Conic Linear Programming Algorithms

Yinyu Ye
Department of Management Science and Engineering
Stanford University
Stanford, CA 94305, U.S.A.
http://www.stanford.edu/~yyye
Chapter 6.6

Recall Conic LP

$$
\begin{array}{lll}
(C L P) & \text { minimize } & \mathbf{c} \bullet \mathbf{x} \\
& \text { subject to } & \mathbf{a}_{i} \bullet \mathbf{x}=b_{i}, i=1,2, \ldots, m, \mathbf{x} \in K
\end{array}
$$

where K is a convex cone.
Linear Programming (LP): $\mathbf{c}, \mathbf{a}_{i}, \mathbf{x} \in \mathcal{R}^{n}$ and $K=\mathcal{R}_{+}^{n}$
Second-Order Cone Programming (SOCP): c, $\mathbf{a}_{i}, \mathbf{x} \in \mathcal{R}^{n}$ and $K=S O C$
Semidefinite Programming (SDP): c, $\mathbf{a}_{i}, \mathbf{x} \in \mathcal{S}^{n}$ and $K=\mathcal{M}_{+}^{n}$
Note that cone K can be a product of many (different) convex cones.

Dual of Conic LP

The dual problem to

$$
\begin{array}{lll}
(C L P) & \text { minimize } & \mathbf{c} \bullet \mathbf{x} \\
& \text { subject to } & \mathbf{a}_{i} \bullet \mathbf{x}=b_{i}, i=1,2, \ldots, m, \mathbf{x} \in K
\end{array}
$$

is

$$
\begin{aligned}
(C L D) & \text { maximize }
\end{aligned} \mathbf{b}^{T} \mathbf{y} .
$$

where $y \in \mathcal{R}^{m}$ are the dual variables, s is called the dual slack vector/matrix, and K^{*} is the dual cone of K.

Theorem 1 (Weak duality theorem)

$$
\mathbf{c} \bullet \mathbf{x}-\mathbf{b}^{T} \mathbf{y}=\mathbf{x} \bullet \mathbf{s} \geq 0
$$

for any feasible x of (CLP) and ($\mathrm{y}, \mathrm{s})$ of (CLD).

Self-Dual Cones Again

Frequently, $K^{*}=K$, that is, they are self-dual.
The dual of the n-dimensional non-negative orthant, $\mathcal{R}_{+}^{n}=\left\{\mathbf{x} \in \mathcal{R}^{n}: \mathbf{x} \geq 0\right\}$, is \mathcal{R}_{+}^{n}; it is self-dual. The dual of the positive semi-definite symmetric matrix cone in $\mathcal{S}^{n}, \mathcal{S}_{+}^{n}$, is \mathcal{S}_{+}^{n}; it is self-dual.

The dual of the second-order cone, $\left\{\mathbf{x} \in \mathcal{R}^{n}: x_{1} \geq\left\|\mathbf{x}_{-1}\right\|\right\}$, is also the second-order cone; it is self-dual.

SOCP Examples

Dual:

$$
\begin{array}{ll}
\text { maximize } & y \\
\text { subject to } & \left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right)-y \cdot\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\mathbf{s} \in S O C .
\end{array}
$$

$$
\begin{array}{cc}
\hline \text { SDP Examples } \\
\text { minimize }\left(\begin{array}{cc}
2 & .5 \\
.5 & 1
\end{array}\right) \bullet X \\
\text { subject to }\left(\begin{array}{cc}
1 & .5 \\
.5 & 1
\end{array}\right) \bullet X=1, X \succeq \mathbf{0} .
\end{array}
$$

Dual:

$$
\begin{array}{ll}
\operatorname{maximize} & y \\
\text { subject to } & \left(\begin{array}{cc}
2 & .5 \\
.5 & 1
\end{array}\right)-y \cdot\left(\begin{array}{cc}
1 & .5 \\
.5 & 1
\end{array}\right)=S \succeq \mathbf{0},
\end{array}
$$

Conic Linear Programming in Compact Form

$$
\begin{array}{lll}
(C L P) & \text { minimize } & \mathbf{c} \bullet \mathbf{x} \\
& \text { subject to } & \mathcal{A} \mathbf{x}=\mathbf{b} \\
& \mathbf{x} \in K
\end{array}
$$

$$
\begin{array}{lll}
(C L D) & \text { maximize } & \mathbf{b}^{T} \mathbf{y} \\
\text { subject to } & \mathcal{A}^{T} \mathbf{y}+\mathbf{s}=\mathbf{c} \\
& \mathbf{s} \in K^{*}
\end{array}
$$

Denote by \mathcal{F}_{p} and \mathcal{F}_{d} the primal and dual feasible sets, respectively.

Optimality Conditions for CLP

$$
\begin{aligned}
\mathbf{c} \bullet \mathbf{x}-\mathbf{b}^{T} \mathbf{y} & =0 \\
\mathcal{A} \mathbf{x} & =\mathbf{b} \\
-\mathcal{A}^{T} \mathbf{y}-\mathbf{s} & =-\mathbf{c} \\
\mathbf{x} \in K, \mathbf{s} \in K^{*} &
\end{aligned}
$$

Or

$$
\begin{aligned}
\mathbf{x} \bullet \mathbf{s} & =0 \\
\mathcal{A} \mathbf{x} & =\mathbf{b} \\
-\mathcal{A}^{T} \mathbf{y}-\mathbf{s} & =-\mathbf{c} \\
\mathbf{x} \in K, \mathbf{s} \in K^{*} &
\end{aligned}
$$

Barrier Functions for Convex Cones

A differentiable function $B(\mathbf{x})$ is called barrier function for a closed convex cone K if for the sequence $\left\{\mathbf{x}^{k} \in \operatorname{int} K\right\}, k=1, \ldots$,

$$
\mathbf{x}^{k} \rightarrow \partial K \quad \Rightarrow \quad B\left(\mathbf{x}^{k}\right) \rightarrow \infty
$$

where ∂K represents the boundary of $K . \mathbf{x} \bullet(-\nabla B(\mathbf{x}))$ is called the barrier-coefficient of $B(\mathbf{x})$, denoted by ν; and a point in int K is called the central point if it is a fixed point of

$$
\mathbf{x}=-\nabla B(\mathbf{x})
$$

denoted by \mathbf{e}^{c}.

