# First-Order Algorithms for CLP 

Yinyu Ye<br>Department of Management Science and Engineering<br>Stanford University<br>Stanford, CA 94305, U.S.A.<br>http://www.stanford.edu/~yyye<br>(LY: Chapters 5.5, 8.2, 8.5, 12.1)

## First-Order Method/Value-Iteration for MDP/RL I

In contrast to the second-order methods such as Newton's method, the first-order methods are typically using just matrix-vector multiplications in each step (e.g., in evaluating the gradient method).

Recall the Fixed-Point Model:

$$
y_{i}=\min _{j \in \mathcal{A}_{i}}\left\{c_{j}+\gamma \mathbf{p}_{j}^{T} \mathbf{y}\right\}, \forall i
$$

and the LP formulation

$$
\begin{aligned}
\operatorname{maximize}_{\mathbf{y}} & \sum_{i=1}^{m} y_{i} \\
\text { subject to } & y_{i}-\gamma \mathbf{p}_{j}^{T} \mathbf{y} \leq c_{j}, j \in \mathcal{A}_{i}, \forall i
\end{aligned}
$$

## First-Order Method/Value-Iteration for MDP/RL II

The Value-Iteration (VI) Method: starting from any $\mathbf{y}^{0}$,

$$
y_{i}^{k+1}=\min _{j \in \mathcal{A}_{i}}\left\{c_{j}+\gamma \mathbf{p}_{j}^{T} \mathbf{y}^{k}\right\}, \forall i
$$

Contraction:

$$
\left\|\mathbf{y}^{k+1}-\mathbf{y}^{*}\right\|_{\infty} \leq \gamma\left\|\mathbf{y}^{k}-\mathbf{y}^{*}\right\|_{\infty}, \forall k
$$

where $\mathbf{y}^{*}$ is the fixed-point or optimal value vector, that is,

$$
y_{i}^{*}=\min _{j \in \mathcal{A}_{i}}\left\{c_{j}+\gamma \mathbf{p}_{j}^{T} \mathbf{y}^{*}\right\}, \forall i
$$

Monotonicity: If we start from a vector such that

$$
y_{i}^{0}<\min _{j \in \mathcal{A}_{i}}\left\{c_{j}+\gamma \mathbf{p}_{j}^{T} \mathbf{y}^{0}\right\}, \forall i
$$

( $y^{0}$ in the interior of the feasible region), then

$$
\mathbf{y}^{*} \geq \mathbf{y}^{k+1} \geq \mathbf{y}^{k}, \forall k
$$

## Dimension Reduction for MDP/RL III

Target Action Sampling: select important actions to update cost-to-go values during the VI process?
Online State-Aggregation: group states into a single "super"-state with similar cost-to-go values during the VI process?

## First-Order Method/Value-Iteration for MDP/RL IV

One can apply the barrier function to solving the MDP problem, that is, to maximize the berried objective for a fixed $\mu$ as unconstrained optimization:

$$
\max _{\mathbf{y}} \quad b_{\mu}(\mathbf{y})=\mathbf{b}^{T} \mathbf{y}+\mu \sum_{j} \log \left(c_{j}-\mathbf{a}_{j}^{T} \mathbf{y}\right)
$$

Starting an initial interior-feasible solution $\mathbf{y}^{0}$, apply the steepest-ascent algorithm to maximize the objective.

After the gradient values become "small", decrease $\mu$ by a fixed factor and start the steepest ascent again - First-Order Path-Following.

One may also directly apply the First-Order Potential-Reduction.

## First-Order Algorithm: the Steepest Descent Method (SDM)

Let $f$ be a differentiable function and assume we can compute gradient (column) vector $\nabla f$. We want to solve the unconstrained minimization problem

$$
\min _{\mathbf{x} \in R^{n}} f(\mathbf{x})
$$

In the absence of further information, we seek a first-order KKT or stationary point of $f$, that is, a point $\mathbf{x}^{*}$ at which $\nabla f\left(\mathbf{x}^{*}\right)=0$. Here we choose direction vector $\mathrm{d}^{k}=-\nabla f\left(\mathbf{x}^{k}\right)$ as the search direction at $\mathbf{x}^{k}$, which is the direction of steepest descent.

