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Primal-Dual Potential Function for LP

Typically, a single merit-function driven algorithm is preferred since it can adaptively take large step sizes

as long as the merit value is sufficiently reduced, comparing to check and balance of

hyper-parameters/measures of the path-following type of algorithms.

For x ∈ intFp and (y, s) ∈ intFd, the joint primal-dual potential function is defined by

ψn+ρ(x, s) := (n+ ρ) log(xT s)−
n∑
j=1

log(xjsj),

where ρ ≥ 0 and it is fixed.

ψn+ρ(x, s) = ρ log(xT s) + ψn(x, s) ≥ ρ log(xT s) + n log n,

then, for ρ > 0, ψn+ρ(x, s) → −∞ implies that xT s → 0. More precisely, we have

xT s ≤ exp(
ψn+ρ(x, s)− n log n

ρ
).
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Primal-Dual Potential Reduction Algorithm for LP

Once have a pair (xk,yk, sk) ∈ intF , we compute direction vectors dx, dy and ds from the system

equations:

Skdx +Xkds = (xk)T sk

n+ρ e−XkSke,

Adx = 0,

−ATdy − ds = 0.

(1)

Note that dTxds = −dTxA
Tdy = 0 here. Then choose a step-size scalar θ(> 0) and assign

xk+1 = xk + θdx > 0, yk+1 = yk + θdy, s
k+1 = sk + θds > 0.

This is the Newton method for the optimality conditions/equations of the potential minimization problem:

XSe = (xk)T sk

n+ρ e,

Ax = b,

−ATy − s = −c.

(2)
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To simplify rotations, let

dx′ + ds′ = r′ := (XS)−0.5( xT s
n+ρe−XSe),

A′dx′ = 0,

−(A′)Tdy − ds′ = 0.

where

D = X0.5S−0.5, A′ = AD, dx′ = D−1dx, ds′ = Dds.

Again, we maintain dTx′ds′ = 0.

Unlike in the path-following algorithm, ∥r′∥2 may be too big to make x+ dx or s+ ds positive. So that

we need to add a step size θ to scale r′ such that it makes new iterate feasible.
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Lemma 1 Let the direction vector d = (dx,dy,ds) be generated by equation (2), and let

θ =
α
√

min(XSe)

∥r′∥
, (3)

where α is a positive constant less than 1. Let

x+ = x+ θdx, y+ = y + θdy, and s+ = s+ θds.

Then, we have (x+,y+, s+) ∈ intF and

ψn+ρ(x
+, s+)− ψn+ρ(x, s)

≤ −α
√
min(XSe)∥(XS)−1/2(e− (n+ ρ)

xT s
Xs)∥+ α2

2(1− α)
.
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Logarithmic Approximation Lemma

We first present a technical lemma:

Lemma 2 If d ∈ Rn such that ∥d∥∞ < 1 then

eTd ≥
n∑
i=1

log(1 + di) ≥ eTd− ∥d∥2

2(1− ∥d∥∞)
.

The proof is based on the Taylor expansion of ln(1 + di) for −1 < di < 1.
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Figure 1: Logarithmic approximation by linear and quadratic functions
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Proof Sketch of the Theorem

It is clear that Ax+ = b and ATy+ + s+ = c. We now show that x+ > 0 and s+ > 0. This is similar

to the previous proof for the path-following algorithm

∥θX−1dx∥2 + ∥θS−1ds∥2 ≤ θ2
∥r′∥2

min(XSe)
=
α2 min(XSe)

∥r′∥2
∥r′∥2

min(XSe)
= α2 < 1.

