Conic Linear Programming Algorithms

Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A.

http://www.stanford.edu/~yyye

Chapter 6.6

Recall Conic LP

(CLP) minimize $\mathbf{c} \bullet \mathbf{x}$ subject to $\mathbf{a}_i \bullet \mathbf{x} = b_i, i = 1, 2, ..., m, \ \mathbf{x} \in K,$

where K is a convex cone.

Linear Programming (LP): $\mathbf{c}, \mathbf{a}_i, \mathbf{x} \in \mathcal{R}^n$ and $K = \mathcal{R}^n_+$

Second-Order Cone Programming (SOCP): $\mathbf{c}, \mathbf{a}_i, \mathbf{x} \in \mathcal{R}^n$ and K = SOC

Semidefinite Programming (SDP): $\mathbf{c}, \mathbf{a}_i, \mathbf{x} \in \mathcal{S}^n$ and $K = \mathcal{M}^n_+$

Note that cone K can be a product of many (different) convex cones.

Dual of Conic LP

The dual problem to

(*CLP*) minimize $\mathbf{c} \bullet \mathbf{x}$ subject to $\mathbf{a}_i \bullet \mathbf{x} = b_i, i = 1, 2, ..., m, \mathbf{x} \in K$.

is

$$\begin{array}{ll} (CLD) & \text{maximize} & \mathbf{b}^T \mathbf{y} \\ & \text{subject to} & \sum_i^m y_i \mathbf{a}_i + \mathbf{s} = \mathbf{c}, \ \mathbf{s} \in K^*, \end{array}$$

where $y \in \mathbb{R}^m$ are the dual variables, s is called the dual slack vector/matrix, and K^* is the dual cone of K.

Theorem 1 (Weak duality theorem)

$$\mathbf{c} \bullet \mathbf{x} - \mathbf{b}^T \mathbf{y} = \mathbf{x} \bullet \mathbf{s} \ge 0$$

for any feasible ${\bf x}$ of (CLP) and $({\bf y},{\bf s})$ of (CLD).

Self-Dual Cones Again

Frequently, $K^* = K$, that is, they are self-dual.

The dual of the *n*-dimensional non-negative orthant, $\mathcal{R}^n_+ = \{\mathbf{x} \in \mathcal{R}^n : \mathbf{x} \ge \mathbf{0}\}$, is \mathcal{R}^n_+ ; it is self-dual.

The dual of the positive semi-definite symmetric matrix cone in S^n , S^n_+ , is S^n_+ ; it is self-dual.

The dual of the second-order cone, $\{\mathbf{x} \in \mathcal{R}^n : x_1 \ge ||\mathbf{x}_{-1}||\}$, is also the second-order cone; it is self-dual.

Dual:

maximize
$$y$$

subject to $\begin{pmatrix} 2\\1\\1 \end{pmatrix} - y \cdot \begin{pmatrix} 1\\1\\1 \end{pmatrix} = \mathbf{s} \in SOC.$

SDP Examplesminimize $\begin{pmatrix} 2 & .5 \\ .5 & 1 \end{pmatrix} \bullet X$ subject to $\begin{pmatrix} 1 & .5 \\ .5 & 1 \end{pmatrix} \bullet X = 1, X \succeq \mathbf{0}.$

Dual:

maximize
$$y$$

subject to $\begin{pmatrix} 2 & .5 \\ .5 & 1 \end{pmatrix} - y \cdot \begin{pmatrix} 1 & .5 \\ .5 & 1 \end{pmatrix} = S \succeq \mathbf{0},$

Conic Linear Programming in Compact Form

 $(CLP) \quad \text{minimize} \quad \mathbf{c} \bullet \mathbf{x}$ subject to $\mathcal{A}\mathbf{x} = \mathbf{b},$ $\mathbf{x} \in K.$

$$\begin{array}{ll} (CLD) & \text{maximize} & \mathbf{b}^T \mathbf{y} \\ & \text{subject to} & \mathcal{A}^T \mathbf{y} + \mathbf{s} = \mathbf{c}, \\ & \mathbf{s} \in K^*. \end{array}$$

Denote by \mathcal{F}_p and \mathcal{F}_d the primal and dual feasible sets, respectively.

Or

Optimality Conditions for CLP

$$\mathbf{c} \bullet \mathbf{x} - \mathbf{b}^T \mathbf{y} = 0$$
$$\mathcal{A} \mathbf{x} = \mathbf{b}$$
$$-\mathcal{A}^T \mathbf{y} - \mathbf{s} = -\mathbf{c}$$
$$\mathbf{x} \in K, \ \mathbf{s} \in K^* \qquad .$$

,

(1)

(2)

 $\mathbf{x} \bullet \mathbf{s} = 0$ $\mathcal{A}\mathbf{x} = \mathbf{b}$ $-\mathcal{A}^T \mathbf{y} - \mathbf{s} = -\mathbf{c}$ $\mathbf{x} \in K, \ \mathbf{s} \in K^* \qquad .$

Barrier Functions for Convex Cones

A differentiable function $B(\mathbf{x})$ is called barrier function for a closed convex cone K if for the sequence $\{\mathbf{x}^k \in \text{int } K\}, k = 1, \ldots,$

$$\mathbf{x}^k \to \partial K \quad \Rightarrow \quad B(\mathbf{x}^k) \to \infty,$$

where ∂K represents the boundary of K. $\mathbf{x} \bullet (-\nabla B(\mathbf{x}))$ is called the barrier-coefficient of $B(\mathbf{x})$, denoted by ν ; and a point in $\operatorname{int} K$ is called the central point if it is a fixed point of

 $\mathbf{x} = -\nabla B(\mathbf{x}),$

denoted by e^c .