The number $\alpha^{k} \geq 0$, called step-size, is chosen "appropriately" as

$$
\alpha^{k} \in \arg \min f\left(\mathbf{x}^{k}-\alpha \nabla f\left(\mathbf{x}^{k}\right)\right)
$$

Then the new iterate is defined as $\mathbf{x}^{k+1}=\mathbf{x}^{k}-\alpha^{k} \nabla f\left(\mathbf{x}^{k}\right)$.
In some implementations, step-size $\alpha^{k}$ is fixed through out the process - independent of iteration count $k$

## Step-Size of the SDM for Minimizing Lipschitz Functions

Let $f(\mathbf{x})$ be differentiable every where and satisfy the (first-order) $\beta$-Lipschitz condition, that is, for any two points x and y

$$
\begin{equation*}
\|\nabla f(\mathbf{x})-\nabla f(\mathbf{y})\| \leq \beta\|\mathbf{x}-\mathbf{y}\| \tag{1}
\end{equation*}
$$

for a positive real constant $\beta$. Then, we have
Lemma 1 Let $f$ be a $\beta$-Lipschitz function. Then for any two points $\mathbf{x}$ and $\mathbf{y}$

$$
\begin{equation*}
f(\mathbf{x})-f(\mathbf{y})-\nabla f(\mathbf{y})^{T}(\mathbf{x}-\mathbf{y}) \leq \frac{\beta}{2}\|\mathbf{x}-\mathbf{y}\|^{2} \tag{2}
\end{equation*}
$$

At the $k$ th step of SDM, we have

$$
f(\mathbf{x})-f\left(\mathbf{x}^{k}\right) \leq \nabla f\left(\mathbf{x}^{k}\right)^{T}\left(\mathbf{x}-\mathbf{x}^{k}\right)+\frac{\beta}{2}\left\|\mathbf{x}-\mathbf{x}^{k}\right\|^{2}
$$

The left hand strict convex quadratic function of x establishes a upper bound on the objective reduction.

Let us minimize the quadratic function

$$
\mathbf{x}^{k+1}=\arg \min _{\mathbf{x}} \nabla f\left(\mathbf{x}^{k}\right)^{T}\left(\mathbf{x}-\mathbf{x}^{k}\right)+\frac{\beta}{2}\left\|\mathbf{x}-\mathbf{x}^{k}\right\|^{2}
$$

and let the minimizer be the next iterate. Then it has a close form:

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\frac{1}{\beta} \nabla f\left(\mathbf{x}^{k}\right)
$$

which is the SDM with the fixed step-size $\frac{1}{\beta}$. Then

$$
f\left(\mathbf{x}^{k+1}\right)-f\left(\mathbf{x}^{k}\right) \leq-\frac{1}{2 \beta}\left\|\nabla f\left(\mathbf{x}^{k}\right)\right\|^{2}, \quad \text { or } \quad f\left(\mathbf{x}^{k}\right)-f\left(\mathbf{x}^{k+1}\right) \geq \frac{1}{2 \beta}\left\|\nabla f\left(\mathbf{x}^{k}\right)\right\|^{2}
$$

Then, after $K(\geq 1)$ steps, we must have

$$
\begin{equation*}
f\left(\mathbf{x}^{0}\right)-f\left(\mathbf{x}^{K}\right) \geq \frac{1}{2 \beta} \sum_{k=0}^{K-1}\left\|\nabla f\left(\mathbf{x}^{k}\right)\right\|^{2} \tag{3}
\end{equation*}
$$

Theorem 1 (Error Convergence Estimate Theorem) Let the objective function $p^{*}=\inf f(\mathbf{x})$ be finite and let us stop the SDM as soon as $\left\|\nabla f\left(\mathbf{x}^{k}\right)\right\| \leq \epsilon$ for a given tolerance $\epsilon \in(01)$. Then the SDM
terminates in $\frac{2 \beta\left(f\left(\mathbf{x}^{0}\right)-p^{*}\right)}{\epsilon^{2}}$ steps.
Proof: From (3), after $K=\frac{2 \beta\left(f\left(\mathbf{x}^{0}\right)-p^{*}\right)}{\epsilon^{2}}$ steps

$$
f\left(\mathbf{x}^{0}\right)-p^{*} \geq f\left(\mathbf{x}^{0}\right)-f\left(\mathbf{x}^{K}\right) \geq \frac{1}{2 \beta} \sum_{k=0}^{K-1}\left\|\nabla f\left(\mathbf{x}^{k}\right)\right\|^{2}
$$

