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Recall Conic LP '

(CLP) minimize cex
subjectto a;ex=2"b;,1 =1,2,....m, x € K,
where /K is a convex cone.
Linear Programming (LP): ¢, a;,x € R™ and K = R
Second-Order Cone Programming (SOCP): c,a;,x € R™ and K = SOC
Semidefinite Programming (SDP): ¢, a;,x € §" and K = M}

Note that cone /& can be a product of many (different) convex cones.
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Dual of Conic LP '

The dual problem to

(CLP) minimize cex

subjectto a;ex=20b;,1=1,2,....m, x € K.

(CLD) maximize bly
subjectto > 'ya; +s=c, s € K*,

where y € R are the dual variables, s is called the dual slack vector/matrix, and /<™ is the dual cone of
K.

Theorem 1 (Weak duality theorem)
T, _
cex—b'y=xes>0

for any feasible x of (CLP) and (y,s) of (CLD).
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Self-Dual Cones Again I

Frequently, /{* = K, that is, they are self-dual.
The dual of the n-dimensional non-negative orthant, R’} = {x € R" : x > 0}, is R'!; it is self-dual.

The dual of the positive semi-definite symmetric matrix cone in ™, S, is S'!; it is self-dual.

}, is also the second-order cone; it is

The dual of the second-order cone, {x € R" : x1 > ||x_{]

self-dual.
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Dual:

SOCP Examples I

2
minimize 1 ® X
1
1
subject to 1 |ex=1 xe€ SOC.
1
maximize Yy
2 1
subject to 1 |-y | 1 | =s€S0OC.
1 1
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Dual:

SDP Examples I

minimize o X

1 .5
subject to e X =1, X ~0.

maximize Yy

subject to — - . =5 >0,
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Conic Linear Programming in Compact Form I

(CLP) minimize cex
subjectto  Ax = b,
x € K.

(CLD) maximize bly
subjectto Aly +s=c,
s e K™.

Denote by /-, and JF; the primal and dual feasible sets, respectively.
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Or

Optimality Conditions for CLP I

cex —bly
Ax

~Aly —s

x e K, se K*

X0®S

~Aly —s
x e K, se K*
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Barrier Functions for Convex Cones '

A differentiable function B(x) is called barrier function for a closed convex cone K if for the sequence
(xFcint K}, k=1,..,
x" -+ 0K = B(x")— oo,

where O K represents the boundary of /. x e (—V B(x)) is called the barrier-coefficient of B(x),
denoted by /; and a point in int /& is called the central point if it is a fixed point of

x = —VB(x),

denoted by e°.
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Logarithmic Barrier Functions I

o RY:
B(x) =—)» In(z;), VB(x) = —A(x)'e, V’B(x) = A(x) > € ™.
j=1
The central point is €, the vector of all ones, and the barrier-coefficient is
xe (—VB(x)) =xeA(x)"te =n.

o S
B(X) = —Indet(X), VB(X) = -X1,

V2B(X) = {8°B(X)/0X;;0Xp = X' X G} =X "o X s,
where & stands for matrix Kronecker product. The central point is /, the identity matrix, and the

barrier-coefficientis X o (—VB(X)) = X ¢ X1 =n,

10
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° ./\/‘2”:
1 1 —T
B(x) = —=In(2? — [|x_1||? B(x) =
(X) H(CEl HX 1” )7 v ( ) 5(}()2 X ’
T
1 —1 0 2 1 I1
VQB X) = + y
(%) 6(x)? 0 I o(x)* —X_1 —X_1

where 0(x) = \/2? — ||x_1]|2. The central point is €1, the unit vector with 1 as its first element
and zero everywhere else, and the barrier-coefficient is

—1 —I

6(X>2 X_1

xe(—VB(x)) =xe

11
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e The mixed cone ' = K1 @ K, thatis, x = [x1;X5| where x; € K7 and X5 € Ko:
B(x) = Bi(x1) + Ba(x2)

where B (-) and Bs(-) are barrier functions for /' and K5, respectively. The barrier-coefficient is

the sum of the barrier-coefficients of the two cones.

12



MS&E310 Lecture Note #15

The Central Path '

Consider (CLP) with the 11-weighted barrier function added in the objective:

(CLPB) minimize cex+ uB(x)
S.t. Ax = b,
X € K;

or (CLD) with the p-weighted barrier function added in the objective:

(CLDB) maximize bly — uB(s)
S.t. Al'y +s=c,
s e K*.