Logarithmic Barrier Functions

•
$$\mathcal{R}^n_+$$
:

$$B(\mathbf{x}) = -\sum_{j=1}^n \ln(x_j), \ \nabla B(\mathbf{x}) = -\Delta(\mathbf{x})^{-1} \mathbf{e}, \ \nabla^2 B(\mathbf{x}) = \Delta(\mathbf{x})^{-2} \in \mathcal{S}^n.$$

The central point is \mathbf{e} , the vector of all ones, and the barrier-coefficient is $\mathbf{x} \bullet (-\nabla B(\mathbf{x})) = \mathbf{x} \bullet \Delta(\mathbf{x})^{-1} \mathbf{e} = n.$

• \mathcal{S}^n_+ :

$$B(X) = -\ln \det(X), \ \nabla B(X) = -X^{-1},$$

$$\nabla^2 B(X) = \{ \partial^2 B(X) / \partial X_{ij} \partial X_{kl} = X_{ik}^{-1} X^{-1} jl \} = X^{-1} \otimes X^{-1} \in \mathcal{S}^{n^2},$$

where \otimes stands for matrix Kronecker product. The central point is I, the identity matrix, and the barrier-coefficient is $X \bullet (-\nabla B(X)) = X \bullet X^{-1} = n$.

• \mathcal{N}_2^n :

$$B(\mathbf{x}) = -\frac{1}{2}\ln(x_1^2 - \|\mathbf{x}_{-1}\|^2), \quad \nabla B(\mathbf{x}) = \frac{1}{\delta(\mathbf{x})^2} \begin{pmatrix} -x_1 \\ \mathbf{x}_{-1} \end{pmatrix},$$
$$\nabla^2 B(\mathbf{x}) = \frac{1}{\delta(\mathbf{x})^2} \begin{pmatrix} -1 & 0 \\ 0 & I \end{pmatrix} + \frac{2}{\delta(\mathbf{x})^4} \begin{pmatrix} x_1 \\ -\mathbf{x}_{-1} \end{pmatrix} \begin{pmatrix} x_1 \\ -\mathbf{x}_{-1} \end{pmatrix}^T,$$

where $\delta(\mathbf{x}) = \sqrt{x_1^2 - \|\mathbf{x}_{-1}\|^2}$. The central point is \mathbf{e}_1 , the unit vector with 1 as its first element and zero everywhere else, and the barrier-coefficient is

$$\mathbf{x} \bullet (-\nabla B(\mathbf{x})) = \mathbf{x} \bullet \frac{-1}{\delta(\mathbf{x})^2} \begin{pmatrix} -x_1 \\ \mathbf{x}_{-1} \end{pmatrix} = 1.$$

• The mixed cone $K = K_1 \oplus K_2$, that is, $\mathbf{x} = [\mathbf{x}_1; \mathbf{x}_2]$ where $\mathbf{x}_1 \in K_1$ and $X_2 \in K_2$:

 $B(\mathbf{x}) = B_1(\mathbf{x}_1) + B_2(\mathbf{x}_2)$

where $B_1(\cdot)$ and $B_2(\cdot)$ are barrier functions for K_1 and K_2 , respectively. The barrier-coefficient is the sum of the barrier-coefficients of the two cones.

The Central Path

Consider (CLP) with the μ -weighted barrier function added in the objective:

(CLPB) minimize
$$\mathbf{c} \bullet \mathbf{x} + \mu B(\mathbf{x})$$

s.t. $\mathcal{A}\mathbf{x} = \mathbf{b},$
 $\mathbf{x} \in K;$

or (CLD) with the μ -weighted barrier function added in the objective:

(CLDB) maximize
$$\mathbf{b}^T \mathbf{y} - \mu B(\mathbf{s})$$

s.t. $\mathcal{A}^T \mathbf{y} + \mathbf{s} = \mathbf{c},$
 $\mathbf{s} \in K^*.$

Theorem 2 Let both (CLP) and (CLD) have interior feasible solutions. Then, for any given $0 < \mu < \infty$, the optimizers of (CLPB) and (CLDB) exist and they are unique and in the interior of cone K and K^* , respectively. As μ continuously varies toward zero, they form a path (called the central path) converging to an interior point in the optimal face.

The Central Path Equations

For any given $\mu > 0$, the optimizers of (CLPB) have necessary and sufficient conditions:

$$\mathbf{c} + \mu \nabla B(\mathbf{x}) - \mathcal{A}^T \mathbf{y} = \mathbf{0}$$
$$\mathcal{A}\mathbf{x} = \mathbf{b}$$

Let $\mathbf{s} = \mathbf{c} - \mathcal{A}^T \mathbf{y}$. Then the conditions become

$$\mathbf{s} + \mu \nabla B(\mathbf{x}) = \mathbf{0}$$
$$\mathcal{A}\mathbf{x} = \mathbf{b}$$
$$-\mathcal{A}^T \mathbf{y} - \mathbf{s} = -\mathbf{c}.$$

(3)

One can verify that $\mathbf{s} = -\mu \nabla B(\mathbf{x}) \in \operatorname{int} K^*$.