Logarithmic Barrier Functions

- \mathcal{R}_{+}^{n} :

$$
B(\mathbf{x})=-\sum_{j=1}^{n} \ln \left(x_{j}\right), \nabla B(\mathbf{x})=-\Delta(\mathbf{x})^{-1} \mathbf{e}, \nabla^{2} B(\mathbf{x})=\Delta(\mathbf{x})^{-2} \in \mathcal{S}^{n}
$$

The central point is e, the vector of all ones, and the barrier-coefficient is $\mathbf{x} \bullet(-\nabla B(\mathbf{x}))=\mathbf{x} \bullet \Delta(\mathbf{x})^{-1} \mathbf{e}=n$.

- \mathcal{S}_{+}^{n} :

$$
\begin{gathered}
B(X)=-\ln \operatorname{det}(X), \nabla B(X)=-X^{-1} \\
\nabla^{2} B(X)=\left\{\partial^{2} B(X) / \partial X_{i j} \partial X_{k l}=X_{i k}^{-1} X^{-1} j l\right\}=X^{-1} \otimes X^{-1} \in \mathcal{S}^{n^{2}}
\end{gathered}
$$

where \otimes stands for matrix Kronecker product. The central point is I, the identity matrix, and the barrier-coefficient is $X \bullet(-\nabla B(X))=X \bullet X^{-1}=n$.

- \mathcal{N}_{2}^{n} :

$$
\begin{aligned}
B(\mathbf{x}) & =-\frac{1}{2} \ln \left(x_{1}^{2}-\left\|\mathbf{x}_{-1}\right\|^{2}\right), \quad \nabla B(\mathbf{x})=\frac{1}{\delta(\mathbf{x})^{2}}\binom{-x_{1}}{\mathbf{x}_{-1}} \\
\nabla^{2} B(\mathbf{x}) & =\frac{1}{\delta(\mathbf{x})^{2}}\left(\begin{array}{cc}
-1 & 0 \\
0 & I
\end{array}\right)+\frac{2}{\delta(\mathbf{x})^{4}}\binom{x_{1}}{-\mathbf{x}_{-1}}\binom{x_{1}}{-\mathbf{x}_{-1}}^{T}
\end{aligned}
$$

where $\delta(\mathbf{x})=\sqrt{x_{1}^{2}-\left\|\mathbf{x}_{-1}\right\|^{2}}$. The central point is \mathbf{e}_{1}, the unit vector with 1 as its first element and zero everywhere else, and the barrier-coefficient is

$$
\mathbf{x} \bullet(-\nabla B(\mathbf{x}))=\mathbf{x} \bullet \frac{-1}{\delta(\mathbf{x})^{2}}\binom{-x_{1}}{\mathbf{x}_{-1}}=1
$$

- The mixed cone $K=K_{1} \oplus K_{2}$, that is, $\mathbf{x}=\left[\mathbf{x}_{1} ; \mathbf{x}_{2}\right]$ where $\mathbf{x}_{1} \in K_{1}$ and $X_{2} \in K_{2}$:

$$
B(\mathbf{x})=B_{1}\left(\mathbf{x}_{1}\right)+B_{2}\left(\mathbf{x}_{2}\right)
$$

where $B_{1}(\cdot)$ and $B_{2}(\cdot)$ are barrier functions for K_{1} and K_{2}, respectively. The barrier-coefficient is the sum of the barrier-coefficients of the two cones.

The Central Path

Consider (CLP) with the μ-weighted barrier function added in the objective:

$$
\begin{array}{cc}
(C L P B) & \operatorname{minimize} \\
& \mathbf{c} \bullet \mathbf{x}+\mu B(\mathbf{x}) \\
\text { s.t. } & \mathcal{A} \mathbf{x}=\mathbf{b} \\
& \mathbf{x} \in K
\end{array}
$$

or (CLD) with the μ-weighted barrier function added in the objective:

$$
\begin{array}{cl}
(C L D B) & \text { maximize } \\
& \mathbf{b}^{T} \mathbf{y}-\mu B(\mathbf{s}) \\
\text { s.t. } & \mathcal{A}^{T} \mathbf{y}+\mathbf{s}=\mathbf{c} \\
& \mathbf{s} \in K^{*}
\end{array}
$$

Theorem 2 Let both (CLP) and (CLD) have interior feasible solutions. Then, for any given $0<\mu<\infty$, the optimizers of (CLPB) and (CLDB) exist and they are unique and in the interior of cone K and K^{*}, respectively. As μ continuously varies toward zero, they form a path (called the central path) converging to an interior point in the optimal face.

The Central Path Equations

For any given $\mu>0$, the optimizers of (CLPB) have necessary and sufficient conditions:

$$
\begin{aligned}
\mathbf{c}+\mu \nabla B(\mathbf{x})-\mathcal{A}^{T} \mathbf{y} & =\mathbf{0} \\
\mathcal{A} \mathbf{x} & =\mathbf{b}
\end{aligned}
$$

Let $\mathbf{s}=\mathbf{c}-\mathcal{A}^{T} \mathbf{y}$. Then the conditions become

$$
\begin{align*}
\mathbf{s}+\mu \nabla B(\mathbf{x}) & =\mathbf{0} \\
\mathcal{A} \mathbf{x} & =\mathbf{b} \tag{3}\\
-\mathcal{A}^{T} \mathbf{y}-\mathbf{s} & =-\mathbf{c} .
\end{align*}
$$

One can verify that $\mathbf{s}=-\mu \nabla B(\mathbf{x}) \in \operatorname{int} K^{*}$.

Similarly, the optimizers of (CLDB) have necessary and sufficient conditions:

$$
\begin{align*}
\mathbf{x}+\mu \nabla B(\mathbf{s}) & =\mathbf{0} \\
\mathcal{A} \mathbf{x} & =\mathbf{b} \tag{4}\\
-\mathcal{A}^{T} \mathbf{y}-\mathbf{s} & =-\mathbf{c}
\end{align*}
$$

One can verify that $\mathbf{x}=-\mu \nabla B(\mathbf{s}) \in \operatorname{int} K$.