Theorem 2 Let both (CLP) and (CLD) have interior feasible solutions. Then, for any given 0 < 1 < 00,
the optimizers of (CLPB) and (CLDB) exist and they are unique and in the interior of cone I and K *,

respectively. As | continuously varies toward zero, they form a path (called the central path) converging to
an interior point in the optimal face.

13
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The Central Path Equations I

For any given 11 > (), the optimizers of (CLPB) have necessary and sufficient conditions:

c+uVB(x)-Aly = 0
Ax =

Lets = ¢ — A’'y. Then the conditions become

s+uVB(x) = 0
Ax =
~Aly—-s = -—c.

One can verify that s = —uV B(x) € int K*.

14
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Similarly, the optimizers of (CLDB) have necessary and sufficient conditions:

x+uVB(s) = 0
Ax =
~Aly —s = —c.

One can verify that x = —uV B(s) € int K.

15
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Symmetric Central Path Equations for Self-dual Cones I

Linear Programming:

X.:S = e

x!'s
Ax = b where p = ——.
n
~Aly —-s = —c
Second-Order Cone Programming:
X.*S = uex
Ax = Db where 1 = x!'s.
~Aly —-s = —c
Semidefinite Programming:
XS = ul
Xe§S
AX =D where (1 =
n
—Aly-S§ = -C

16
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Central Path Properties for LP I

Theorem 3 Let (x(11),y(14),s(14)) be on the central path of an linear program in standard form.

i) The central path point (x(11),s()) is bounded for 0 < ;1 < ¥ and any given 0 < ;¥ < oc.
i) ForO < p/ < p,
c'x(u') < c'x(u) and bly(u') >by(n)
if both primal and dual have nontrivial optimal solutions.
iii) (x(1),s(p)) converges to an optimal solution pair for (LP) and (LD). Moreover, the limit point

x(0) p+ > 0 and the limit points(0) z= > 0, where (P*, Z™) is the strictly complementarity
partition of the index set {1,2, ....n}.

17
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Central Path Properties for SDP I

Theorem 4 Let (X (1), y (1), S(1t)) be on the central path of an SDP in standard form.

i) The central path point (X (1), S(11)) is bounded for 0 < 11 < ¥ and any given 0 < ¥ < oc.
ii) ForO < i/ <,
CeX(y')<CeX(p) and bly(u')>by(u)

if both primal and dual have nontrivial optimal solutions.

iii) (X (1), S(1)) converges to an optimal solution pair for (SDP) and (SDD). Moreover, the limit point is
a maximal rank complementarity solution pair.

18
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Proof Sketch '

Let X ™ and S™ be max-rank optimal solutions for the primal and dual respectively. Then from
(X() — X*) o (S() — §%) = 0
we have
X(p) oS +5(n) e X* =np

which further implies

S(p) teS*+X(u) e X* =n.
Thus,

X(p) teX*<n

or
X(p) Y2X* X (pn)" Y2 eI <n.

Thus, all eigenvalues of X (1) ~"/2X* X (1) ="/ must be bounded above by 7 or

1
n-I=X() 12X X ()Y or X(p) = =X*.

n

19
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Path Following Algorithms I

Suppose we have an approximate central path point (x, y, s) in a neighborhood of (x (1), v (1), s(u))
for a given ;© > (. Then we consider to compute a new approximate central-path point (X+, y+, S+)
corresponding to a chosen 11 where 11 > 11 > 0. If one repeats this process, then a sequence of
approximate central-path points (Xk, yk, sk), corresponding to ,uo > ,ul > > ,uk, ..., would be
generated, and it converges to the optimal solution set as ,uk — 0.

If 117 is close to 11, we expect (x(u™ ), y (™), s(u™)) is also close to (x,y, s), so that (x, y, s) would
be a good initial point for computing (X+, y+, S+) by numerical procedures such as Newton’s method.
Such an algorithm is called the path following algorithm.

20
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Potential Reduction Algorithms I

In practical computation, it is more efficient to generate iterative solutions in a large neighborhood as long
as a merit function is monotonically decreasing, so that the greater the reduction of the function, the faster
convergence of the iterative solutions to optimality. Such an algorithm is said function-driven. If the merit
function is the objective function itself, a function-driven algorithm is likely to generate iterative solutions
being prematurely too close to the boundary, and the convergence would be slow down in future iterations.
A better driven function should balance the reduction of the objective function as well as a good position in
the (interior) of the feasible region — we now present a potential function logarithmically combining the

objective function and the barrier function.