Similarly, the optimizers of (CLDB) have necessary and sufficient conditions:

 $\mathbf{x} + \mu \nabla B(\mathbf{s}) = \mathbf{0}$ $\mathcal{A}\mathbf{x} = \mathbf{b}$ $-\mathcal{A}^T \mathbf{y} - \mathbf{s} = -\mathbf{c}.$

(4)

One can verify that $\mathbf{x} = -\mu \nabla B(\mathbf{s}) \in \operatorname{int} K$.

Symmetric Central Path Equations for Self-dual Cones

Linear Programming:

$$\mathbf{x} \cdot \mathbf{s} = \mu \mathbf{e}$$

 $A\mathbf{x} = \mathbf{b}$ where $\mu = \frac{\mathbf{x}^T \mathbf{s}}{n}$.
 $-A^T \mathbf{y} - \mathbf{s} = -\mathbf{c}$

Second-Order Cone Programming:

$$\mathbf{x} \cdot \mathbf{s} = \mu \mathbf{e}_1$$

 $A\mathbf{x} = \mathbf{b}$ where $\mu = \mathbf{x}^T \mathbf{s}$.
 $-A^T \mathbf{y} - \mathbf{s} = -\mathbf{c}$

Semidefinite Programming:

$$XS = \mu I$$

$$\mathcal{A}X = \mathbf{b} \quad \text{where } \mu = \frac{X \bullet S}{n}.$$

$$-\mathcal{A}^T \mathbf{y} - S = -C$$

Central Path Properties for LP

Theorem 3 Let $(\mathbf{x}(\mu), \mathbf{y}(\mu), \mathbf{s}(\mu))$ be on the central path of an linear program in standard form. i) The central path point $(\mathbf{x}(\mu), \mathbf{s}(\mu))$ is bounded for $0 < \mu \le \mu^0$ and any given $0 < \mu^0 < \infty$. ii) For $0 < \mu' < \mu$,

$$\mathbf{c}^T \mathbf{x}(\mu') < \mathbf{c}^T \mathbf{x}(\mu)$$
 and $\mathbf{b}^T \mathbf{y}(\mu') > \mathbf{b}^T \mathbf{y}(\mu)$

if both primal and dual have nontrivial optimal solutions.

iii) $(\mathbf{x}(\mu), \mathbf{s}(\mu))$ converges to an optimal solution pair for (LP) and (LD). Moreover, the limit point $\mathbf{x}(0)_{P^*} > \mathbf{0}$ and the limit point $\mathbf{s}(0)_{Z^*} > \mathbf{0}$, where (P^*, Z^*) is the strictly complementarity partition of the index set $\{1, 2, ..., n\}$.

Central Path Properties for SDP

Theorem 4 Let $(X(\mu), \mathbf{y}(\mu), S(\mu))$ be on the central path of an SDP in standard form.

i) The central path point $(X(\mu), S(\mu))$ is bounded for $0 < \mu \le \mu^0$ and any given $0 < \mu^0 < \infty$.

ii) For $0 < \mu' < \mu$,

$$C \bullet X(\mu') < C \bullet X(\mu)$$
 and $\mathbf{b}^T \mathbf{y}(\mu') > \mathbf{b}^T \mathbf{y}(\mu)$

if both primal and dual have nontrivial optimal solutions.

iii) $(X(\mu), S(\mu))$ converges to an optimal solution pair for (SDP) and (SDD). Moreover, the limit point is a maximal rank complementarity solution pair.

Proof Sketch

Let X^* and S^* be max-rank optimal solutions for the primal and dual respectively. Then from $(X(\mu)-X^*)\bullet(S(\mu)-S^*)=0$

we have

$$X(\mu) \bullet S^* + S(\mu) \bullet X^* = n\mu$$

which further implies

$$S(\mu)^{-1} \bullet S^* + X(\mu)^{-1} \bullet X^* = n.$$

Thus,

$$X(\mu)^{-1} \bullet X^* \le n$$

or

$$X(\mu)^{-1/2} X^* X(\mu)^{-1/2} \bullet I \le n$$

Thus, all eigenvalues of $X(\mu)^{-1/2}X^*X(\mu)^{-1/2}$ must be bounded above by n or

$$n \cdot I \succeq X(\mu)^{-1/2} X^* X(\mu)^{-1/2}$$
 or $X(\mu) \succeq \frac{1}{n} X^*$.

Path Following Algorithms

Suppose we have an approximate central path point $(\mathbf{x}, \mathbf{y}, \mathbf{s})$ in a neighborhood of $(\mathbf{x}(\mu), \mathbf{y}(\mu), \mathbf{s}(\mu))$ for a given $\mu > 0$. Then we consider to compute a new approximate central-path point (X^+, \mathbf{y}^+, S^+) corresponding to a chosen μ^+ where $\mu > \mu^+ > 0$. If one repeats this process, then a sequence of approximate central-path points $(\mathbf{x}^k, \mathbf{y}^k, \mathbf{s}^k)$, corresponding to $\mu^0 > \mu^1 > ... > \mu^k$, ..., would be generated, and it converges to the optimal solution set as $\mu^k \to 0$.

If μ^+ is close to μ , we expect $(\mathbf{x}(\mu^+), \mathbf{y}(\mu^+), \mathbf{s}(\mu^+))$ is also close to $(\mathbf{x}, \mathbf{y}, \mathbf{s})$, so that $(\mathbf{x}, \mathbf{y}, \mathbf{s})$ would be a good initial point for computing $(\mathbf{x}^+, \mathbf{y}^+, \mathbf{s}^+)$ by numerical procedures such as Newton's method. Such an algorithm is called the path following algorithm.

