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Recall Conic LP

(CLP ) minimize c • x
subject to ai • x = bi, i = 1, 2, ...,m, x ∈ K,

where K is a convex cone.

Linear Programming (LP): c,ai,x ∈ Rn and K = Rn
+

Second-Order Cone Programming (SOCP): c,ai,x ∈ Rn and K = SOC

Semidefinite Programming (SDP): c,ai,x ∈ Sn and K = Mn
+

Note that cone K can be a product of many (different) convex cones.
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Dual of Conic LP

The dual problem to

(CLP ) minimize c • x
subject to ai • x = bi, i = 1, 2, ...,m, x ∈ K.

is

(CLD) maximize bTy

subject to
∑m

i yiai + s = c, s ∈ K∗,

where y ∈ Rm are the dual variables, s is called the dual slack vector/matrix, and K∗ is the dual cone of

K .

Theorem 1 (Weak duality theorem)

c • x− bTy = x • s ≥ 0

for any feasible x of (CLP) and (y, s) of (CLD).
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Self-Dual Cones Again

Frequently, K∗ = K , that is, they are self-dual.

The dual of the n-dimensional non-negative orthant, Rn
+ = {x ∈ Rn : x ≥ 0}, is Rn

+; it is self-dual.

The dual of the positive semi-definite symmetric matrix cone in Sn, Sn
+, is Sn

+; it is self-dual.

The dual of the second-order cone, {x ∈ Rn : x1 ≥ ∥x−1∥}, is also the second-order cone; it is

self-dual.
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SOCP Examples

minimize


2

1

1

 • x

subject to


1

1

1

 • x = 1, x ∈ SOC.

Dual:

maximize y

subject to


2

1

1

− y ·


1

1

1

 = s ∈ SOC.
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SDP Examples

minimize

 2 .5

.5 1

 •X

subject to

 1 .5

.5 1

 •X = 1, X ≽ 0.

Dual:

maximize y

subject to

 2 .5

.5 1

− y ·

 1 .5

.5 1

 = S ≽ 0,
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Conic Linear Programming in Compact Form

(CLP ) minimize c • x
subject to Ax = b,

x ∈ K.

(CLD) maximize bTy

subject to ATy + s = c,

s ∈ K∗.

Denote by Fp and Fd the primal and dual feasible sets, respectively.
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Optimality Conditions for CLP

c • x− bTy = 0

Ax = b

−ATy − s = −c

x ∈ K, s ∈ K∗ .

, (1)

Or

x • s = 0

Ax = b

−ATy − s = −c

x ∈ K, s ∈ K∗ .

(2)
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Barrier Functions for Convex Cones

A differentiable function B(x) is called barrier function for a closed convex cone K if for the sequence

{xk ∈ intK}, k = 1, . . .,

xk → ∂K ⇒ B(xk) → ∞,

where ∂K represents the boundary of K . x • (−∇B(x)) is called the barrier-coefficient of B(x),

denoted by ν; and a point in intK is called the central point if it is a fixed point of

x = −∇B(x),

denoted by ec.
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Logarithmic Barrier Functions

• Rn
+:

B(x) = −
n∑

j=1

ln(xj), ∇B(x) = −∆(x)−1e, ∇2B(x) = ∆(x)−2 ∈ Sn.

The central point is e, the vector of all ones, and the barrier-coefficient is

x • (−∇B(x)) = x •∆(x)−1e = n.

• Sn
+:

B(X) = − ln det(X), ∇B(X) = −X−1,

∇2B(X) = {∂2B(X)/∂Xij∂Xkl = X−1
ik X

−1jl} = X−1 ⊗X−1 ∈ Sn2

,

where ⊗ stands for matrix Kronecker product. The central point is I , the identity matrix, and the

barrier-coefficient is X • (−∇B(X)) = X •X−1 = n.
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• Nn
2 :

B(x) = −1

2
ln(x21 − ∥x−1∥2), ∇B(x) =

1

δ(x)2

 −x1
x−1

 ,

∇2B(x) =
1

δ(x)2

 −1 0

0 I

+
2

δ(x)4

 x1

−x−1

 x1

−x−1

T

,

where δ(x) =
√
x21 − ∥x−1∥2. The central point is e1, the unit vector with 1 as its first element

and zero everywhere else, and the barrier-coefficient is

x • (−∇B(x)) = x • −1

δ(x)2

 −x1
x−1

 = 1.
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• The mixed cone K = K1 ⊕K2, that is, x = [x1;x2] where x1 ∈ K1 and X2 ∈ K2:

B(x) = B1(x1) +B2(x2)

where B1(·) and B2(·) are barrier functions for K1 and K2, respectively. The barrier-coefficient is

the sum of the barrier-coefficients of the two cones.
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The Central Path

Consider (CLP) with the µ-weighted barrier function added in the objective:

(CLPB) minimize c • x+ µB(x)

s.t. Ax = b,

x ∈ K;

or (CLD) with the µ-weighted barrier function added in the objective:

(CLDB) maximize bTy − µB(s)

s.t. ATy + s = c,

s ∈ K∗.

Theorem 2 Let both (CLP) and (CLD) have interior feasible solutions. Then, for any given 0 < µ <∞,

the optimizers of (CLPB) and (CLDB) exist and they are unique and in the interior of cone K and K∗,

respectively. As µ continuously varies toward zero, they form a path (called the central path) converging to

an interior point in the optimal face.
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The Central Path Equations

For any given µ > 0, the optimizers of (CLPB) have necessary and sufficient conditions:

c+ µ∇B(x)−ATy = 0

Ax = b

Let s = c−ATy. Then the conditions become

s+ µ∇B(x) = 0

Ax = b

−ATy − s = −c.

(3)

One can verify that s = −µ∇B(x) ∈ intK∗.
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Similarly, the optimizers of (CLDB) have necessary and sufficient conditions:

x+ µ∇B(s) = 0

Ax = b

−ATy − s = −c.

(4)

One can verify that x = −µ∇B(s) ∈ intK .
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Symmetric Central Path Equations for Self-dual Cones

Linear Programming:

x. · s = µe

Ax = b

−ATy − s = −c

where µ =
xT s

n
.

Second-Order Cone Programming:

x. · s = µe1

Ax = b

−ATy − s = −c

where µ = xT s.

Semidefinite Programming:

XS = µI

AX = b

−ATy − S = −C

where µ =
X • S
n

.
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Central Path Properties for LP

Theorem 3 Let (x(µ),y(µ), s(µ)) be on the central path of an linear program in standard form.

i) The central path point (x(µ), s(µ)) is bounded for 0 < µ ≤ µ0 and any given 0 < µ0 <∞.

ii) For 0 < µ′ < µ,

cTx(µ′) < cTx(µ) and bTy(µ′) > bTy(µ)

if both primal and dual have nontrivial optimal solutions.

iii) (x(µ), s(µ)) converges to an optimal solution pair for (LP) and (LD). Moreover, the limit point

x(0)P∗ > 0 and the limit point s(0)Z∗ > 0, where (P ∗, Z∗) is the strictly complementarity

partition of the index set {1, 2, ..., n}.
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Central Path Properties for SDP

Theorem 4 Let (X(µ),y(µ), S(µ)) be on the central path of an SDP in standard form.

i) The central path point (X(µ), S(µ)) is bounded for 0 < µ ≤ µ0 and any given 0 < µ0 <∞.

ii) For 0 < µ′ < µ,

C •X(µ′) < C •X(µ) and bTy(µ′) > bTy(µ)

if both primal and dual have nontrivial optimal solutions.

iii) (X(µ), S(µ)) converges to an optimal solution pair for (SDP) and (SDD). Moreover, the limit point is

a maximal rank complementarity solution pair.
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Proof Sketch

Let X∗ and S∗ be max-rank optimal solutions for the primal and dual respectively. Then from

(X(µ)−X∗) • (S(µ)− S∗) = 0

we have

X(µ) • S∗ + S(µ) •X∗ = nµ

which further implies

S(µ)−1 • S∗ +X(µ)−1 •X∗ = n.

Thus,

X(µ)−1 •X∗ ≤ n

or
X(µ)−1/2X∗X(µ)−1/2 • I ≤ n.

Thus, all eigenvalues of X(µ)−1/2X∗X(µ)−1/2 must be bounded above by n or

n · I ≽ X(µ)−1/2X∗X(µ)−1/2 or X(µ) ≽ 1

n
X∗.
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Path Following Algorithms

Suppose we have an approximate central path point (x,y, s) in a neighborhood of (x(µ),y(µ), s(µ))

for a given µ > 0. Then we consider to compute a new approximate central-path point (X+,y+, S+)

corresponding to a chosen µ+ where µ > µ+ > 0. If one repeats this process, then a sequence of

approximate central-path points (xk,yk, sk), corresponding to µ0 > µ1 > ... > µk, ..., would be

generated, and it converges to the optimal solution set as µk → 0.