21
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Potential and Duality Gap in LP I

For x € int F, and (y,s) € int Fg, let parameter p > 0 and

Yntp(x,8) := (n+ p)log(x es) Z log(z;s;),

i p(x,5) = plog(x ) + thn(x,8) > plog(x e 5) + nlogn,

then, ¥, 4 ,(x,s) — —oo implies that x ® s — (. More precisely, we have

x os < exp(
p

22
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Potential Function in SDP '

Forany X € int F, and (y,S) € int Fg, let parameter p > 0 and

Untp(X,5) 1= (n+ p)log(X e 5) — log(det(X) - det(5)),

Unp(X,5) = plog(X e S) + (X, S) > plog(X e S) + nlogn.
Then, 1,4+ ,( X, S) — —oc implies that X e S — (. More precisely, we have

X,S)—nlogn

P

).

23
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The Potential Reduction Algorithm I

The potential reduction algorithm generates a sequence of {Xk, y*. Sk} & int J such that

Uy ym (XL S5 <o m(XF,8%) — .05
fork =0,1,2, ...

This indicates that the potential level set shrinks at a constant rate independently of 1 or n, which leads to
the duality gap converging toward zero.

24
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Primal-Dual Potential Reduction Algorithm for SDP I

Once we have a pair (X, y,.5) € int F with . = S e X /n, we can apply the primal-dual Newton
method to generate a new iterate X © and (y ™, S™) as follows: Solve for D x, d,, and Dg from the

system of linear equations:

D 'DxD'+Dg = R:= nLer,uX_l — 5,
ADX = 0,
~-ATd, - Ds = 0,

where
D — X'5<X'5SX'5)_'5X'5.

Note that Dg @ Dy = 0.

25
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Primal-Dual Scaling I

DX’ + DS’ — R/v
A/DX’ = 0,
~ATd, - Dg = o,
where
Dx =D °DxD~°, Dgr =D°DgD”, R =D? (n Z puX_l - S) D,

and

(A? \ (D'5A1D'5\

A/ . D.5A2D.5

2, ]\ poa,pe

26
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Again, we have Dg/ @ DD/ = 0, and
dy = (.A/.A/T)_l.A/R/, Dgr = —A/Tdy, and Dy = R — Dg:.

Or, we have
Ds=—-A'd, and Dx = D(R— Dg)D.

27
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The role of p I

If p = o0, it steps toward the optimal solution characterized by the SDP optimality condition; if p = 0, it
steps toward the central path point (X (1), y (1), S(p)).

If 0 < p < o0, it steps toward a central path point with a smaller complementarity gap. We will show that

when p > \/ﬁ then each iterate reduces the primal-dual potential function by at least a constant.

28
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Logarithmic Approximation Lemma for SDP I

Lemma1 Let D € 8" and ||D||~ < 1. Then,

o p
2(1— [ Dllo)

tr(D) > logdet(I + D) > tr(D)

Proof: Let d be the vector of eigenvalues of D. Then, d € R" and ||d||, < 1, and we proceed to prove

Ty N T Id|f”
e d> log(l14+d;) >e'd— :
2 2(1 — [|d]]o0)

29
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The Bound on Potential Reduction for SDP '

Let V1/2 = D=5X D=5 = D°SD" € int S. Then, one can verify that S ¢ X = [ e /.

Lemma 2 Let the direction DD x, d,, and D5 be generated by equation (5), and let

(87

= ,
V2l 555 V22 = V2|

where v is a positive constant less than 1. Let
Xt =X+60Dx, yt=y+6d,, and ST =S5+0D;g.

Then, (X T, y™,ST) € int F and

Hv—1/2_ ?._-l-‘,/Ovl/QH . o2

+ Q+)\ < _
w”‘FP(X 7S ) wn-l-/)(XvS)— Q HV—l/QHOO 2(1—0&).

30
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Technical Lemmas '

Lemma3 LetV < intSY andp > +/n. Then,

L A

V172 3/4:

Proof: Let v be the vector of eigenvalues of V. Then v € R"fﬁ and for p > \/ﬁ we proceed to prove

Vo) |D(v) 26 — 2L D(v)2e|| > /374

elv

From these lemmas
02

2(1 — )

wnﬁo(X—i_aS—i_) wn+p(XS < O‘\/ +

By carefully choose «, we have a constant potential reduction in each iteration for SDP.