Potential Reduction Algorithms

In practical computation, it is more efficient to generate iterative solutions in a large neighborhood as long as a merit function is monotonically decreasing, so that the greater the reduction of the function, the faster convergence of the iterative solutions to optimality. Such an algorithm is said function-driven. If the merit function is the objective function itself, a function-driven algorithm is likely to generate iterative solutions being prematurely too close to the boundary, and the convergence would be slow down in future iterations. A better driven function should balance the reduction of the objective function as well as a good position in the (interior) of the feasible region – we now present a potential function logarithmically combining the objective function and the barrier function.

Potential and Duality Gap in LP

For $\mathbf{x} \in \operatorname{int} \mathcal{F}_p$ and $(\mathbf{y}, \mathbf{s}) \in \operatorname{int} \mathcal{F}_d$, let parameter $\rho > 0$ and

$$\psi_{n+\rho}(\mathbf{x},\mathbf{s}) := (n+\rho)\log(\mathbf{x} \bullet \mathbf{s}) - \sum_{j=1}^{n}\log(x_j s_j),$$

$$\psi_{n+\rho}(\mathbf{x}, \mathbf{s}) = \rho \log(\mathbf{x} \bullet \mathbf{s}) + \psi_n(\mathbf{x}, \mathbf{s}) \ge \rho \log(\mathbf{x} \bullet \mathbf{s}) + n \log n,$$

then, $\psi_{n+\rho}(\mathbf{x}, \mathbf{s}) \to -\infty$ implies that $\mathbf{x} \bullet \mathbf{s} \to 0$. More precisely, we have

$$\mathbf{x} \bullet \mathbf{s} \le \exp(\frac{\psi_{n+\rho}(\mathbf{x}, \mathbf{s}) - n\log n}{\rho}).$$

Potential Function in SDP

For any $X \in \operatorname{int} \mathcal{F}_p$ and $(\mathbf{y}, S) \in \operatorname{int} \mathcal{F}_d$, let parameter $\rho > 0$ and

 $\psi_{n+\rho}(X,S) := (n+\rho)\log(X \bullet S) - \log(\det(X) \cdot \det(S)),$

 $\psi_{n+\rho}(X,S) = \rho \log(X \bullet S) + \psi_n(X,S) \ge \rho \log(X \bullet S) + n \log n.$

Then, $\psi_{n+\rho}(X,S) \to -\infty$ implies that $X \bullet S \to 0$. More precisely, we have

$$X \bullet S \le \exp(\frac{\psi_{n+\rho}(X,S) - n\log n}{\rho})$$

The Potential Reduction Algorithm

The potential reduction algorithm generates a sequence of $\{X^k, \mathbf{y}^k, S^k\} \in \operatorname{int} \mathcal{F}$ such that

$$\psi_{n+\sqrt{n}}(X^{k+1}, S^{k+1}) \le \psi_{n+\sqrt{n}}(X^k, S^k) - .05$$

for k = 0, 1, 2,

This indicates that the potential level set shrinks at a constant rate independently of m or n, which leads to the duality gap converging toward zero.

Primal-Dual Potential Reduction Algorithm for SDP

Once we have a pair $(X, \mathbf{y}, S) \in \operatorname{int} \mathcal{F}$ with $\mu = S \bullet X/n$, we can apply the primal-dual Newton method to generate a new iterate X^+ and (\mathbf{y}^+, S^+) as follows: Solve for D_X , \mathbf{d}_y and D_S from the system of linear equations:

$$D^{-1}D_X D^{-1} + D_S = R := \frac{n}{n+\rho} \mu X^{-1} - S,$$

$$\mathcal{A}D_X = \mathbf{0},$$

$$-\mathcal{A}^T \mathbf{d}_y - D_S = \mathbf{0},$$
(5)

where

$$D = X^{.5} (X^{.5} S X^{.5})^{-.5} X^{.5}.$$

Note that $D_S \bullet D_X = 0$.

Primal-Dual Scaling

$$D_{X'} + D_{S'} = R',$$

$$\mathcal{A}' D_{X'} = \mathbf{0},$$

$$-\mathcal{A'}^T \mathbf{d}_y - D_{S'} = \mathbf{0},$$

(6)

where

$$D_{X'} = D^{-.5} D_X D^{-.5}, \ D_{S'} = D^{.5} D_S D^{.5}, \ R' = D^{.5} \left(\frac{n}{n+\rho} \mu X^{-1} - S\right) D^{.5},$$

and

$$\mathcal{A}' = \begin{pmatrix} A'_1 \\ A'_2 \\ \\ \dots \\ A'_m \end{pmatrix} := \begin{pmatrix} D^{.5}A_1D^{.5} \\ D^{.5}A_2D^{.5} \\ \\ \dots \\ D^{.5}A_mD^{.5} \end{pmatrix}.$$

Again, we have $D_{S'} \bullet D_{X'} = 0$, and

$$\mathbf{d}_y = (\mathcal{A}' \mathcal{A}'^T)^{-1} \mathcal{A}' R', \ D_{S'} = -\mathcal{A}'^T \mathbf{d}_y, \text{ and } D_{X'} = R' - D_{S'}.$$

Or, we have

$$D_S = -\mathcal{A}^T \mathbf{d}_y$$
 and $D_X = D(R - D_S)D$.