If $\left\|\nabla f\left(\mathbf{x}^{k}\right)\right\|>\epsilon$ for all $k=0, \ldots, K-1$, then we have

$$
f\left(\mathbf{x}^{0}\right)-p^{*}>\frac{K}{2 \beta} \epsilon^{2} \geq f\left(\mathbf{x}^{0}\right)-p^{*}
$$

which is a contradiction.
Corollary 1 If a minimizer $\mathbf{x}^{*}$ of $f$ is attainable, then the SDM terminates in $\frac{\beta^{2}\left\|\mathbf{x}^{0}-\mathbf{x}^{*}\right\|^{2}}{\epsilon^{2}}$ steps.
The proof is based on Lemma 1 with $\mathbf{x}=\mathbf{x}^{0}$ and $\mathbf{y}=\mathbf{x}^{*}$ and noting $\nabla f(\mathbf{y})=\nabla f\left(\mathbf{x}^{*}\right)=0$ :

$$
f\left(\mathbf{x}^{0}\right)-p^{*}=f\left(\mathbf{x}^{0}\right)-f\left(\mathbf{x}^{*}\right) \leq \frac{\beta}{2}\left\|\mathbf{x}^{0}-\mathbf{x}^{*}\right\|^{2}
$$

## Forward and Backward Tracking Step-Size Method

In most real applications, the Lipschitz constant $\beta$ is unknown. Furthermore, we like to use a smaller and localized Lipschitz constant $\beta^{k}$, assuming it is bounded away from 0 , at iteration $k$ such that the inequality

$$
f\left(\mathbf{x}^{k}+\alpha \mathbf{d}^{k}\right)-f\left(\mathbf{x}^{k}\right)-\nabla f\left(\mathbf{x}^{k}\right)^{T}\left(\alpha \mathbf{d}^{k}\right) \leq \frac{\beta^{k}}{2}\left\|\alpha \mathbf{d}^{k}\right\|^{2}
$$

holds, where $\mathrm{d}^{k}=-\nabla f\left(\mathbf{x}^{k}\right)$, to decide the step-size $\alpha=\frac{1}{\beta^{k}}$.
Consider the following step-size strategy: stat at a good step-size guess $\alpha>0$ :
(1): If $\alpha \leq \frac{2\left(f\left(\mathbf{x}^{k}\right)-f\left(\mathbf{x}^{k}+\alpha \mathbf{d}^{k}\right)\right)}{\left\|\mathbf{d}^{k}\right\|^{2}}$ then doubling the step-size: $\alpha \leftarrow 2 \alpha$, stop as soon as the inequality is reversed and select the latest $\alpha$ with $\alpha \leq \frac{2\left(f\left(\mathbf{x}^{k}\right)-f\left(\mathbf{x}^{k}+\alpha \mathbf{d}^{k}\right)\right)}{\left\|\mathbf{d}^{k}\right\|^{2}}$;
(2): Otherwise halving the step-size: $\alpha \leftarrow \alpha / 2$; stop as soon as $\alpha \leq \frac{2\left(f\left(\mathbf{x}^{k}\right)-f\left(\mathbf{x}^{k}+\alpha \mathbf{d}^{k}\right)\right)}{\left\|\mathbf{d}^{k}\right\|^{2}}$ and return it.

Prove that the selected step-size

$$
\alpha \geq \frac{1}{2 \beta^{k}}
$$

## First-Order Algorithms for Conic Constrained Optimization (CCO)

Consider the conic nonlinear optimization problem: $\min f(\mathbf{x})$ s.t. $\quad \mathbf{x} \in K$.

- Nonnegative Linear Regression: given data $A \in R^{m \times n}$ and $\mathbf{b} \in R^{m}$

$$
\min f(\mathbf{x})=\frac{1}{2}\|A \mathbf{x}-\mathbf{b}\|^{2} \text { s.t. } \mathbf{x} \geq \mathbf{0} ; \quad \text { where } \nabla f(\mathbf{x})=A^{T}(A \mathbf{x}-\mathbf{b})
$$

- Semidefinite Linear Regression: given data $A_{i} \in S^{n}$ for $i=1, \ldots, m$ and $\mathbf{b} \in R^{m}$

$$
\begin{gathered}
\min f(X)=\frac{1}{2}\|\mathcal{A} X-\mathbf{b}\|^{2} \text { s.t. } X \succeq \mathbf{0} ; \quad \text { where } \nabla f(X)=\mathcal{A}^{T}(\mathcal{A} X-\mathbf{b}) \\
\\
\mathcal{A} X=\left(\begin{array}{c}
A_{1} \bullet X \\
\ldots \\
A_{m} \bullet X
\end{array}\right) \quad \text { and } \mathcal{A}^{T} \mathbf{y}=\sum_{i=1} y_{i} A_{i}
\end{gathered}
$$

Suppose we start from a feasible solution $\mathrm{x}^{0}$ or $X^{0}$.