Symmetric Central Path Equations for Self-dual Cones

Linear Programming:

$$
\begin{aligned}
\mathbf{x} \cdot \mathbf{s} & =\mu \mathbf{e} \\
A \mathbf{x} & =\mathbf{b} \quad \text { where } \mu=\frac{\mathbf{x}^{T} \mathbf{s}}{n} \\
-A^{T} \mathbf{y}-\mathbf{s} & =-\mathbf{c}
\end{aligned}
$$

Second-Order Cone Programming:

$$
\begin{aligned}
\mathbf{x} \cdot \mathbf{s} & =\mu \mathbf{e}_{1} \\
A \mathbf{x} & =\mathbf{b} \quad \text { where } \mu=\mathbf{x}^{T} \mathbf{s} \\
-A^{T} \mathbf{y}-\mathbf{s} & =-\mathbf{c}
\end{aligned}
$$

Semidefinite Programming:

$$
\begin{aligned}
X S & =\mu I \\
\mathcal{A} X & =\mathbf{b} \quad \text { where } \mu=\frac{X \bullet S}{n} \\
-\mathcal{A}^{T} \mathbf{y}-S & =-C
\end{aligned}
$$

Central Path Properties for LP

Theorem 3 Let $(\mathbf{x}(\mu), \mathbf{y}(\mu), \mathbf{s}(\mu))$ be on the central path of an linear program in standard form.
i) The central path point $(\mathbf{x}(\mu), \mathbf{s}(\mu))$ is bounded for $0<\mu \leq \mu^{0}$ and any given $0<\mu^{0}<\infty$.
ii) For $0<\mu^{\prime}<\mu$,

$$
\mathbf{c}^{T} \mathbf{x}\left(\mu^{\prime}\right)<\mathbf{c}^{T} \mathbf{x}(\mu) \quad \text { and } \quad \mathbf{b}^{T} \mathbf{y}\left(\mu^{\prime}\right)>\mathbf{b}^{T} \mathbf{y}(\mu)
$$

if both primal and dual have nontrivial optimal solutions.
iii) $(\mathbf{x}(\mu), \mathbf{s}(\mu))$ converges to an optimal solution pair for (LP) and (LD). Moreover, the limit point $\mathbf{x}(0)_{P^{*}}>\mathbf{0}$ and the limit point $\mathrm{s}(0)_{Z^{*}}>\mathbf{0}$, where $\left(P^{*}, Z^{*}\right)$ is the strictly complementarity partition of the index set $\{1,2, \ldots, n\}$.

Central Path Properties for SDP

Theorem 4 Let $(X(\mu), \mathbf{y}(\mu), S(\mu))$ be on the central path of an SDP in standard form.
i) The central path point $(X(\mu), S(\mu))$ is bounded for $0<\mu \leq \mu^{0}$ and any given $0<\mu^{0}<\infty$.
ii) For $0<\mu^{\prime}<\mu$,

$$
C \bullet X\left(\mu^{\prime}\right)<C \bullet X(\mu) \quad \text { and } \quad \mathbf{b}^{T} \mathbf{y}\left(\mu^{\prime}\right)>\mathbf{b}^{T} \mathbf{y}(\mu)
$$

if both primal and dual have nontrivial optimal solutions.
iii) $(X(\mu), S(\mu))$ converges to an optimal solution pair for (SDP) and (SDD). Moreover, the limit point is a maximal rank complementarity solution pair.

Proof Sketch

Let X^{*} and S^{*} be max-rank optimal solutions for the primal and dual respectively. Then from

$$
\left(X(\mu)-X^{*}\right) \bullet\left(S(\mu)-S^{*}\right)=0
$$

we have

$$
X(\mu) \bullet S^{*}+S(\mu) \bullet X^{*}=n \mu
$$

which further implies

$$
S(\mu)^{-1} \bullet S^{*}+X(\mu)^{-1} \bullet X^{*}=n
$$

Thus,

$$
X(\mu)^{-1} \cdot X^{*} \leq n
$$

or

$$
X(\mu)^{-1 / 2} X^{*} X(\mu)^{-1 / 2} \bullet I \leq n
$$

Thus, all eigenvalues of $X(\mu)^{-1 / 2} X^{*} X(\mu)^{-1 / 2}$ must be bounded above by n or

$$
n \cdot I \succeq X(\mu)^{-1 / 2} X^{*} X(\mu)^{-1 / 2} \quad \text { or } \quad X(\mu) \succeq \frac{1}{n} X^{*}
$$

Path Following Algorithms

Suppose we have an approximate central path point ($\mathbf{x}, \mathbf{y}, \mathbf{s}$) in a neighborhood of $(\mathbf{x}(\mu), \mathbf{y}(\mu), \mathbf{s}(\mu))$ for a given $\mu>0$. Then we consider to compute a new approximate central-path point ($X^{+}, \mathbf{y}^{+}, S^{+}$) corresponding to a chosen μ^{+}where $\mu>\mu^{+}>0$. If one repeats this process, then a sequence of approximate central-path points $\left(\mathbf{x}^{k}, \mathbf{y}^{k}, \mathbf{s}^{k}\right)$, corresponding to $\mu^{0}>\mu^{1}>\ldots>\mu^{k}, \ldots$, would be generated, and it converges to the optimal solution set as $\mu^{k} \rightarrow 0$.

If μ^{+}is close to μ, we expect $\left(\mathbf{x}\left(\mu^{+}\right), \mathbf{y}\left(\mu^{+}\right), \mathbf{s}\left(\mu^{+}\right)\right)$is also close to $(\mathbf{x}, \mathbf{y}, \mathbf{s})$, so that $(\mathbf{x}, \mathbf{y}, \mathbf{s})$ would be a good initial point for computing $\left(\mathrm{x}^{+}, \mathrm{y}^{+}, \mathrm{s}^{+}\right)$by numerical procedures such as Newton's method. Such an algorithm is called the path following algorithm.

Potential Reduction Algorithms

In practical computation, it is more efficient to generate iterative solutions in a large neighborhood as long as a merit function is monotonically decreasing, so that the greater the reduction of the function, the faster convergence of the iterative solutions to optimality. Such an algorithm is said function-driven. If the merit function is the objective function itself, a function-driven algorithm is likely to generate iterative solutions being prematurely too close to the boundary, and the convergence would be slow down in future iterations. A better driven function should balance the reduction of the objective function as well as a good position in the (interior) of the feasible region - we now present a potential function logarithmically combining the objective function and the barrier function.