The role of ho

If $\rho = \infty$, it steps toward the optimal solution characterized by the SDP optimality condition; if $\rho = 0$, it steps toward the central path point $(X(\mu), \mathbf{y}(\mu), S(\mu))$.

If $0 < \rho < \infty$, it steps toward a central path point with a smaller complementarity gap. We will show that when $\rho \ge \sqrt{n}$, then each iterate reduces the primal-dual potential function by at least a constant.

Logarithmic Approximation Lemma for SDP

Lemma 1 Let $D \in S^n$ and $\|D\|_{\infty} < 1$. Then,

$$tr(D) \ge \log \det(I+D) \ge tr(D) - \frac{\|D\|^2}{2(1-\|D\|_{\infty})}$$
.

Proof: Let d be the vector of eigenvalues of D. Then, $d \in \mathcal{R}^n$ and $||d||_{\infty} < 1$, and we proceed to prove

$$\mathbf{e}^T \mathbf{d} \ge \sum_{i=1}^n \log(1+d_i) \ge \mathbf{e}^T \mathbf{d} - \frac{\|\mathbf{d}\|^2}{2(1-\|\mathbf{d}\|_{\infty})} \,.$$

The Bound on Potential Reduction for SDP

Let $V^{1/2} = D^{-.5}XD^{-.5} = D^{.5}SD^{.5} \in \operatorname{int} \mathcal{S}^n_+$. Then, one can verify that $S \bullet X = I \bullet V$.

Lemma 2 Let the direction D_X , \mathbf{d}_y and D_S be generated by equation (5), and let

$$\theta = \frac{\alpha}{\|V^{-1/2}\|_{\infty} \|\frac{I \bullet V}{n+\rho} V^{-1/2} - V^{1/2}\|} ,$$
(7)

where α is a positive constant less than 1. Let

$$X^+ = X + \theta D_X, \quad y^+ = y + \theta \mathbf{d}_y, \quad \text{and} \quad S^+ = S + \theta D_S.$$

Then, $(X^+, \mathbf{y}^+, S^+) \in \operatorname{int} \mathcal{F}$ and

$$\psi_{n+\rho}(X^+, S^+) - \psi_{n+\rho}(X, S) \le -\alpha \frac{\|V^{-1/2} - \frac{n+\rho}{I \bullet V} V^{1/2}\|}{\|V^{-1/2}\|_{\infty}} + \frac{\alpha^2}{2(1-\alpha)}$$

Technical Lemmas

Lemma 3 Let $V \in \operatorname{int} \mathcal{S}^n_+$ and $\rho \ge \sqrt{n}$. Then,

$$\frac{\|V^{-1/2} - \frac{n+\rho}{I \bullet V} V^{1/2}\|}{\|V^{-1/2}\|_{\infty}} \ge \sqrt{3/4}.$$

Proof: Let v be the vector of eigenvalues of V. Then $v \in \mathcal{R}^n_+$, and for $\rho \ge \sqrt{n}$ we proceed to prove

$$\sqrt{\min(\mathbf{v})} \| D(\mathbf{v})^{-1/2} \mathbf{e} - \frac{n+\rho}{\mathbf{e}^T \mathbf{v}} D(\mathbf{v})^{1/2} \mathbf{e} \| \ge \sqrt{3/4} \,.$$

From these lemmas

$$\psi_{n+\rho}(X^+, S^+) - \psi_{n+\rho}(X, S) \le -\alpha\sqrt{3/4} + \frac{\alpha^2}{2(1-\alpha)}.$$

By carefully choose α , we have a constant potential reduction in each iteration for SDP.

Description of Algorithm for SDP

Given $(X^0, y^0, S^0) \in \operatorname{int} \mathcal{F}$. Set $\rho = \sqrt{n}$ and k := 0. While $S^k \bullet X^k \ge \epsilon$ do

1. Set $(X, S) = (X^k, S^k)$ and compute (D_X, \mathbf{d}_y, D_S) from (5). 2. Let $X^{k+1} = X^k + \bar{\alpha}D_X$, $\mathbf{y}^{k+1} = \mathbf{y}^k + \bar{\alpha}\mathbf{d}_y$, and $S^{k+1} = S^k + \bar{\alpha}D_S$, where $\bar{\alpha} = \arg\min_{\alpha \ge 0} \psi(X^k + \alpha D_X, S^k + \alpha D_S).$

3. Let k := k + 1 and return to Step 1.

Complexity of the Algorithm

Theorem 5 Let $\rho = \sqrt{n}$ and $\psi_{n+\rho}(X^0, S^0) \le \rho \log(X^0 \bullet S^0) + n \log n$. Then, the SDP Algorithm terminates in at most $O(\sqrt{n} \log(X^0 \bullet S^0/\epsilon)$ iterations with

$$X^k \bullet S^k = C \bullet X^k - \mathbf{b}^T \mathbf{y}^k \le \epsilon.$$

Practical Computational Difficulty:

- The iteration complexity of SDP is in the order of $O(m^3 + mn^3 + m^2n^2)$
- It has to solve a dense system of linear equations at each iteration
- In general, n = 10000 is the bottle-neck for practical efficiency, in contrast to linear programming.

Dual Interior-Point Algorithm for SDP

An open question is how to exploit the sparsity structure by polynomial interior-point algorithms so that they can also solve large-scale problems in practice.