## Descent-First and Feasible-Second I

- $\hat{\mathbf{x}}^{k+1}=\mathbf{x}^{k}-\frac{1}{\beta} \nabla f\left(\mathbf{x}^{k}\right)$
- $\mathbf{x}^{k+1}=\operatorname{Proj}_{K}\left(\hat{\mathbf{x}}^{k+1}\right):$ Solve $\min _{\mathbf{x} \in K}\left\|\mathbf{x}-\hat{\mathbf{x}}^{k+1}\right\|^{2}$.

For examples:

- if $K=\{\mathbf{x}: \mathbf{x} \geq 0\}$, then

$$
\mathbf{x}^{k+1}=\operatorname{Proj}_{K}\left(\hat{\mathbf{x}}^{k+1}\right)=\max \left\{\mathbf{0}, \hat{\mathbf{x}}^{k+1}\right\}
$$

- If $K=\{X: X \succeq \mathbf{0}\}$, then factorize $\hat{X}^{k+1}=\sum_{j=1}^{n} \lambda_{j} \mathbf{v}_{j} \mathbf{v}_{j}^{T}$ and let

$$
X^{k+1}=\operatorname{Proj}_{K}\left(\hat{X}^{k+1}\right)=\sum_{j: \lambda_{j}>0} \lambda_{j} \mathbf{v}_{j} \mathbf{v}_{j}^{T}
$$

(The drawback is that the total eigenvalue-factorization may be costly...)
Does the method converge? What is the convergence speed?

## Descent-First and Feasible-Second II

Consider the conic nonlinear optimization problem: $\min f(\mathbf{x})$ s.t. $A \mathbf{x}=\mathbf{b}$. that is $K=\{\mathbf{x}: A \mathbf{x}=\mathbf{b}\}$.

The projection method becomes, starting from a feasible solution $\mathrm{x}^{0}$ and let direction

$$
\begin{gather*}
\mathbf{d}^{k}=-\left(I-A^{T}\left(A A^{T}\right)^{-1} A\right) \nabla f\left(\mathbf{x}^{k}\right) \\
\mathbf{x}^{k+1}=\mathbf{x}^{k}+\alpha^{k} \mathbf{d}^{k} ; \tag{4}
\end{gather*}
$$

where the stepsize can be chosen from line-search or again simply let

$$
\alpha^{k}=\frac{1}{\beta}
$$

and $\beta$ is the (global) Lipschitz constant.
Does the method converge? What is the convergence speed? See more details in HW3.

## Descent-First and Feasible-Second III

- $K \subset R^{n}$ whose support size is no more than $d(<n): \mathbf{x}=\operatorname{Proj}_{K}(\hat{\mathbf{x}})$ contains the largest $d$ absolute entries of $\hat{\mathbf{x}}$ and set the rest of them to zeros.
- $K \subset R_{+}^{n}$ and its support size is no more than $d(<n): \mathbf{x}=\operatorname{Proj}_{K}(\hat{\mathbf{x}})$ contains the largest no more than $d$ positive entries of $\hat{\mathbf{x}}$ and set the rest of them to zeros.
- $K \subset S^{n}$ whose rank is no more than $d(<n)$ : factorize
$\hat{X}=\sum_{j=1}^{n} \lambda_{j} \mathbf{v}_{j} \mathbf{v}_{j}^{T}$ with $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \ldots \geq\left|\lambda_{n}\right|$ then $\operatorname{Proj}_{K}(\hat{X})=\sum_{j=1}^{d} \lambda_{j} \mathbf{v}_{j} \mathbf{v}_{j}^{T}$.
- $K \subset S_{+}^{n}$ whose rank is no more than $d(<n)$ : factorize
$\hat{X}=\sum_{j=1}^{n} \lambda_{j} \mathbf{v}_{j} \mathbf{v}_{j}^{T}$ with $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$ then $\operatorname{Proj}_{K}(\hat{X})=\sum_{j=1}^{d} \max \left\{0, \lambda_{j}\right\} \mathbf{v}_{j} \mathbf{v}_{j}^{T}$.
Does the method converge? What is the convergence speed? What if $f(\cdot)$ is not a convex function?