If µ+ is close to µ, we expect (x(µ+),y(µ+), s(µ+)) is also close to (x,y, s), so that (x,y, s) would

be a good initial point for computing (x+,y+, s+) by numerical procedures such as Newton’s method.

Such an algorithm is called the path following algorithm.
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Potential Reduction Algorithms

In practical computation, it is more efficient to generate iterative solutions in a large neighborhood as long

as a merit function is monotonically decreasing, so that the greater the reduction of the function, the faster

convergence of the iterative solutions to optimality. Such an algorithm is said function-driven. If the merit

function is the objective function itself, a function-driven algorithm is likely to generate iterative solutions

being prematurely too close to the boundary, and the convergence would be slow down in future iterations.

A better driven function should balance the reduction of the objective function as well as a good position in

the (interior) of the feasible region – we now present a potential function logarithmically combining the

objective function and the barrier function.
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Potential and Duality Gap in LP

For x ∈ intFp and (y, s) ∈ intFd, let parameter ρ > 0 and

ψn+ρ(x, s) := (n+ ρ) log(x • s)−
n∑

j=1

log(xjsj),

ψn+ρ(x, s) = ρ log(x • s) + ψn(x, s) ≥ ρ log(x • s) + n log n,

then, ψn+ρ(x, s) → −∞ implies that x • s → 0. More precisely, we have

x • s ≤ exp(
ψn+ρ(x, s)− n log n

ρ
).
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Potential Function in SDP

For any X ∈ intFp and (y, S) ∈ intFd, let parameter ρ > 0 and

ψn+ρ(X,S) := (n+ ρ) log(X • S)− log(det(X) · det(S)),

ψn+ρ(X,S) = ρ log(X • S) + ψn(X,S) ≥ ρ log(X • S) + n log n.

Then, ψn+ρ(X,S) → −∞ implies that X • S → 0. More precisely, we have

X • S ≤ exp(
ψn+ρ(X,S)− n log n

ρ
).
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The Potential Reduction Algorithm

The potential reduction algorithm generates a sequence of {Xk,yk, Sk} ∈ intF such that

ψn+
√
n(X

k+1, Sk+1) ≤ ψn+
√
n(X

k, Sk)− .05

for k = 0, 1, 2, ....

This indicates that the potential level set shrinks at a constant rate independently of m or n, which leads to

the duality gap converging toward zero.
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Primal-Dual Potential Reduction Algorithm for SDP

Once we have a pair (X,y, S) ∈ intF with µ = S •X/n, we can apply the primal-dual Newton

method to generate a new iterate X+ and (y+, S+) as follows: Solve for DX , dy and DS from the

system of linear equations:

D−1DXD
−1 +DS = R := n

n+ρµX
−1 − S,

ADX = 0,

−ATdy −DS = 0,

(5)

where

D = X .5(X .5SX .5)−.5X .5.

Note that DS •DX = 0.
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Primal-Dual Scaling

DX′ +DS′ = R′,

A′DX′ = 0,

−A′Tdy −DS′ = 0,

(6)

where

DX′ = D−.5DXD
−.5, DS′ = D.5DSD

.5, R′ = D.5

(
n

n+ ρ
µX−1 − S

)
D.5,

and

A′ =


A′

1

A′
2

...

A′
m

 :=


D.5A1D

.5

D.5A2D
.5

...

D.5AmD
.5

 .
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Again, we have DS′ •DX′ = 0, and

dy = (A′A′T )−1A′R′, DS′ = −A′Tdy, and DX′ = R′ −DS′ .

Or, we have

DS = −ATdy and DX = D(R−DS)D.
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The role of ρ

If ρ = ∞, it steps toward the optimal solution characterized by the SDP optimality condition; if ρ = 0, it

steps toward the central path point (X(µ),y(µ), S(µ)).