- 1. The computational cost of each iteration in the dual algorithm is less that the cost the primal-dual iterations.
- In most combinatorial applications, we need only a lower bound for the optimal objective value of (SDP).
- 3. For large scale problems, S tends to be very sparse and structured since it is the linear combination of C and the A_i 's. This sparsity allows considerable savings in both memory and computation time.

Dual Algorithm: an Alternating Descent Method

$$\phi_{n+\rho}(X,S) = \rho \ln(X \bullet S) - \ln \det X - \ln \det S.$$

Let $\bar{z} = C \bullet X$ for some fixed feasible X and consider the dual potential function

$$\psi(\mathbf{y}, \bar{z}) = \rho \ln(\bar{z} - \mathbf{b}^T \mathbf{y}) - \ln \det S.$$

Its gradient is

$$\nabla \psi(\mathbf{y}, \bar{z}) = -\frac{\rho}{\bar{z} - \mathbf{b}^T \mathbf{y}} \mathbf{b} + \mathcal{A}S^{-1}.$$
(8)

We minimize over y first, then over X second. Recall

$$\mathcal{A}X = \begin{pmatrix} A_1 \bullet X \\ \dots \\ A_m \bullet X \end{pmatrix} \quad \text{and} \quad \mathcal{A}^T \mathbf{y} = \sum_{i=1}^m y_i A_i.$$

Over-Estimator of Potential

For any given \mathbf{y} and $S = C - \mathcal{A}^T \mathbf{y} \succ \mathbf{0}$ and

$$\| (S^k)^{-.5} \left(\mathcal{A}^T (\mathbf{y} - \mathbf{y}^k) \right) (S^k)^{-.5} \| < 1,$$

$$\begin{split} \psi(\mathbf{y}, \bar{z}^{k}) &- \psi(\mathbf{y}^{k}, \bar{z}^{k}) \\ &= \rho \ln(\bar{z}^{k} - \mathbf{b}^{T} \mathbf{y}) - \rho \ln(\bar{z}^{k} - \mathbf{b}^{T} \mathbf{y}^{k}) - \ln \det((S^{k})^{-.5}S(S^{k})^{-.5}) \\ &\leq -\frac{\rho}{\bar{z}^{k} - \mathbf{b}^{T} \mathbf{y}^{k}} \mathbf{b}^{T}(\mathbf{y} - \mathbf{y}^{k}) + I \bullet ((S^{k})^{-.5}S(S^{k})^{-.5} - I) \\ &+ \frac{\|(S^{k})^{-.5}(\mathcal{A}^{T}(\mathbf{y} - \mathbf{y}^{k}))(S^{k})^{-.5}\|}{2(1 - \|(S^{k})^{-.5}(\mathcal{A}^{T}(\mathbf{y} - \mathbf{y}^{k}))(S^{k})^{-.5}\|_{\infty})} \\ &= -\frac{\rho}{\bar{z}^{k} - \mathbf{b}^{T} \mathbf{y}^{k}} \mathbf{b}^{T}(\mathbf{y} - \mathbf{y}^{k}) + (\mathcal{A}(S^{k})^{-1})^{T}(\mathbf{y} - \mathbf{y}^{k}) \\ &+ \frac{\|(S^{k})^{-.5}(\mathcal{A}^{T}(\mathbf{y} - \mathbf{y}^{k}))(S^{k})^{-.5}\|}{2(1 - \|(S^{k})^{-.5}(\mathcal{A}^{T}(\mathbf{y} - \mathbf{y}^{k}))(S^{k})^{-.5}\|_{\infty})} \\ &= \nabla \psi(\mathbf{y}^{k}, \bar{z}^{k})^{T}(\mathbf{y} - \mathbf{y}^{k}) + \frac{\|(S^{k})^{-.5}(\mathcal{A}^{T}(\mathbf{y} - \mathbf{y}^{k}))(S^{k})^{-.5}\|_{\infty})}{2(1 - \|(S^{k})^{-.5}(\mathcal{A}^{T}(\mathbf{y} - \mathbf{y}^{k}))(S^{k})^{-.5}\|_{\infty})}. \end{split}$$

(9)

Solve the Ball Constrained Problem

Minimize
$$\nabla \psi^T(\mathbf{y}^k, \bar{z}^k)(\mathbf{y} - \mathbf{y}^k)$$

subject to $\|(S^k)^{-.5} \left(\mathcal{A}^T(\mathbf{y} - \mathbf{y}^k)\right)(S^k)^{-.5}\| \le \alpha,$ (10)

where α is a positive constant less than 1 that would be determined later.

For simplicity, in what follows we let the current duality gap be

$$\Delta^k = \bar{z}^k - \mathbf{b}^T \mathbf{y}^k.$$

Optimality Conditions

The first order KKT conditions state that the minimum point, y^{k+1} , of this convex minimization problem satisfies

$$M^{k}(\mathbf{y}^{k+1} - \mathbf{y}^{k}) + \beta \nabla \psi(\mathbf{y}^{k}, \bar{z}^{k}) = 0$$
(11)

for a positive multiplier β , where

$$M^{k} = \begin{pmatrix} A_{1}(S^{k})^{-1} \bullet (S^{k})^{-1}A_{1} & \cdots & A_{1}(S^{k})^{-1} \bullet (S^{k})^{-1}A_{m} \\ \vdots & \ddots & \vdots \\ A_{m}(S^{k})^{-1} \bullet (S^{k})^{-1}A_{1} & \cdots & A_{m}(S^{k})^{-1} \bullet (S^{k})^{-1}A_{m} \end{pmatrix}$$

The matrix M^k is a Gram matrix, and it is positive definite when $S^k \succ 0$ and A_i 's are linearly independent.