## Multiplicative-Update I: "Mirror" SDM for CCO

At the $k$ th iterate with $\mathrm{x}^{k}>0$ :

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k} . * \exp \left(-\frac{1}{\beta} \nabla f\left(\mathbf{x}^{k}\right)\right)
$$

Note that $\mathrm{x}^{k+1}$ remains positive in the updating process.
The classical Projected SDM update can be viewed as

$$
\mathbf{x}^{k+1}=\underset{\mathbf{x} \geq \mathbf{0}}{\arg \min } \nabla f\left(\mathbf{x}^{k}\right)^{T} \mathbf{x}+\frac{\beta}{2}\left\|\mathbf{x}-\mathbf{x}^{k}\right\|^{2}
$$

One can choose any strongly convex function $h(\cdot)$ and define

$$
\mathcal{D}_{h}(\mathbf{x}, \mathbf{y})=h(\mathbf{x})-h(\mathbf{y})-\nabla h(\mathbf{y})^{T}(\mathbf{x}-\mathbf{y})
$$

and define the update as

$$
\mathbf{x}^{k+1}=\arg \min _{\mathbf{x} \geq \mathbf{0}} \nabla f\left(\mathbf{x}^{k}\right)^{T} \mathbf{x}+\beta \mathcal{D}_{h}\left(\mathbf{x}, \mathbf{x}^{k}\right)
$$

The update above is the result of choosing (negative) entropy function $h(\mathbf{x})=\sum_{j} x_{j} \log \left(x_{j}\right)$.

## The Wassestein Barycenter Problem



Find distribution of $x_{i}, i=1,2,3,4$ to minimize

$$
\begin{array}{rc}
\min & W D_{l}(\mathbf{x})+W D_{m}(\mathbf{x})+W D_{r}(\mathbf{x}) \\
\mathrm{s.t.} & x_{1}+x_{2}+x_{3}+x_{4}=9, \quad x_{i} \geq 0, i=1,2,3,4
\end{array}
$$

The objective is a nonlinear function, but its gradient vector $\nabla W D_{l}(\mathbf{x}), \nabla W D_{m}(\mathbf{x})$ and $\nabla W D_{l}(\mathbf{x})$ are shadow prices of the three sub-transportation problems -popularly used in Hierarchy Optimization. (Projects \#4 on WBC)

## Multiplicative-Update II: Affine Scaling SDM for CCO

At the $k$ th iterate with $\mathrm{x}^{k}>\mathbf{0}$, let $D^{k}$ be a diagonal matrix such that

$$
D_{j j}^{k}=x_{j}^{k}, \forall j
$$

and

$$
\mathbf{x}^{k+1}=\arg \min _{\mathbf{x} \geq \mathbf{0}} \nabla f\left(\mathbf{x}^{k}\right)^{T} \mathbf{x}+\frac{\beta}{2}\left\|\left(D^{k}\right)^{-1}\left(\mathbf{x}-\mathbf{x}^{k}\right)\right\|^{2},
$$

or

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\alpha_{k}\left(D^{k}\right)^{2} \nabla f\left(\mathbf{x}^{k}\right)=\mathbf{x}^{k} \cdot *\left(\mathbf{e}-\alpha_{k} \nabla f\left(\mathbf{x}^{k}\right) \cdot * \mathbf{x}^{k}\right)
$$

where variable step-sizes can be

$$
\alpha^{k}=\min \left\{\frac{1}{\beta \max \left(\mathbf{x}^{k}\right)^{2}}, \frac{1}{2\left\|\mathbf{x}^{k} \cdot * \nabla f\left(\mathbf{x}^{k}\right)\right\|_{\infty}}\right\}
$$

Is $\mathbf{x}^{k}>0, \forall k$ ? Does it converge? What is the convergence speed? See more details in HW. Geometric Interpretation: inscribed ball vs inscribed ellipsoid.

