0}, then
x" 1 = Proj; (xFT1) = max{0, x*T1}.

k41 T
o If K ={X: X = 0}, then factorize X " = i1 Ajv;Vv; andlet

k41 k+1
X+—PrOjKX+ Z)\Vj
J:A; >0

(The drawback is that the total eigenvalue-factorization may be costly...)

Does the method converge? What is the convergence speed?

12
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Descent-First and Feasible-Second I '

Consider the conic nonlinear optimization problem: min f(x) st. Ax = b. thatis
K ={x: Ax = b}.

The projection method becomes, starting from a feasible solution x" and let direction

d¥ = —(I — AT (AAT) 1AV f(xF)

<Pl — xF 4 ozkdk; (4)

where the stepsize can be chosen from line-search or again simply let

and (3 is the (global) Lipschitz constant.

Does the method converge? What is the convergence speed? See more details in HW3.

13
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Descent-First and Feasible-Second lll '

e /' C R"™ whose support size is no more than d(< n): x = Proj; (X) contains the largest d

absolute entries of X and set the rest of them to zeros.

e K C R and its support size is no more than d(< n): x = Proj, (X) contains the largest no more

than d positive entries of X and set the rest of them to zeros.

e K C S™ whose rank is no more than d(< n): factorize

X =30 Avviwith [Ar] > [Aa] > ... > |\, then Projr (X) = 3¢

g=1

T

)\jvjvj .

e K C 5" whose rank is no more than d(< n): factorize
X = > i Ajviviwith Ay > Ao > ... > Ay, then Proj (X) = ijl max{0, \; }v;Vv; .

Does the method converge? What is the convergence speed? What if f() is not a convex function?

14
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Multiplicative-Update I: “Mirror” SDM for CCO I

At the kth iterate with x* > 0:
1
B

L ok

Vf(x"))

.k exp(

Note that x* ! remains positive in the updating process.

The classical Projected SDM update can be viewed as

xP Tl = argm;% ViM% + gHX —x"||2.

One can choose any strongly convex function /.(-) and define
Di(x,y) = h(x) = h(y) = Vh(y)" (x — y)
and define the update as

x" Tl = arg m>18 VI(xMTx 4+ Dy (x, x").

The update above is the result of choosing (negative) entropy function i (x) = Zj z;log(z;).

15
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The Wassestein Barycenter Problem I

3 3T— 3 3
36 63 3 s6—es

X0 | ®x

X0 | ®X,

Find distribution of ;, 72 = 1, 2, 3, 4 to minimize

min WD;(x)+ WD, (x)+ WD,(x)
s.t. 1 +x0+x3+274 =09, x; > 0,1=1,2,3,4.
The objective is a nonlinear function, but its gradient vector VW D, (x), VIV D,,,(x) and VIV D;(x)
are shadow prices of the three sub-transportation problems —popularly used in Hierarchy Optimization.

(Projects #4 on WBCQC)
16
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Multiplicative-Update II: Affine Scaling SDM for CCO I

At the kth iterate with x* > 0, let D" be a diagonal matrix such that

k k .
and

X1 = argmin V7 () x4 /(D) (- x|

or
"t = xF — a(DF)?2V F(x") = x". % (e — a, VF(xF). * x")

where variable step-sizes can be

- i 1
o = min
Bmax(xF)2’ 2||xF. x Vf(xF)||o0

.

Is x* > 0, Vk? Does it converge? What is the convergence speed? See more details in HW.

Geometric Interpretation: inscribed ball vs inscribed ellipsoid.

17
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Affine Scaling for SDP Cone? I

At the kth iterate with X* = 0. the new SDM iterate would be
XAl = XF — qp XV A(XF)XF = XF(T — a, VF(XF)XHR.

Choose step-size is chosen such that the smallest eigenvalue of X**+1 s at most a fraction from the one
of X %2

Does it converge? What is the convergence speed?

18
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First-Order Potential Reduction for Linear Least-Squares I

min ||Ax — bH2

S.t. x>0

Let us solve

Consider the potential function
Ynip(X) = (n+ p)log(| Ax = b|[*) = > "log(;).
j=1

Starting from an interior-point solution X) > 0, we apply the SDM method to minimize the potential

function.

Can use the preconditioning to improve the performance.

19
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First-Order Potential Reduction for LP | '

Recall that the joint primal-dual potential function is defined by
Vntp(X,8) = (n+ p)log(x"s) Zlog TiS;).

At the kth iteration, we compute the direction vectors (d,;, d,;, ds) using the steepest descent direction:

min  V,¢(x*,s")Td, + Vio(x*, s%)T'd,
s.t. Ad, =0
Atd, +d; =0,

where
n+p

T~

Vaep(x",sM)7T =

and
n+p

Gy~ 5

Vsp(x",s")T =

20
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First-Order Potential Reduction for LP I '

More precisely, we have

dac — _(I o AT(AAT)_lA)vx¢(Xk7 Sk)a
dy — Avs(b(xk? Sk)a
d, = —ATAV,¢(x",s").
Then, we let
xFtl =xF 4+ ad,,

k+1 k
y" =y"+ad,,
shtl =gk + ad,,
for some step-size & such that the potential value is minimized along the directions.

SDP Cone?

21



Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note #16

Alternating Primal-Dual Direction Method | I

The joint primal-dual potential function can be written as

bnip(x,8) = (n+p)log(x’s) = 377 log(z;s;)
= (n+p)log(c"x —b'y) =377 log(x;) — > 7, log(sy)
= (n+p)log(c'x —bly) - Z?:1 log(z;) — Z?:1 log(c; — a?y)

sinces = c — A’'y. Then let
o(x", y¥) = (n+ p)log(c’x — bly) — Z log(z;) — Z log(c; — a;[’y),
j=1

n-+p

ey —1
ok bTka — (X7) e,

V.o (xF, y")T =

and
n—+p

CTﬂfk _ bTyk:

V,o(xk,yh)T = b— A(S") e

22
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Alternating Primal-Dual Direction Method i I

At the kth iteration, we fix (s”, y"*) and compute an approximate minimizer as x* ! using any iterative
method starting from x”:

miny,  &(x,y")
s.t. Ax = b.

One would reduce the potential function by a fixed amount after updating from x" to x**1 while keep
(s = (v sh)

¢n+p(xk+1: S]ﬁLl) - ¢n+p(xk7 Sk) < —o.

Then we update the dual iterate (yk, Sk), and do these updates alternatively.

23
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Alternating Primal-Dual Direction Method lii I

1

When fix xk, we compute an approximate minimizer as yk‘L using any iterative method starting from yk:

. k
miny, ¢(x",y)
which is an unconstrained minimization.

Again, one would reduce the potential function by a fixed amount after updating from yk' to
yR (Pl = ¢ — ATy*T1) while keep x* 1 = x*:

¢n+p(Xk+1, Sk+1) - wn-H)(Xk: Sk) < —o.

Many iterative methods can be considered: the Steepest Descent, Conjugate Gradient, Quasi-Newton,
Stochastic Gradient, etc.

24