If 0 < ρ <∞, it steps toward a central path point with a smaller complementarity gap. We will show that

when ρ ≥
√
n, then each iterate reduces the primal-dual potential function by at least a constant.
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Logarithmic Approximation Lemma for SDP

Lemma 1 Let D ∈ Sn and ∥D∥∞ < 1. Then,

tr(D) ≥ log det(I +D) ≥ tr(D)− ∥D∥2

2(1− ∥D∥∞)
.

Proof: Let d be the vector of eigenvalues ofD. Then, d ∈ Rn and ∥d∥∞ < 1, and we proceed to prove

eTd ≥
n∑

i=1

log(1 + di) ≥ eTd− ∥d∥2

2(1− ∥d∥∞)
.
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The Bound on Potential Reduction for SDP

Let V 1/2 = D−.5XD−.5 = D.5SD.5 ∈ intSn
+. Then, one can verify that S •X = I • V .

Lemma 2 Let the direction DX , dy and DS be generated by equation (5), and let

θ =
α

∥V −1/2∥∞∥ I•V
n+ρV

−1/2 − V 1/2∥
, (7)

where α is a positive constant less than 1. Let

X+ = X + θDX , y+ = y + θdy, and S+ = S + θDS .

Then, (X+,y+, S+) ∈ intF and

ψn+ρ(X
+, S+)− ψn+ρ(X,S) ≤ −α

∥V −1/2 − n+ρ
I•V V

1/2∥
∥V −1/2∥∞

+
α2

2(1− α)
.
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Technical Lemmas

Lemma 3 Let V ∈ intSn
+ and ρ ≥

√
n. Then,

∥V −1/2 − n+ρ
I•V V

1/2∥
∥V −1/2∥∞

≥
√
3/4.

Proof: Let v be the vector of eigenvalues of V . Then v ∈ Rn
+, and for ρ ≥

√
n we proceed to prove√

min(v)∥D(v)−1/2e− n+ ρ

eTv
D(v)1/2e∥ ≥

√
3/4 .

From these lemmas

ψn+ρ(X
+, S+)− ψn+ρ(X,S) ≤ −α

√
3/4 +

α2

2(1− α)
.

By carefully choose α, we have a constant potential reduction in each iteration for SDP.
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Description of Algorithm for SDP

Given (X0, y0, S0) ∈ intF . Set ρ =
√
n and k := 0.

While Sk •Xk ≥ ϵ do

1. Set (X,S) = (Xk, Sk) and compute (DX ,dy, DS) from (5).

2. Let Xk+1 = Xk + ᾱDX , yk+1 = yk + ᾱdy , and Sk+1 = Sk + ᾱDS , where

ᾱ = argmin
α≥0

ψ(Xk + αDX , S
k + αDS).

3. Let k := k + 1 and return to Step 1.
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Complexity of the Algorithm

Theorem 5 Let ρ =
√
n and ψn+ρ(X

0, S0) ≤ ρ log(X0 • S0) + n log n. Then, the SDP Algorithm

terminates in at most O(
√
n log(X0 • S0/ϵ) iterations with

Xk • Sk = C •Xk − bTyk ≤ ϵ.

Practical Computational Difficulty:

• The iteration complexity of SDP is in the order of O(m3 +mn3 +m2n2)

• It has to solve a dense system of linear equations at each iteration

• In general, n = 10000 is the bottle-neck for practical efficiency, in contrast to linear programming.

33



MS&E310 Lecture Note #15

Dual Interior-Point Algorithm for SDP

An open question is how to exploit the sparsity structure by polynomial interior-point algorithms so that

they can also solve large-scale problems in practice.

1. The computational cost of each iteration in the dual algorithm is less that the cost the primal-dual

iterations.

2. In most combinatorial applications, we need only a lower bound for the optimal objective value of

(SDP).

3. For large scale problems, S tends to be very sparse and structured since it is the linear combination of

C and the Ai’s. This sparsity allows considerable savings in both memory and computation time.
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Dual Algorithm: an Alternating Descent Method

ϕn+ρ(X,S) = ρ ln(X • S)− ln detX − ln detS.

Let z̄ = C •X for some fixed feasible X and consider the dual potential function

ψ(y, z̄) = ρ ln(z̄ − bTy)− ln detS.

Its gradient is

∇ψ(y, z̄) = − ρ

z̄ − bTy
b+AS−1. (8)

We minimize over y first, then over X second. Recall

AX =


A1 •X
...