## Affine Scaling for SDP Cone?

At the $k$ th iterate with $X^{k} \succ 0$. the new SDM iterate would be

$$
X^{k+1}=X^{k}-\alpha_{k} X^{k} \nabla f\left(X^{k}\right) X^{k}=X^{k}\left(I-\alpha_{k} \nabla f\left(X^{k}\right) X^{k}\right)
$$

Choose step-size is chosen such that the smallest eigenvalue of $X^{k+1}$ is at most a fraction from the one of $X^{k}$ ?

Does it converge? What is the convergence speed?

## First-Order Potential Reduction for Linear Least-Squares

Let us solve

$$
\begin{array}{cc}
\min & \|A \mathbf{x}-\mathbf{b}\|^{2} \\
\text { s.t. } & \mathbf{x} \geq \mathbf{0}
\end{array}
$$

Consider the potential function

$$
\psi_{n+\rho}(\mathbf{x}):=(n+\rho) \log \left(\|A \mathbf{x}-\mathbf{b}\|^{2}\right)-\sum_{j=1}^{n} \log \left(x_{j}\right)
$$

Starting from an interior-point solution $\mathbf{x})>0$, we apply the SDM method to minimize the potential function.

Can use the preconditioning to improve the performance.

## First-Order Potential Reduction for LP I

Recall that the joint primal-dual potential function is defined by

$$
\psi_{n+\rho}(\mathbf{x}, \mathbf{s}):=(n+\rho) \log \left(\mathbf{x}^{T} \mathbf{s}\right)-\sum_{j=1}^{n} \log \left(x_{j} s_{j}\right)
$$

At the $k$ th iteration, we compute the direction vectors $\left(\mathbf{d}_{x}, \mathbf{d}_{y}, \mathbf{d}_{s}\right)$ using the steepest descent direction:

$$
\begin{array}{ccc}
\min & \nabla_{x} \phi\left(\mathbf{x}^{k}, \mathbf{s}^{k}\right)^{T} \mathbf{d}_{x}+\nabla_{s} \phi\left(\mathbf{x}^{k}, \mathbf{s}^{k}\right)^{T} \mathbf{d}_{s} & \\
\text { s.t. } & A \mathbf{d}_{x} & =\mathbf{0} \\
& A^{T} \mathbf{d}_{y}+\mathbf{d}_{s} & =\mathbf{0}
\end{array}
$$

where

$$
\nabla_{x} \phi\left(\mathbf{x}^{k}, \mathbf{s}^{k}\right)^{T}=\frac{n+\rho}{\left(\mathbf{x}^{k}\right)^{T} \mathbf{s}^{k}} \mathbf{s}^{k}-\left(X^{k}\right)^{-1} \mathbf{e}
$$

and

$$
\nabla_{s} \phi\left(\mathbf{x}^{k}, \mathbf{s}^{k}\right)^{T}=\frac{n+\rho}{\left(\mathbf{x}^{k}\right)^{T} \mathbf{s}^{k}} \mathbf{x}^{k}-\left(S^{k}\right)^{-1} \mathbf{e}
$$

## First-Order Potential Reduction for LP II

More precisely, we have

$$
\begin{aligned}
\mathbf{d}_{x} & =-\left(I-A^{T}\left(A A^{T}\right)^{-1} A\right) \nabla_{x} \phi\left(\mathbf{x}^{k}, \mathbf{s}^{k}\right) \\
\mathbf{d}_{y} & =A \nabla_{s} \phi\left(\mathbf{x}^{k}, \mathbf{s}^{k}\right) \\
\mathbf{d}_{s} & =-A^{T} A \nabla_{s} \phi\left(\mathbf{x}^{k}, \mathbf{s}^{k}\right)
\end{aligned}
$$

Then, we let

$$
\begin{aligned}
\mathbf{x}^{k+1} & =\mathbf{x}^{k}+\alpha \mathbf{d}_{x} \\
\mathbf{y}^{k+1} & =\mathbf{y}^{k}+\alpha \mathbf{d}_{y} \\
\mathbf{s}^{k+1} & =\mathbf{s}^{k}+\alpha \mathbf{d}_{s}
\end{aligned}
$$

for some step-size $\alpha$ such that the potential value is minimized along the directions. SDP Cone?