Potential and Duality Gap in LP

For $\mathrm{x} \in \operatorname{int} \mathcal{F}_{p}$ and $(\mathbf{y}, \mathbf{s}) \in \operatorname{int} \mathcal{F}_{d}$, let parameter $\rho>0$ and

$$
\begin{gathered}
\psi_{n+\rho}(\mathbf{x}, \mathbf{s}):=(n+\rho) \log (\mathbf{x} \bullet \mathbf{s})-\sum_{j=1}^{n} \log \left(x_{j} s_{j}\right) \\
\psi_{n+\rho}(\mathbf{x}, \mathbf{s})=\rho \log (\mathbf{x} \bullet \mathbf{s})+\psi_{n}(\mathbf{x}, \mathbf{s}) \geq \rho \log (\mathbf{x} \bullet \mathbf{s})+n \log n
\end{gathered}
$$

then, $\psi_{n+\rho}(\mathbf{x}, \mathbf{s}) \rightarrow-\infty$ implies that $\mathrm{x} \bullet \mathrm{s} \rightarrow 0$. More precisely, we have

$$
\mathbf{x} \bullet \mathbf{s} \leq \exp \left(\frac{\psi_{n+\rho}(\mathbf{x}, \mathbf{s})-n \log n}{\rho}\right) .
$$

Potential Function in SDP

For any $X \in \operatorname{int} \mathcal{F}_{p}$ and $(\mathbf{y}, S) \in \operatorname{int} \mathcal{F}_{d}$, let parameter $\rho>0$ and

$$
\begin{gathered}
\psi_{n+\rho}(X, S):=(n+\rho) \log (X \bullet S)-\log (\operatorname{det}(X) \cdot \operatorname{det}(S)) \\
\psi_{n+\rho}(X, S)=\rho \log (X \bullet S)+\psi_{n}(X, S) \geq \rho \log (X \bullet S)+n \log n
\end{gathered}
$$

Then, $\psi_{n+\rho}(X, S) \rightarrow-\infty$ implies that $X \bullet S \rightarrow 0$. More precisely, we have

$$
X \bullet S \leq \exp \left(\frac{\psi_{n+\rho}(X, S)-n \log n}{\rho}\right)
$$

The Potential Reduction Algorithm

The potential reduction algorithm generates a sequence of $\left\{X^{k}, \mathbf{y}^{k}, S^{k}\right\} \in \operatorname{int} \mathcal{F}$ such that

$$
\psi_{n+\sqrt{n}}\left(X^{k+1}, S^{k+1}\right) \leq \psi_{n+\sqrt{n}}\left(X^{k}, S^{k}\right)-.05
$$

for $k=0,1,2, \ldots$.
This indicates that the potential level set shrinks at a constant rate independently of m or n, which leads to the duality gap converging toward zero.

Primal-Dual Potential Reduction Algorithm for SDP

Once we have a pair $(X, \mathbf{y}, S) \in \operatorname{int} \mathcal{F}$ with $\mu=S \bullet X / n$, we can apply the primal-dual Newton method to generate a new iterate X^{+}and $\left(\mathbf{y}^{+}, S^{+}\right)$as follows: Solve for D_{X}, \mathbf{d}_{y} and D_{S} from the system of linear equations:

$$
\begin{align*}
D^{-1} D_{X} D^{-1}+D_{S} & =R:=\frac{n}{n+\rho} \mu X^{-1}-S \\
\mathcal{A} D_{X} & =\mathbf{0} \tag{5}\\
-\mathcal{A}^{T} \mathbf{d}_{y}-D_{S} & =\mathbf{0}
\end{align*}
$$

where

$$
D=X^{.5}\left(X^{.5} S X^{.5}\right)^{-.5} X^{.5}
$$

Note that $D_{S} \bullet D_{X}=0$.

Primal-Dual Scaling

$$
\begin{align*}
D_{X^{\prime}}+D_{S^{\prime}} & =R^{\prime}, \\
\mathcal{A}^{\prime} D_{X^{\prime}} & =\mathbf{0}, \tag{6}\\
-\mathcal{A}^{\prime T} \mathbf{d}_{y}-D_{S^{\prime}} & =\mathbf{0},
\end{align*}
$$

where

$$
D_{X^{\prime}}=D^{-.5} D_{X} D^{-.5}, D_{S^{\prime}}=D^{.5} D_{S} D^{.5}, R^{\prime}=D^{.5}\left(\frac{n}{n+\rho} \mu X^{-1}-S\right) D^{.5}
$$

and

$$
\mathcal{A}^{\prime}=\left(\begin{array}{c}
A_{1}^{\prime} \\
A_{2}^{\prime} \\
\ldots \\
A_{m}^{\prime}
\end{array}\right):=\left(\begin{array}{c}
D^{.5} A_{1} D^{.5} \\
D^{.5} A_{2} D^{.5} \\
\ldots \\
D^{.5} A_{m} D^{.5}
\end{array}\right)
$$

Again, we have $D_{S^{\prime}} \bullet D_{X^{\prime}}=0$, and

$$
\mathbf{d}_{y}=\left(\mathcal{A}^{\prime} \mathcal{A}^{\prime T}\right)^{-1} \mathcal{A}^{\prime} R^{\prime}, D_{S^{\prime}}=-\mathcal{A}^{\prime T} \mathbf{d}_{y}, \text { and } D_{X^{\prime}}=R^{\prime}-D_{S^{\prime}}
$$

Or, we have

$$
D_{S}=-\mathcal{A}^{T} \mathbf{d}_{y} \quad \text { and } \quad D_{X}=D\left(R-D_{S}\right) D
$$

The role of ρ

If $\rho=\infty$, it steps toward the optimal solution characterized by the SDP optimality condition; if $\rho=0$, it steps toward the central path point $(X(\mu), \mathbf{y}(\mu), S(\mu))$.

If $0<\rho<\infty$, it steps toward a central path point with a smaller complementarity gap. We will show that when $\rho \geq \sqrt{n}$, then each iterate reduces the primal-dual potential function by at least a constant.