Close-Form Solution

Using the ellipsoidal constraint being tight, the minimal solution, y^{k+1} , of (10) is given by a close form

$$\mathbf{y}^{k+1} - \mathbf{y}^k = \frac{\alpha}{\sqrt{\nabla\psi^T(\mathbf{y}^k, \bar{z}^k)(M^k)^{-1}\nabla\psi(\mathbf{y}^k, \bar{z}^k)}} \mathbf{d}(\bar{z}^k)_y$$
(12)

where

$$\mathbf{d}(\bar{z}^k)_y = -(M^k)^{-1} \nabla \psi(\mathbf{y}^k, \bar{z}^k).$$
(13)

Potential Reduction

We can derive

$$\nabla \psi^T(\mathbf{y}^k, \bar{z}^k) \mathbf{d}(\bar{z}^k)_y = -\nabla \psi^T(\mathbf{y}^k, \bar{z}^k) (M^k)^{-1} \nabla \psi(\mathbf{y}^k, \bar{z}^k) = -\|P(\bar{z}^k)\|^2$$
(14)

where

$$P(\bar{z}^k) = \frac{\rho}{\Delta^k} (S^k)^{.5} X(\bar{z}^k) (S^k)^{.5} - I,$$
(15)

and

$$X(\bar{z}^{k}) = \frac{\Delta^{k}}{\rho} (S^{k})^{-1} \left(\mathcal{A}^{T} \mathbf{d}(\bar{z}^{k})_{y} + S^{k} \right) (S^{k})^{-1}.$$
(16)

Thus,

$$\psi(\mathbf{y}^{k+1}, \bar{z}^k) - \psi(\mathbf{y}^k, \bar{z}^k) \le -\alpha \|P(\bar{z}^k)\| + \frac{\alpha^2}{2(1-\alpha)}.$$
(17)

Potential Primal Feasible Solution and its Objective Value

 $X(\bar{z}^k)$ is actually the minimizer of the least squares problem

Minimize
$$\|(S^k)^{.5}X(S^k)^{.5} - \frac{\Delta^k}{\rho}I\|$$

subject to $\mathcal{A}X = \mathbf{b}.$ (18)

$$C \bullet X(\bar{z}^k) = \mathbf{b}^T \mathbf{y}^k + S^k \bullet X(\bar{z}^k)$$

= $\mathbf{b}^T \mathbf{y}^k + S^k \bullet \left(\frac{\Delta^k}{\rho} (S^k)^{-1} \left(\mathcal{A}^T (\mathbf{d}(\bar{z}^k)_y) + S^k\right) (S^k)^{-1}\right)$
= $\mathbf{b}^T \mathbf{y}^k + \frac{\Delta^k}{\rho} I \bullet \left((S^k)^{-1} \mathcal{A}^T (d(\bar{z}^k)_y) + I\right)$
= $\mathbf{b}^T \mathbf{y}^k + \frac{\Delta^k}{\rho} \left(\mathbf{d}(\bar{z}^k)_y^T (\mathcal{A}(S^k)^{-1}) + n\right)$

Since the vectors $\mathcal{A}(S^k)^{-1}$ and $\mathbf{d}(\bar{z}^k)_y$ were calculated, the cost of computing a primal objective value is the cost of a vector dot product!

But $X(\bar{z}^k)$ may not be PSD...

When the Primal is Feasible

We have the following lemma:

Lemma 4 Let
$$\mu^k = \frac{\Delta^k}{n} = \frac{\bar{z}^k - \mathbf{b}^T \mathbf{y}^k}{n}$$
, $\mu = \frac{X(\bar{z}^k) \cdot S^k}{n} = \frac{C \cdot X(\bar{z}^k) - \mathbf{b}^T \mathbf{y}^k}{n}$, $\rho \ge n + \sqrt{n}$, and $\alpha < 1$.
If
$$\|P(\bar{z}^k)\| < \min\left(\alpha \sqrt{\frac{n}{n+\alpha^2}}, 1-\alpha\right),$$
(19)

then the following three inequalities hold:

- 1. $X(\bar{z}^k) \succ 0$;
- 2. $||(S^k)^{.5}X(\bar{z}^k)(S^k)^{.5} \mu I|| \le \alpha \mu;$
- 3. $\mu \le (1 \frac{\alpha}{2\sqrt{n}})\mu^k$.

Alternating Potential Reduction

Thus, if $||P(\bar{z}^k)|| \ge \min\left(\alpha \sqrt{\frac{n}{n+\alpha^2}}, 1-\alpha\right)$, we update \mathbf{y}^k to \mathbf{y}^{k+1} ; otherwise, we let $X^{k+1} = X(\bar{z}^k)$. In such alternating moves, we have

Theorem 6 Either the primal-dual potential

 $\phi(X^k, S^{k+1}) \le \phi(X^k, S^k) - \delta$

or

$$\phi(X^{k+1}, S^k) \le \phi(X^k, S^k) - \delta,$$

where $\delta > 1/20$.