Therefore,

x+ = x+ θdx = X(e− θX−1dx) > 0

and

s+ = s+ θds = S(e− θS−1ds) > 0.
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Sketch of the proof continued

ψ(x+, s+)− ψ(x, s)

= (n+ ρ) log
(
1 +

θdT
s x+θdT

x s
xT s

)
−
∑n
j=1

(
log(1 +

θdsj
sj

) + log(1 +
θdxj

xj
)
)

≤ (n+ ρ)
(
θdT

s x+θdT
x s

xT s

)
−
∑n
j=1

(
log(1 +

θdsj
sj

) + log(1 +
θdxj

xj
)
)

≤ (n+ ρ)
(
θdT

s x+θdT
x s

xT s

)
− θeT (S−1ds +X−1dx) +

||θS−1ds||2+||θX−1dx||2
2(1−α)

≤ n+ρ
xT s

θ(dTs x+ dTx s)− θeT (S−1ds +X−1dx) +
α2

2(1−α)

= θ
(
n+ρ
xT s

eT (Xds + Sdx)− eT (S−1ds +X−1dx)
)
+ α2

2(1−α)

= θ
(
n+ρ
xT s

eT (Xds + Sdx)− eT (XS)−1(Xds + Sdx)
)
+ α2

2(1−α)

= θ
(
n+ρ
xT s

XSe− e
)T

(XS)−1 (Xds + Sdx) +
α2

2(1−α)

= θ
(
n+ρ
xT s

XSe− e
)T

(XS)−1
(

xT s
n+ρe−XSe

)
+ α2

2(1−α)

= −θ · n+ρ
xT s

· ∥r′∥2 + α2

2(1−α) = −α
√

min(XSe) · n+ρ
xT s

· ∥r′∥+ α2

2(1−α) .

9



Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note #14

Let v = XSe. Then, we can prove the following technical lemma:

Lemma 3 Let v ∈ Rn be a positive vector and ρ ≥
√
n. Then,√

min(v)∥V −1/2(e− (n+ ρ)

eTv
v)∥ ≥

√
3/4 .

Combining these two lemmas we have

ψn+ρ(x
+, s+)− ψn+ρ(x, s)

≤ −α
√
3/4 +

α2

2(1− α)
= −δ

for a constant δ.
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Description of Algorithm

Given (x0,y0, s0) ∈ intF . Set ρ ≥
√
n and k := 0.

While (xk)T sk ≥ ϵ do

1. Set (x, s) = (xk, sk) and γ = n/(n+ ρ) and compute (dx,dy,ds) from (2).

2. Let xk+1 = xk + ᾱdx, yk+1 = yk + ᾱdy , and sk+1 = sk + ᾱds where

ᾱ = argmin
α≥0

ψn+ρ(x
k + αdx, s

k + αds).

3. Let k := k + 1 and return to Step 1.
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Theorem 1 Let ρ ≥
√
n and ψn+ρ(x

0, s0) ≤ ρ log((x0)T s0) + n log n. Then, the Algorithm

terminates in at most O(ρ log((x0)T s0/ϵ)) iterations with

(xk)T sk = cTxk − bTyk ≤ ϵ.

(xk)T sk ≤ exp(
ψn+ρ(x

k,sk)−n logn
ρ )

≤ exp(
ψn+ρ(x

0,s0)−n logn−ρ log((x0)T s0/ϵ)
ρ )

≤ exp(ρ log(x
0,s0)−ρ log((x0)T s0/ϵ)

ρ )

= exp(log(ϵ)) = ϵ.

The adaptively search of best ρ?
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Termination with Exact Optimizers

• The first is a “cross-over” procedure to find a basic feasible solution (BFS, corner point) whose

objective value is at least as good as the current interior point. Let A,b, c be integers and L be their

bit length, and let a second best BFS solution be x2nd and the optimal objective value be z∗. Then

cTx2nd − z∗ > 2−L.

Thus, one can terminate interior-point algorithm when

cTxk − bTyk ≤ 2−L.

• The second approach is to compute a strictly complementary solution pair. The method uses the

primal-dual interior-point pair to identify the strict complementarity partition (P ∗, Z∗) and then “purify

or project” the primal interior solution onto the primal optimal face and the dual interior solution onto

the dual optimal face, based on the following theorem:

Theorem 2 Given an interior solution xk and sk in the solution sequence generated by an
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interior-point algorithm, define

P k = {j : xkj ≥ skj , ∀j} and Zk = {1, ..., n} \ P k.

Then, we have P k = P ∗ whenever

cTxk − bTyk ≤ 2−L.