Logarithmic Approximation Lemma for SDP

Lemma 1 Let $D \in \mathcal{S}^{n}$ and $\|D\|_{\infty}<1$. Then,

$$
\operatorname{tr}(D) \geq \log \operatorname{det}(I+D) \geq \operatorname{tr}(D)-\frac{\|D\|^{2}}{2\left(1-\|D\|_{\infty}\right)}
$$

Proof: Let \mathbf{d} be the vector of eigenvalues of D. Then, $\mathbf{d} \in \mathcal{R}^{n}$ and $\|\mathbf{d}\|_{\infty}<1$, and we proceed to prove

$$
\mathbf{e}^{T} \mathbf{d} \geq \sum_{i=1}^{n} \log \left(1+d_{i}\right) \geq \mathbf{e}^{T} \mathbf{d}-\frac{\|\mathbf{d}\|^{2}}{2\left(1-\|\mathbf{d}\|_{\infty}\right)}
$$

The Bound on Potential Reduction for SDP

Let $V^{1 / 2}=D^{-.5} X D^{-.5}=D^{.5} S D^{.5} \in \operatorname{int} \mathcal{S}_{+}^{n}$. Then, one can verify that $S \bullet X=I \bullet V$.
Lemma 2 Let the direction $D_{X}, \mathrm{~d}_{y}$ and D_{S} be generated by equation (5), and let

$$
\begin{equation*}
\theta=\frac{\alpha}{\left\|V^{-1 / 2}\right\|_{\infty}\left\|\frac{I \bullet V}{n+\rho} V^{-1 / 2}-V^{1 / 2}\right\|} \tag{7}
\end{equation*}
$$

where α is a positive constant less than 1. Let

$$
X^{+}=X+\theta D_{X}, \quad y^{+}=y+\theta \mathbf{d}_{y}, \quad \text { and } \quad S^{+}=S+\theta D_{S}
$$

Then, $\left(X^{+}, \mathbf{y}^{+}, S^{+}\right) \in \operatorname{int} \mathcal{F}$ and

$$
\psi_{n+\rho}\left(X^{+}, S^{+}\right)-\psi_{n+\rho}(X, S) \leq-\alpha \frac{\left\|V^{-1 / 2}-\frac{n+\rho}{I \cdot V} V^{1 / 2}\right\|}{\left\|V^{-1 / 2}\right\|_{\infty}}+\frac{\alpha^{2}}{2(1-\alpha)}
$$

Technical Lemmas

Lemma 3 Let $V \in \operatorname{int} \mathcal{S}_{+}^{n}$ and $\rho \geq \sqrt{n}$. Then,

$$
\frac{\left\|V^{-1 / 2}-\frac{n+\rho}{I \bullet V} V^{1 / 2}\right\|}{\left\|V^{-1 / 2}\right\|_{\infty}} \geq \sqrt{3 / 4}
$$

Proof: Let \mathbf{v} be the vector of eigenvalues of V. Then $\mathbf{v} \in \mathcal{R}_{+}^{n}$, and for $\rho \geq \sqrt{n}$ we proceed to prove

$$
\sqrt{\min (\mathbf{v})}\left\|D(\mathbf{v})^{-1 / 2} \mathbf{e}-\frac{n+\rho}{\mathbf{e}^{T} \mathbf{v}} D(\mathbf{v})^{1 / 2} \mathbf{e}\right\| \geq \sqrt{3 / 4}
$$

From these lemmas

$$
\psi_{n+\rho}\left(X^{+}, S^{+}\right)-\psi_{n+\rho}(X, S) \leq-\alpha \sqrt{3 / 4}+\frac{\alpha^{2}}{2(1-\alpha)}
$$

By carefully choose α, we have a constant potential reduction in each iteration for SDP.

Description of Algorithm for SDP

Given $\left(X^{0}, y^{0}, S^{0}\right) \in \operatorname{int} \mathcal{F}$. Set $\rho=\sqrt{n}$ and $k:=0$.
While $S^{k} \cdot X^{k} \geq \epsilon$ do

1. Set $(X, S)=\left(X^{k}, S^{k}\right)$ and compute $\left(D_{X}, \mathbf{d}_{y}, D_{S}\right)$ from (5).
2. Let $X^{k+1}=X^{k}+\bar{\alpha} D_{X}, \mathbf{y}^{k+1}=\mathbf{y}^{k}+\bar{\alpha} \mathbf{d}_{y}$, and $S^{k+1}=S^{k}+\bar{\alpha} D_{S}$, where

$$
\bar{\alpha}=\arg \min _{\alpha \geq 0} \psi\left(X^{k}+\alpha D_{X}, S^{k}+\alpha D_{S}\right)
$$

3. Let $k:=k+1$ and return to Step 1.

Complexity of the Algorithm

Theorem 5 Let $\rho=\sqrt{n}$ and $\psi_{n+\rho}\left(X^{0}, S^{0}\right) \leq \rho \log \left(X^{0} \bullet S^{0}\right)+n \log n$. Then, the SDP Algorithm terminates in at most $O\left(\sqrt{n} \log \left(X^{0} \bullet S^{0} / \epsilon\right)\right.$ iterations with

$$
X^{k} \bullet S^{k}=C \bullet X^{k}-\mathbf{b}^{T} \mathbf{y}^{k} \leq \epsilon
$$

Practical Computational Difficulty:

- The iteration complexity of SDP is in the order of $O\left(m^{3}+m n^{3}+m^{2} n^{2}\right)$
- It has to solve a dense system of linear equations at each iteration
- In general, $n=10000$ is the bottle-neck for practical efficiency, in contrast to linear programming.

Dual Interior-Point Algorithm for SDP

An open question is how to exploit the sparsity structure by polynomial interior-point algorithms so that they can also solve large-scale problems in practice.

1. The computational cost of each iteration in the dual algorithm is less that the cost the primal-dual iterations.
2. In most combinatorial applications, we need only a lower bound for the optimal objective value of (SDP).
3. For large scale problems, S tends to be very sparse and structured since it is the linear combination of C and the A_{i} 's. This sparsity allows considerable savings in both memory and computation time.