Description of Algorithm

DUAL ALGORITHM. Given an upper bound \bar{z}^0 and a dual point (\mathbf{y}^0, S^0) such that $S^0 = C - \mathcal{A}^T \mathbf{y}^0 \succ 0$, set k = 0, $\rho > n + \sqrt{n}$, $\alpha \in (0, 1)$, and do the following: while $\bar{z}^k - \mathbf{b}^T \mathbf{y}^k \ge \epsilon$ do

begin

- 1. Compute $\mathcal{A}(S^k)^{-1}$ and formulate the Gram matrix M^k .
- 2. Solve (13) for the dual step direction $\mathbf{d}(\bar{z}^k)_y$.
- 3. Calculate $||P(\bar{z}^k)||$ using (14).
- 4. If (19) is true, then $X^{k+1} = X(\bar{z}^k)$, $\bar{z}^{k+1} = C \bullet X^{k+1}$, and $(\mathbf{y}^{k+1}, S^{k+1}) = (\mathbf{y}^k, S^k)$; else $\mathbf{y}^{k+1} = \mathbf{y}^k + \frac{\alpha}{\|P(\bar{z}^k)\|} \mathbf{d}(\bar{z}^{k+1})_y$, $S^{k+1} = C - \mathcal{A}^T(\mathbf{y}^{k+1})$, $X^{k+1} = X^k$, and $\bar{z}^{k+1} = \bar{z}^k$. endif
- 5. k := k + 1.

end Note that we do not need eigenvalue computation in evaluate $||P(\bar{z}^k)||$, but use

$$\|P(\bar{z}^k)\|^2 = \nabla \psi^T(\mathbf{y}^k, \bar{z}^k) \mathbf{d}(\bar{z}^k)_y.$$

Corollary 1 Let $\rho = \sqrt{n}$. Then, the Algorithm terminates in at most $O(\sqrt{n}\log(C \bullet X^0 - \mathbf{b}^T \mathbf{y}^0)/\epsilon)$ iterations with

$$C \bullet X^k - \mathbf{b}^T \mathbf{y}^k \le \epsilon.$$

Formulation Work of M^k

Generally, $M_{ij}^k = A_i (S^k)^{-1} \bullet (S^k)^{-1} A_j$.

When $A_i = a_i a_i^T$, the Gram matrix can be rewritten in the form

$$M^{k} = \begin{pmatrix} (a_{1}^{T}(S^{k})^{-1}a_{1})^{2} & \cdots & (a_{1}^{T}(S^{k})^{-1}a_{m})^{2} \\ \vdots & \ddots & \vdots \\ (a_{m}^{T}(S^{k})^{-1}a_{1})^{2} & \cdots & (a_{m}^{T}(S^{k})^{-1}a_{m})^{2} \end{pmatrix}$$

(20)

and

$$\mathcal{A}(S^{k})^{-1} = \begin{pmatrix} a_{1}^{T}(S^{k})^{-1}a_{1} \\ \vdots \\ a_{m}^{T}(S^{k})^{-1}a_{m} \end{pmatrix}.$$

This matrix can be computed very quickly without computing, or saving, $(S^k)^{-1}$.

Quick Computation with the Rank-One Structure

Let
$$A^T = [\mathbf{a}_1 \ \mathbf{a}_2 \ \dots \ \mathbf{a}_m]$$
 and $A' = A(S^k)^{-1/2}$. Then we have
$$M^k = [A(S^k)^{-1}A^T]^2 = [A'(A')^T]^2$$

and

$$A(S^k)^{-1} = \mathrm{diag}(A(S^k)^{-1}A^T) = \mathrm{diag}(A'(A')^T).$$

Thus, M^k and the gradient vector can be computed in $O(n^3 + n^2m + nm^2)$ arithmetic operations. Then, the dual direction $\mathbf{d}(\cdot)_y$ can be computed in $O(m^3)$ operations.

The norm of $P(\cdot)$ can be checked in $O(m^2)$ operations and the new upper bound can be updated in O(m) operations.

If needed, $X(\cdot)$ can be computed in $O(n^3 + n^2m)$ operations.

Primal-Dual SDP Alternative Systems

A pair of SDP has two alternatives under mild conditions

(Solvable)
$$\mathcal{A}X - \mathbf{b} = \mathbf{0}$$
 (Infeasible) $\mathcal{A}X = \mathbf{0}$
 $-\mathcal{A}^T\mathbf{y} + C \succeq \mathbf{0},$ or $-\mathcal{A}^T\mathbf{y} \succeq \mathbf{0},$
 $\mathbf{b}^T\mathbf{y} - C \bullet X = 0,$ $\mathbf{b}^T\mathbf{y} - C \bullet X > 0,$
 \mathbf{y} free, $X \succeq \mathbf{0}$ \mathbf{y} free, $X \succeq \mathbf{0}$

An Integrated Homogeneous and Self-Dual System

The two alternative systems can be homogenized as one:

$$\begin{array}{ll} (HSDP) & \mathcal{A}X - \mathbf{b}\tau &= \mathbf{0} \\ & -\mathcal{A}^T\mathbf{y} + C\tau &= \mathbf{s} \geq \mathbf{0}, \\ & \mathbf{b}^T\mathbf{y} - C \bullet X &= \kappa \geq 0, \\ & \mathbf{y} \text{ free}, \ X \succeq \mathbf{0}, \quad \tau \geq 0, \end{array}$$

where the three alternatives are

$$\begin{array}{ll} \text{(Solvable)}: & (\tau > 0, \kappa = 0) \\ \text{(Infeasible)}: & (\tau = 0, \kappa > 0) \\ \text{(All others)}: & (\tau = \kappa = 0). \end{array}$$