Am •X

 and ATy =

m∑
i=1

yiAi.
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Over-Estimator of Potential

For any given y and S = C −ATy ≻ 0 and

∥(Sk)−.5
(
AT (y − yk)

)
(Sk)−.5∥ < 1,

ψ(y, z̄k)− ψ(yk, z̄k)

= ρ ln(z̄k − bTy)− ρ ln(z̄k − bTyk)− ln det((Sk)−.5S(Sk)−.5)

≤ − ρ
z̄k−bTykb

T (y − yk) + I • ((Sk)−.5S(Sk)−.5 − I)

+
∥(Sk)−.5(AT (y−yk))(Sk)−.5∥

2(1−∥(Sk)−.5(AT (y−yk))(Sk)−.5∥∞)

= − ρ
z̄k−bTykb

T (y − yk) + (A(Sk)−1)T (y − yk)

+
∥(Sk)−.5(AT (y−yk))(Sk)−.5∥

2(1−∥(Sk)−.5(AT (y−yk))(Sk)−.5∥∞)

= ∇ψ(yk, z̄k)T (y − yk) +
∥(Sk)−.5(AT (y−yk))(Sk)−.5∥

2(1−∥(Sk)−.5(AT (y−yk))(Sk)−.5∥∞)
.

(9)
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Solve the Ball Constrained Problem

Minimize ∇ψT (yk, z̄k)(y − yk)

subject to ∥(Sk)−.5
(
AT (y − yk)

)
(Sk)−.5∥ ≤ α,

(10)

where α is a positive constant less than 1 that would be determined later.

For simplicity, in what follows we let the current duality gap be

∆k = z̄k − bTyk.
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Optimality Conditions

The first order KKT conditions state that the minimum point, yk+1, of this convex minimization problem

satisfies

Mk(yk+1 − yk) + β∇ψ(yk, z̄k) = 0 (11)

for a positive multiplier β, where

Mk =


A1(S

k)−1 • (Sk)−1A1 · · · A1(S
k)−1 • (Sk)−1Am

...
. . .

...

Am(Sk)−1 • (Sk)−1A1 · · · Am(Sk)−1 • (Sk)−1Am


The matrix Mk is a Gram matrix, and it is positive definite when Sk ≻ 0 and Ai’s are linearly

independent.
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Close-Form Solution

Using the ellipsoidal constraint being tight, the minimal solution, yk+1, of (10) is given by a close form

yk+1 − yk =
α√

∇ψT (yk, z̄k)(Mk)−1∇ψ(yk, z̄k)
d(z̄k)y (12)

where

d(z̄k)y = −(Mk)−1∇ψ(yk, z̄k). (13)
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Potential Reduction

We can derive

∇ψT (yk, z̄k)d(z̄k)y = −∇ψT (yk, z̄k)(Mk)−1∇ψ(yk, z̄k) = −∥P (z̄k)∥2 (14)

where

P (z̄k) =
ρ

∆k
(Sk).5X(z̄k)(Sk).5 − I, (15)

and

X(z̄k) =
∆k

ρ
(Sk)−1

(
ATd(z̄k)y + Sk

)
(Sk)−1. (16)

Thus,

ψ(yk+1, z̄k)− ψ(yk, z̄k) ≤ −α∥P (z̄k)∥+ α2

2(1− α)
. (17)
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Potential Primal Feasible Solution and its Objective Value

X(z̄k) is actually the minimizer of the least squares problem

Minimize ∥(Sk).5X(Sk).5 − ∆k

ρ I∥
subject to AX = b.

(18)

C •X(z̄k) = bTyk + Sk •X(z̄k)

= bTyk + Sk •
(

∆k

ρ (Sk)−1
(
AT (d(z̄k)y) + Sk

)
(Sk)−1

)
= bTyk + ∆k

ρ I •
(
(Sk)−1AT (d(z̄k)y) + I

)
= bTyk + ∆k

ρ

(
d(z̄k)Ty (A(Sk)−1) + n

)
Since the vectors A(Sk)−1 and d(z̄k)y were calculated, the cost of computing a primal objective value

is the cost of a vector dot product!

But X(z̄k) may not be PSD...
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When the Primal is Feasible

We have the following lemma:

Lemma 4 Let µk = ∆k

n = z̄k−bTyk

n , µ = X(z̄k)•Sk

n = C•X(z̄k)−bTyk

n , ρ ≥ n+
√
n, and α < 1.