Dual Algorithm: an Alternating Descent Method

$$
\phi_{n+\rho}(X, S)=\rho \ln (X \bullet S)-\ln \operatorname{det} X-\ln \operatorname{det} S
$$

Let $\bar{z}=C \bullet X$ for some fixed feasible X and consider the dual potential function

$$
\psi(\mathbf{y}, \bar{z})=\rho \ln \left(\bar{z}-\mathbf{b}^{T} \mathbf{y}\right)-\ln \operatorname{det} S
$$

Its gradient is

$$
\begin{equation*}
\nabla \psi(\mathbf{y}, \bar{z})=-\frac{\rho}{\bar{z}-\mathbf{b}^{T} \mathbf{y}} \mathbf{b}+\mathcal{A} S^{-1} \tag{8}
\end{equation*}
$$

We minimize over y first, then over X second. Recall

$$
\mathcal{A} X=\left(\begin{array}{c}
A_{1} \bullet X \\
\ldots \\
A_{m} \bullet X
\end{array}\right) \quad \text { and } \quad \mathcal{A}^{T} \mathbf{y}=\sum_{i=1}^{m} y_{i} A_{i}
$$

Over-Estimator of Potential

For any given y and $S=C-\mathcal{A}^{T} \mathbf{y} \succ \mathbf{0}$ and

$$
\left\|\left(S^{k}\right)^{-.5}\left(\mathcal{A}^{T}\left(\mathbf{y}-\mathbf{y}^{k}\right)\right)\left(S^{k}\right)^{-.5}\right\|<1
$$

$$
\begin{align*}
\psi(\mathbf{y}, & \left.\bar{z}^{k}\right)-\psi\left(\mathbf{y}^{k}, \bar{z}^{k}\right) \\
= & \rho \ln \left(\bar{z}^{k}-\mathbf{b}^{T} \mathbf{y}\right)-\rho \ln \left(\bar{z}^{k}-\mathbf{b}^{T} \mathbf{y}^{k}\right)-\ln \operatorname{det}\left(\left(S^{k}\right)^{-.5} S\left(S^{k}\right)^{-.5}\right) \\
\leq & -\frac{\rho}{\bar{z}^{k}-\mathbf{b}^{T} \mathbf{y}^{k}} \mathbf{b}^{T}\left(\mathbf{y}-\mathbf{y}^{k}\right)+I \bullet\left(\left(S^{k}\right)^{-.5} S\left(S^{k}\right)^{-.5}-I\right) \\
& +\frac{\left\|\left(S^{k}\right)^{-.5}\left(\mathcal{A}^{T}\left(\mathbf{y}-\mathbf{y}^{k}\right)\right)\left(S^{k}\right)^{-.5}\right\|}{2\left(1-\left\|\left(S^{k}\right)^{-.5}\left(\mathcal{A}^{T}\left(\mathbf{y}-\mathbf{y}^{k}\right)\right)\left(S^{k}\right)^{-.5}\right\|_{\infty}\right)} \tag{9}\\
= & -\frac{\rho}{\bar{z}^{k}-\mathbf{b}^{T} \mathbf{y}^{k}} \mathbf{b}^{T}\left(\mathbf{y}-\mathbf{y}^{k}\right)+\left(\mathcal{A}\left(S^{k}\right)^{-1}\right)^{T}\left(\mathbf{y}-\mathbf{y}^{k}\right) \\
& +\frac{\left\|\left(S^{k}\right)^{-.5}\left(\mathcal{A}^{T}\left(\mathbf{y}-\mathbf{y}^{k}\right)\right)\left(S^{k}\right)^{-.5}\right\|}{2\left(1-\left\|\left(S^{k}\right)^{-.5}\left(\mathcal{A}^{T}\left(\mathbf{y}-\mathbf{y}^{k}\right)\right)\left(S^{k}\right)^{-.5}\right\|_{\infty}\right)} \\
= & \nabla \psi\left(\mathbf{y}^{k}, \bar{z}^{k}\right)^{T}\left(\mathbf{y}-\mathbf{y}^{k}\right)+\frac{\left\|\left(S^{k}\right)^{-.5}\left(\mathcal{A}^{T}\left(\mathbf{y}-\mathbf{y}^{k}\right)\right)\left(S^{k}\right)^{-.5}\right\|}{2\left(1-\left\|\left(S^{k}\right)^{-.5}\left(\mathcal{A}^{T}\left(\mathbf{y}-\mathbf{y}^{k}\right)\right)\left(S^{k}\right)^{-.5}\right\|_{\infty}\right)} .
\end{align*}
$$

Solve the Ball Constrained Problem

$$
\begin{array}{ll}
\text { Minimize } & \nabla \psi^{T}\left(\mathbf{y}^{k}, \bar{z}^{k}\right)\left(\mathbf{y}-\mathbf{y}^{k}\right) \\
\text { subject to } & \left\|\left(S^{k}\right)^{-.5}\left(\mathcal{A}^{T}\left(\mathbf{y}-\mathbf{y}^{k}\right)\right)\left(S^{k}\right)^{-.5}\right\| \leq \alpha \tag{10}
\end{array}
$$

where α is a positive constant less than 1 that would be determined later.
For simplicity, in what follows we let the current duality gap be

$$
\Delta^{k}=\bar{z}^{k}-\mathbf{b}^{T} \mathbf{y}^{k}
$$

Optimality Conditions

The first order KKT conditions state that the minimum point, \mathbf{y}^{k+1}, of this convex minimization problem satisfies

$$
\begin{equation*}
M^{k}\left(\mathbf{y}^{k+1}-\mathbf{y}^{k}\right)+\beta \nabla \psi\left(\mathbf{y}^{k}, \bar{z}^{k}\right)=0 \tag{11}
\end{equation*}
$$

for a positive multiplier β, where

$$
M^{k}=\left(\begin{array}{ccc}
A_{1}\left(S^{k}\right)^{-1} \bullet\left(S^{k}\right)^{-1} A_{1} & \cdots & A_{1}\left(S^{k}\right)^{-1} \bullet\left(S^{k}\right)^{-1} A_{m} \\
\vdots & \ddots & \vdots \\
A_{m}\left(S^{k}\right)^{-1} \bullet\left(S^{k}\right)^{-1} A_{1} & \cdots & A_{m}\left(S^{k}\right)^{-1} \bullet\left(S^{k}\right)^{-1} A_{m}
\end{array}\right)
$$

The matrix M^{k} is a Gram matrix, and it is positive definite when $S^{k} \succ 0$ and A_{i} 's are linearly independent.