## Alternating Primal-Dual Direction Method I

The joint primal-dual potential function can be written as

$$
\begin{aligned}
\psi_{n+\rho}(\mathbf{x}, \mathbf{s}) & =(n+\rho) \log \left(\mathbf{x}^{T} \mathbf{s}\right)-\sum_{j=1}^{n} \log \left(x_{j} s_{j}\right) \\
& =(n+\rho) \log \left(\mathbf{c}^{T} \mathbf{x}-\mathbf{b}^{T} \mathbf{y}\right)-\sum_{j=1}^{n} \log \left(x_{j}\right)-\sum_{j=1}^{n} \log \left(s_{j}\right) \\
& =(n+\rho) \log \left(\mathbf{c}^{T} \mathbf{x}-\mathbf{b}^{T} \mathbf{y}\right)-\sum_{j=1}^{n} \log \left(x_{j}\right)-\sum_{j=1}^{n} \log \left(c_{j}-\mathbf{a}_{j}^{T} \mathbf{y}\right)
\end{aligned}
$$

since $\mathbf{s}=\mathbf{c}-A^{T} \mathbf{y}$. Then let

$$
\begin{gathered}
\phi\left(\mathbf{x}^{k}, \mathbf{y}^{k}\right)=(n+\rho) \log \left(\mathbf{c}^{T} \mathbf{x}-\mathbf{b}^{T} \mathbf{y}\right)-\sum_{j=1}^{n} \log \left(x_{j}\right)-\sum_{j=1}^{n} \log \left(c_{j}-\mathbf{a}_{j}^{T} \mathbf{y}\right) \\
\nabla_{x} \phi\left(\mathbf{x}^{k}, \mathbf{y}^{k}\right)^{T}=\frac{n+\rho}{\mathbf{c}^{T} x^{k}-\mathbf{b}^{T} \mathbf{y}^{k}} \mathbf{c}-\left(X^{k}\right)^{-1} \mathbf{e}
\end{gathered}
$$

and

$$
\nabla_{y} \phi\left(\mathbf{x}^{k}, \mathbf{y}^{k}\right)^{T}=-\frac{n+\rho}{\mathbf{c}^{T} x^{k}-\mathbf{b}^{T} \mathbf{y}^{k}} \mathbf{b}-A\left(S^{k}\right)^{-1} \mathbf{e}
$$

## Alternating Primal-Dual Direction Method II

At the $k$ th iteration, we fix $\left(\mathrm{s}^{k}, \mathbf{y}^{k}\right)$ and compute an approximate minimizer as $\mathrm{x}^{k+1}$ using any iterative method starting from $\mathrm{x}^{k}$ :

$$
\begin{array}{rc}
\min _{\mathbf{x}} & \phi\left(\mathbf{x}, \mathbf{y}^{k}\right) \\
\text { s.t. } & A \mathbf{x}=\mathbf{b} .
\end{array}
$$

One would reduce the potential function by a fixed amount after updating from $\mathrm{x}^{k}$ to $\mathrm{x}^{k+1}$ while keep $\left(\mathbf{y}^{k+1}, \mathrm{~s}^{k+1}\right)=\left(\mathbf{y}^{k}, \mathrm{~s}^{k}\right):$

$$
\psi_{n+\rho}\left(\mathrm{x}^{k+1}, \mathrm{~s}^{k+1}\right)-\psi_{n+\rho}\left(\mathrm{x}^{k}, \mathrm{~s}^{k}\right) \leq-\delta
$$

Then we update the dual iterate $\left(\mathrm{y}^{k}, \mathrm{~s}^{k}\right)$, and do these updates alternatively.

## Alternating Primal-Dual Direction Method III

When fix $\mathbf{x}^{k}$, we compute an approximate minimizer as $\mathbf{y}^{k+1}$ using any iterative method starting from $\mathbf{y}^{k}$ :

$$
\min _{\mathbf{y}} \phi\left(\mathbf{x}^{k}, \mathbf{y}\right)
$$

which is an unconstrained minimization.
Again, one would reduce the potential function by a fixed amount after updating from $\mathbf{y}^{k}$ to $\mathbf{y}^{k+1}\left(\mathbf{s}^{k+1}=\mathbf{c}-A^{T} \mathbf{y}^{k+1}\right)$ while keep $\mathrm{x}^{k+1}=\mathrm{x}^{k}$ :

$$
\psi_{n+\rho}\left(\mathrm{x}^{k+1}, \mathrm{~s}^{k+1}\right)-\psi_{n+\rho}\left(\mathrm{x}^{k}, \mathrm{~s}^{k}\right) \leq-\delta
$$

Many iterative methods can be considered: the Steepest Descent, Conjugate Gradient, Quasi-Newton, Stochastic Gradient, etc.