If

∥P (z̄k)∥ < min

(
α

√
n

n+ α2
, 1− α

)
, (19)

then the following three inequalities hold:

1. X(z̄k) ≻ 0;

2. ∥(Sk).5X(z̄k)(Sk).5 − µI∥ ≤ αµ;

3. µ ≤ (1− α
2
√
n
)µk.
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Alternating Potential Reduction

Thus, if ∥P (z̄k)∥ ≥ min
(
α
√

n
n+α2 , 1− α

)
, we update yk to yk+1; otherwise, we let

Xk+1 = X(z̄k). In such alternating moves, we have

Theorem 6 Either the primal-dual potential

ϕ(Xk, Sk+1) ≤ ϕ(Xk, Sk)− δ

or

ϕ(Xk+1, Sk) ≤ ϕ(Xk, Sk)− δ,

where δ > 1/20.
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Description of Algorithm

DUAL ALGORITHM. Given an upper bound z̄0 and a dual point (y0, S0) such that

S0 = C −ATy0 ≻ 0, set k = 0, ρ > n+
√
n, α ∈ (0, 1), and do the following:

while z̄k − bTyk ≥ ϵ do

begin

1. Compute A(Sk)−1 and formulate the Gram matrix Mk.

2. Solve (13) for the dual step direction d(z̄k)y .

3. Calculate ∥P (z̄k)∥ using (14).

4. If (19) is true, then Xk+1 = X(z̄k), z̄k+1 = C •Xk+1, and (yk+1, Sk+1) = (yk, Sk);

else yk+1 = yk + α
∥P (z̄k)∥d(z̄

k+1)y , Sk+1 = C −AT (yk+1), Xk+1 = Xk, and z̄k+1 = z̄k.

endif

5. k := k + 1.

44



MS&E310 Lecture Note #15

end Note that we do not need eigenvalue computation in evaluate ∥P (z̄k)∥, but use

∥P (z̄k)∥2 = ∇ψT (yk, z̄k)d(z̄k)y.

Corollary 1 Let ρ =
√
n. Then, the Algorithm terminates in at most O(

√
n log(C •X0 − bTy0)/ϵ)

iterations with

C •Xk − bTyk ≤ ϵ.
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Formulation Work of Mk

Generally, Mk
ij = Ai(S

k)−1 • (Sk)−1Aj .

When Ai = aia
T
i , the Gram matrix can be rewritten in the form

Mk =


(aT1 (S

k)−1a1)
2 · · · (aT1 (S

k)−1am)2

...
. . .

...

(aTm(Sk)−1a1)
2 · · · (aTm(Sk)−1am)2

 (20)

and

A(Sk)−1 =


aT1 (S

k)−1a1
...

aTm(Sk)−1am

 .

This matrix can be computed very quickly without computing, or saving, (Sk)−1.
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Quick Computation with the Rank-One Structure

Let AT = [a1 a2 ... am] and A′ = A(Sk)−1/2. Then we have

Mk = [A(Sk)−1AT ]2 = [A′(A′)T ]2

and

A(Sk)−1 = diag(A(Sk)−1AT ) = diag(A′(A′)T ).

Thus, Mk and the gradient vector can be computed in O(n3 + n2m+ nm2) arithmetic operations.

Then, the dual direction d(·)y can be computed in O(m3) operations.

The norm of P (·) can be checked in O(m2) operations and the new upper bound can be updated in

O(m) operations.

If needed, X(·) can be computed in O(n3 + n2m) operations.
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Primal-Dual SDP Alternative Systems

A pair of SDP has two alternatives under mild conditions

(Solvable) AX − b = 0

−ATy + C ≽ 0,

bTy − C •X = 0,

y free, X ≽ 0

or

(Infeasible) AX = 0

−ATy ≽ 0,

bTy − C •X > 0,

y free, X ≽ 0
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An Integrated Homogeneous and Self-Dual System

The two alternative systems can be homogenized as one:

(HSDP ) AX − bτ = 0

−ATy + Cτ = s ≥ 0,

bTy − C •X = κ ≥ 0,

y free, X ≽ 0, τ ≥ 0,

where the three alternatives are

(Solvable) : (τ > 0, κ = 0)

(Infeasible) : (τ = 0, κ > 0)

(All others) : (τ = κ = 0).
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