Close-Form Solution

Using the ellipsoidal constraint being tight, the minimal solution, \mathbf{y}^{k+1}, of (10) is given by a close form

$$
\begin{equation*}
\mathbf{y}^{k+1}-\mathbf{y}^{k}=\frac{\alpha}{\sqrt{\nabla \psi^{T}\left(\mathbf{y}^{k}, \bar{z}^{k}\right)\left(M^{k}\right)^{-1} \nabla \psi\left(\mathbf{y}^{k}, \bar{z}^{k}\right)}} \mathbf{d}\left(\bar{z}^{k}\right)_{y} \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{d}\left(\bar{z}^{k}\right)_{y}=-\left(M^{k}\right)^{-1} \nabla \psi\left(\mathbf{y}^{k}, \bar{z}^{k}\right) \tag{13}
\end{equation*}
$$

Potential Reduction

We can derive

$$
\begin{equation*}
\nabla \psi^{T}\left(\mathbf{y}^{k}, \bar{z}^{k}\right) \mathbf{d}\left(\bar{z}^{k}\right)_{y}=-\nabla \psi^{T}\left(\mathbf{y}^{k}, \bar{z}^{k}\right)\left(M^{k}\right)^{-1} \nabla \psi\left(\mathbf{y}^{k}, \bar{z}^{k}\right)=-\left\|P\left(\bar{z}^{k}\right)\right\|^{2} \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
P\left(\bar{z}^{k}\right)=\frac{\rho}{\Delta^{k}}\left(S^{k}\right)^{\cdot 5} X\left(\bar{z}^{k}\right)\left(S^{k}\right)^{\cdot 5}-I \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
X\left(\bar{z}^{k}\right)=\frac{\Delta^{k}}{\rho}\left(S^{k}\right)^{-1}\left(\mathcal{A}^{T} \mathbf{d}\left(\bar{z}^{k}\right)_{y}+S^{k}\right)\left(S^{k}\right)^{-1} \tag{16}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\psi\left(\mathbf{y}^{k+1}, \bar{z}^{k}\right)-\psi\left(\mathbf{y}^{k}, \bar{z}^{k}\right) \leq-\alpha\left\|P\left(\bar{z}^{k}\right)\right\|+\frac{\alpha^{2}}{2(1-\alpha)} \tag{17}
\end{equation*}
$$

Potential Primal Feasible Solution and its Objective Value

$X\left(\bar{z}^{k}\right)$ is actually the minimizer of the least squares problem

$$
\begin{gather*}
\text { Minimize }\left\|\left(S^{k}\right)^{5} X\left(S^{k}\right)^{.5}-\frac{\Delta^{k}}{\rho} I\right\| \tag{18}\\
\text { subject to } \mathcal{A} X=\mathbf{b} \\
C \bullet X\left(\bar{z}^{k}\right)=\mathbf{b}^{T} \mathbf{y}^{k}+S^{k} \bullet X\left(\bar{z}^{k}\right) \\
=\mathbf{b}^{T} \mathbf{y}^{k}+S^{k} \bullet\left(\frac{\Delta^{k}}{\rho}\left(S^{k}\right)^{-1}\left(\mathcal{A}^{T}\left(\mathbf{d}\left(\bar{z}^{k}\right)_{y}\right)+S^{k}\right)\left(S^{k}\right)^{-1}\right) \\
=\mathbf{b}^{T} \mathbf{y}^{k}+\frac{\Delta^{k}}{\rho} I \bullet\left(\left(S^{k}\right)^{-1} \mathcal{A}^{T}\left(d\left(\bar{z}^{k}\right)_{y}\right)+I\right) \\
=\mathbf{b}^{T} \mathbf{y}^{k}+\frac{\Delta^{k}}{\rho}\left(\mathbf{d}\left(\bar{z}^{k}\right)_{y}^{T}\left(\mathcal{A}\left(S^{k}\right)^{-1}\right)+n\right)
\end{gather*}
$$

Since the vectors $\mathcal{A}\left(S^{k}\right)^{-1}$ and $\mathbf{d}\left(\bar{z}^{k}\right)_{y}$ were calculated, the cost of computing a primal objective value is the cost of a vector dot product! But $X\left(\bar{z}^{k}\right)$ may not be PSD...

When the Primal is Feasible

We have the following lemma:
Lemma 4 Let $\mu^{k}=\frac{\Delta^{k}}{n}=\frac{\bar{z}^{k}-\mathbf{b}^{T} \mathbf{y}^{k}}{n}, \mu=\frac{X\left(\bar{z}^{k}\right) \bullet S^{k}}{n}=\frac{C \bullet X\left(\bar{z}^{k}\right)-\mathbf{b}^{T} \mathbf{y}^{k}}{n}, \rho \geq n+\sqrt{n}$, and $\alpha<1$. If

$$
\begin{equation*}
\left\|P\left(\bar{z}^{k}\right)\right\|<\min \left(\alpha \sqrt{\frac{n}{n+\alpha^{2}}}, 1-\alpha\right) \tag{19}
\end{equation*}
$$

then the following three inequalities hold:

1. $X\left(\bar{z}^{k}\right) \succ 0$;
2. $\left\|\left(S^{k}\right) \cdot{ }^{5} X\left(\bar{z}^{k}\right)\left(S^{k}\right) \cdot{ }^{5}-\mu I\right\| \leq \alpha \mu$;
3. $\mu \leq\left(1-\frac{\alpha}{2 \sqrt{n}}\right) \mu^{k}$.

Alternating Potential Reduction

Thus, if $\left\|P\left(\bar{z}^{k}\right)\right\| \geq \min \left(\alpha \sqrt{\frac{n}{n+\alpha^{2}}}, 1-\alpha\right)$, we update y^{k} to y^{k+1}; otherwise, we let $X^{k+1}=X\left(\bar{z}^{k}\right)$. In such alternating moves, we have

Theorem 6 Either the primal-dual potential

$$
\phi\left(X^{k}, S^{k+1}\right) \leq \phi\left(X^{k}, S^{k}\right)-\delta
$$

or

$$
\phi\left(X^{k+1}, S^{k}\right) \leq \phi\left(X^{k}, S^{k}\right)-\delta
$$

where $\delta>1 / 20$.