31
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Description of Algorithm for SDP I

Given (XY, ¢y, SY) € int F. Setp = /nand k := 0.
While 5% ¢ X* > ¢ do
1. Set (X, 5) = (X*,S%) and compute (D x,d,, Dg) from (5).
2. Let X"l = X* + aDy,y" =y* +ad,,and S¥! = S* + aDg, where
a = argminy(X* + aDx, S* + aDyg).

a>0

3. Let k := k + 1 and return to Step 1.

32
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Complexity of the Algorithm I

Theorem 5 Let p = \/n and 1,1 ,( X", S”) < plog(X" e SU) + nlogn. Then, the SDP Algorithm
terminates in at most O(/n log(X" e SV /¢) iterations with

XrFeSk=CeXF—blyr<e.

Practical Computational Difficulty:
e The iteration complexity of SDP is in the order of O (m? + mn?® + m?n?)
® |t has to solve a dense system of linear equations at each iteration

e In general, n = 10000 is the bottle-neck for practical efficiency, in contrast to linear programming.

33
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Dual Interior-Point Algorithm for SDP I

An open question is how to exploit the sparsity structure by polynomial interior-point algorithms so that
they can also solve large-scale problems in practice.

1. The computational cost of each iteration in the dual algorithm is less that the cost the primal-dual
iterations.

2. In most combinatorial applications, we need only a lower bound for the optimal objective value of
(SDP).

3. For large scale problems, S tends to be very sparse and structured since it is the linear combination of

(' and the A;’s. This sparsity allows considerable savings in both memory and computation time.

34
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Dual Algorithm: an Alternating Descent Method I

Grntp(X,S) =pln(X e 5) —Indet X —Indet S.

Let z = C o X for some fixed feasible X and consider the dual potential function
U(y,2) = pln(z — b'ly) —Indet S.

lts gradient is

Vi(y.2) = _pryb + AS™L.

We minimize over y first, then over X second. Recall

Al [ X m
AX = and Aly = Z%Az
A,,eX =1

35



MS&E310 Lecture Note #15

Over-Estimator of Potential '

Forany giveny and S = C — A’y = 0 and

()72 (AT (y —¥")) (8")7°Il < 1,

Py, 2%) — (y", 2")
= pln(z¥ —bly) — pln(z* — bTy*) — Indet((S*)=°5(S*)~)

< — sy b (v = ¥F) + Lo ((SH)708(5%) = — )
LI AT ) (55
A= (S~ (AT (y—y ")) (5F) =] =)
= —si—pryr P (y = ¥") + (ASH) D) (y — ¥")
LI (AT ) (55
A= (55~ (AT (y—y*))(S) =] =)

_ k ok k 1(S%) 2 (AT (y—y™))(S*) 77|
= Vo 2Ny - ¥+ s Aty s

36
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Solve the Ball Constrained Problem '

Minimize ~ VT (y*, z8)(y — y*)
subjectto  ||(SF)~° (AT(y — yk)) (SF)=% < a,

where < is a positive constant less than 1 that would be determined later.

For simplicity, in what follows we let the current duality gap be

AF = ZF _ pTyk,

37
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Optimality Conditions I

The first order KKT conditions state that the minimum point, ykﬂ, of this convex minimization problem
satisfies

MF(yEt — y*) 4+ 8V(y", 2F) = 0 (11)
for a positive multiplier 3, where
[ AL(S5)" e (SK)TIAy o AY(S) e (S)TIA,, )
MF =

| An(S) 7 e (ST AL e An(S5) T e (8914,

The matrix M ¥ is a Gram matrix, and it is positive definite when S* = 0 and A;’s are linearly

independent.
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Close-Form Solution '

Using the ellipsoidal constraint being tight, the minimal solution, ka, of (10) is given by a close form

(8 _
YUY S o e

where

d(z"), = —(M"*)"'Vy(y*, 2"). (13)

39



MS&E310 Lecture Note #15

Potential Reduction '

We can derive

Vol (y", 2N)d(z), = -Vl (y", 2N (MP)TIVY(y", 28 = —||P(2Y)|)°

where
P(2%) = {5 (59" X (2F)(8")° — 1,
and K
X (zF) = 7(5’%‘1 (ATd(z"), + S*) (SF)~ 1.
Thus,
B = 60, < —all P+

40
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Potential Primal Feasible Solution and its Objective Value I

X (2%) is actually the minimizer of the least squares problem

Minimize  [[(S%) X (%)% — A1
subjectto AX = b.