Description of Algorithm

DUAL ALGORITHM. Given an upper bound \bar{z}^{0} and a dual point $\left(\mathbf{y}^{0}, S^{0}\right)$ such that $S^{0}=C-\mathcal{A}^{T} \mathbf{y}^{0} \succ 0$, set $k=0, \rho>n+\sqrt{n}, \alpha \in(0,1)$, and do the following:
while $\bar{z}^{k}-\mathbf{b}^{T} \mathbf{y}^{k} \geq \epsilon$ do
begin

1. Compute $\mathcal{A}\left(S^{k}\right)^{-1}$ and formulate the Gram matrix M^{k}.
2. Solve (13) for the dual step direction $\mathbf{d}\left(\bar{z}^{k}\right)_{y}$.
3. Calculate $\left\|P\left(\bar{z}^{k}\right)\right\|$ using (14).
4. If (19) is true, then $X^{k+1}=X\left(\bar{z}^{k}\right), \bar{z}^{k+1}=C \bullet X^{k+1}$, and $\left(\mathbf{y}^{k+1}, S^{k+1}\right)=\left(\mathbf{y}^{k}, S^{k}\right)$; else $\mathbf{y}^{k+1}=\mathbf{y}^{k}+\frac{\alpha}{\left\|P\left(\bar{z}^{k}\right)\right\|} \mathbf{d}\left(\bar{z}^{k+1}\right)_{y}, S^{k+1}=C-\mathcal{A}^{T}\left(\mathbf{y}^{k+1}\right), X^{k+1}=X^{k}$, and $\bar{z}^{k+1}=\bar{z}^{k}$. endif
5. $k:=k+1$.
end Note that we do not need eigenvalue computation in evaluate $\left\|P\left(\bar{z}^{k}\right)\right\|$, but use

$$
\left\|P\left(\bar{z}^{k}\right)\right\|^{2}=\nabla \psi^{T}\left(\mathbf{y}^{k}, \bar{z}^{k}\right) \mathbf{d}\left(\bar{z}^{k}\right)_{y}
$$

Corollary 1 Let $\rho=\sqrt{n}$. Then, the Algorithm terminates in at most $O\left(\sqrt{n} \log \left(C \bullet X^{0}-\mathbf{b}^{T} \mathbf{y}^{0}\right) / \epsilon\right)$ iterations with

$$
C \bullet X^{k}-\mathbf{b}^{T} \mathbf{y}^{k} \leq \epsilon
$$

Formulation Work of M^{k}

Generally, $M_{i j}^{k}=A_{i}\left(S^{k}\right)^{-1} \bullet\left(S^{k}\right)^{-1} A_{j}$.
When $A_{i}=a_{i} a_{i}^{T}$, the Gram matrix can be rewritten in the form

$$
M^{k}=\left(\begin{array}{ccc}
\left(a_{1}^{T}\left(S^{k}\right)^{-1} a_{1}\right)^{2} & \cdots & \left(a_{1}^{T}\left(S^{k}\right)^{-1} a_{m}\right)^{2} \tag{20}\\
\vdots & \ddots & \vdots \\
\left(a_{m}^{T}\left(S^{k}\right)^{-1} a_{1}\right)^{2} & \cdots & \left(a_{m}^{T}\left(S^{k}\right)^{-1} a_{m}\right)^{2}
\end{array}\right)
$$

and

$$
\mathcal{A}\left(S^{k}\right)^{-1}=\left(\begin{array}{c}
a_{1}^{T}\left(S^{k}\right)^{-1} a_{1} \\
\vdots \\
a_{m}^{T}\left(S^{k}\right)^{-1} a_{m}
\end{array}\right)
$$

This matrix can be computed very quickly without computing, or saving, $\left(S^{k}\right)^{-1}$.

Quick Computation with the Rank-One Structure

Let $A^{T}=\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \ldots & \mathbf{a}_{m}\end{array}\right]$ and $A^{\prime}=A\left(S^{k}\right)^{-1 / 2}$. Then we have

$$
M^{k}=\left[A\left(S^{k}\right)^{-1} A^{T}\right]^{2}=\left[A^{\prime}\left(A^{\prime}\right)^{T}\right]^{2}
$$

and

$$
A\left(S^{k}\right)^{-1}=\operatorname{diag}\left(A\left(S^{k}\right)^{-1} A^{T}\right)=\operatorname{diag}\left(A^{\prime}\left(A^{\prime}\right)^{T}\right)
$$

Thus, M^{k} and the gradient vector can be computed in $O\left(n^{3}+n^{2} m+n m^{2}\right)$ arithmetic operations.
Then, the dual direction $\mathbf{d}(\cdot)_{y}$ can be computed in $O\left(m^{3}\right)$ operations.
The norm of $P(\cdot)$ can be checked in $O\left(m^{2}\right)$ operations and the new upper bound can be updated in $O(m)$ operations.

If needed, $X(\cdot)$ can be computed in $O\left(n^{3}+n^{2} m\right)$ operations.

Primal-Dual SDP Alternative Systems

A pair of SDP has two alternatives under mild conditions

$$
\text { (Solvable) } \begin{array}{rlrl}
\mathcal{A} X-\mathbf{b} & =\mathbf{0} \\
-\mathcal{A}^{T} \mathbf{y}+C & \succeq \mathbf{0}, \\
\mathbf{b}^{T} \mathbf{y}-C \bullet X & =0, & \text { or } & =\mathbf{A} X \\
& -\mathcal{A}^{T} \mathbf{y} & \succeq \mathbf{0}, \\
\mathbf{y} \text { free }, X & \succeq \mathbf{0} & \mathbf{b}^{T} \mathbf{y}-C \bullet X & >0, \\
\mathbf{y} \text { free, } X & \succeq \mathbf{0}
\end{array}
$$

An Integrated Homogeneous and Self-Dual System

The two alternative systems can be homogenized as one:

$$
\begin{aligned}
& \text { (HSDP) } \quad \mathcal{A} X-\mathbf{b} \tau=\mathbf{0} \\
& -\mathcal{A}^{T} \mathbf{y}+C \tau=\mathbf{s} \geq \mathbf{0}, \\
& \mathbf{b}^{T} \mathbf{y}-C \cdot X=\kappa \geq 0, \\
& \mathbf{y} \text { free, } X \succeq \mathbf{0}, \quad \tau \geq 0,
\end{aligned}
$$

where the three alternatives are

$$
\begin{aligned}
\text { (Solvable) }: & (\tau>0, \kappa=0) \\
\text { (Infeasible) }: & (\tau=0, \kappa>0) \\
\text { (All others) }: & (\tau=\kappa=0)
\end{aligned}
$$