(18)

CeX(zF) =bly* + 5% e X(zF)
= bTy* + S* o (£5(5%)71 (AT(A(2H),) + S¥) (5%) 1)
= b7y + 25T e ((SF)7LAT(d(2F),) + 1)
:bTyk+7<d<-k> (A(S¥)71) +n)

Since the vectors .A(Sk)_1 and d(Zk)y were calculated, the cost of computing a primal objective value

is the cost of a vector dot product!

But X (z*) may not be PSD...
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When the Primal is Feasible '

We have the following lemma:

k =k 1T _k X =k Sk? CeX —k _bT k
Lemma 4 Let ;/F = A — u,u _ X(z)eS7 _ CeX(27) y
n n

n
If

_ . /| n
HP(zk>H<m1n<a n+a2’1_&)’ (19)

then the following three inequalities hold:

,p>n++/n,anda < 1.

1. X(zF) = 0;
2. [[(S*)°X(2%)(S%)° — || < ap

3. < (1— 5% )u".
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Alternating Potential Reduction I

Thus, if || P(Z")|| > min (a e, 1 — oz), we update y" to y*T!; otherwise, we let

XF+1L = X (Z"). In such alternating moves, we have

Theorem 6 Either the primal-dual potential
G(X", P < o(XF,8%) -6

or

¢<Xk+175k) < ¢<Xk75k> o 57
where § > 1/20.
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Description of Algorithm I

DUAL ALGORITHM. Given an upper bound z" and a dual point (y", SY) such that
SU=C— Aty = 0,setk =0,p > n++/n,a € (0,1), and do the following:

while ¥ — b’ y"* > edo

begin
1. Compute A(S*) ! and formulate the Gram matrix /.
2. Solve (13) for the dual step direction d(Zk)y.
3. Calculate || P(Z")|| using (14).

4. If (19) is true, then X "1 = X (zF) 2FH1 = C o XFH! and (y*T1, SFHL) = (yF, SF);

else y" ™1 = y* + HHO‘T)Hd(Zk“)y, Skl — O — AT (y* 1), XFr1 = XF and 281 = ZF,
endif

5. k:=k+ 1.
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end Note that we do not need eigenvalue computation in evaluate || P(z")||, but use

IP(zM)|? = V' (y*, 25)d(z"),.

Corollary 1 Let p = /n. Then, the Algorithm terminates in at most O(/nlog(C e XY — bl y")/¢)
iterations with
CeXF—Dbly* <e.
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Formulation Work of /" I

Generally, MZIE = A;(SF)"1 e (SK)71A,.

When A; = aia;r, the Gram matrix can be rewritten in the form

M* =

and

\ al (S¥)"La,, )

This matrix can be computed very quickly without computing, or saving, (S%) 1.

46
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Quick Computation with the Rank-One Structure I

Let AT = [a; a5 ... a,,] and A’ = A(S*)~1/2. Then we have
M* =[A(S%) AT = [A(A)]
and
A(SF)™1 = diag(A(SF)71 AT = diag(A’(A)T).
Thus, M " and the gradient vector can be computed in O(n3 + n?m + nm2) arithmetic operations.
Then, the dual direction d(-), can be computed in O(m?) operations.

The norm of P(-) can be checked in O(m?) operations and the new upper bound can be updated in
O(m) operations.

If needed, X (-) can be computed in O(n° + n°m) operations.
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Primal-Dual SDP Alternative Systems I

A pair of SDP has two alternatives under mild conditions

(Solvable) AX —b =0 (Infeasible) AX =0
ATy +C =0, -Aly =0,

bly —CeX =0, > bly —CeX >0,

y free, X >0 y free, X >0
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An Integrated Homogeneous and Self-Dual System I

The two alternative systems can be homogenized as one:

(HSDP) AX —br =0
ATy +Cr =s>0,
bly —CeX =kx>0,
y free, X =0, 72>0,

where the three alternatives are

(Solvable) : (7 > 0,k = 0)
(Infeasible) : (7 =0,k > 0)
(Allothers) : (7 =k =0).
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