Thus, the worst-case iteration bound for interior-point algorithms is O(
√
nL) if the initial point pair

(x0)T s0 ≤ 2L.
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Initialization

• Combining the primal and dual into a single linear feasibility problem, then applying LP algorithms to

find a feasible point of the problem. Theoretically, this approach can retain the currently best

complexity result.

• The big M method, i.e., add one or more artificial column(s) and/or row(s) and a huge penalty

parameter M to force solutions to become feasible during the algorithm.

• Phase I-then-Phase II method, i.e., first try to find a feasible point (and possibly one for the dual

problem), and then start to look for an optimal solution if the problem is feasible and bounded.

• Combined Phase I-Phase II method, i.e., approach feasibility and optimality simultaneously. To our

knowledge, the “best” complexity of this approach is O(n log(R/ϵ)).
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Homogeneous and Self-Dual Algorithm

• It solves the linear programming problem without any regularity assumption concerning the existence

of optimal, feasible, or interior feasible solutions, while it retains the currently best complexity result

• It can start at any positive primal-dual pair, feasible or infeasible, near the central ray of the positive

orthant (cone), and it does not use any big M penalty parameter or lower bound.

• Each iteration solves a system of linear equations whose dimension is almost the same as that solved

in the standard (primal-dual) interior-point algorithms.

• If the LP problem has a solution, the algorithm generates a sequence that approaches feasibility and

optimality simultaneously; if the problem is infeasible or unbounded, the algorithm will produce an

infeasibility certificate for at least one of the primal and dual problems.
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Primal-Dual Alternative Systems

A pair of LP has two alternatives

(Solvable) Ax− b = 0

−ATy + c ≥ 0,

bTy − cTx = 0,

y free, x ≥ 0

or

(Infeasible) Ax = 0

−ATy ≥ 0,

bTy − cTx > 0,

y free, x ≥ 0
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An Integrated Homogeneous System

The two alternative systems can be homogenized as one:

(HP ) Ax− bτ = 0

−ATy + cτ = s ≥ 0,

bTy − cTx = κ ≥ 0,

y free, (x; τ) ≥ 0

where the two alternatives are

(Solvable) : (τ > 0, κ = 0) or (Infeasible) : (τ = 0, κ > 0)
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The Homogeneous System is Self-Dual

(HP ) Ax− bτ = 0, (y′)

−ATy + cτ = s ≥ 0, (x′)

bTy − cTx = κ ≥ 0, (τ ′)

y free, (x; τ) ≥ 0

(HD) Ax′ − bτ ′ = 0,

ATy′ − cτ ′ ≤ 0,

−bTy′ + cTx′ ≤ 0,

y′ free, (x′; τ ′) ≥ 0

Theorem 3 System (HP) is feasible (e.g. all zeros) and any feasible solution (y,x, τ, s, κ) is

self-complementary:

xT s+ τκ = 0.

Furthermore, it has a strictly self-complementary feasible solution x+ s

τ + κ

 > 0,
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Let’s Find Such a Feasible Solution

Given x0 = e > 0, s0 = e > 0, and y0 = 0, we formulate

(HSDP ) min θ

s.t. Ax −bτ +b̄θ = 0,

−ATy +cτ −c̄θ ≥ 0,

bTy −cTx +z̄θ ≥ 0,

y free, x ≥ 0, τ ≥ 0, θ free,

where

b̄ = b−Ae, c̄ = c− e, z̄ = cTe+ 1.

But it may just give us the all-zero solution.
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A HSD linear program

Let’s try to add one more constraint to prevent the all-zero solution

(HSDP ) min (n+ 1)θ

s.t. Ax −bτ +b̄θ = 0,

−ATy +cτ −c̄θ ≥ 0,

bTy −cTx +z̄θ ≥ 0,

−b̄Ty +c̄Tx −z̄τ = −(n+ 1),

y free, x ≥ 0, τ ≥ 0, θ free.

Note that the constraints of (HSDP) form a skew-symmetric system and the objective coeffcient vector is

the negative of the right-hand-side vector, so that it remains a self-dual linear program.

(y = 0, x = e, τ = 1, θ = 1) is a strictly feasible point for (HSDP).
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(HSDP ) min (n+ 1)θ

s.t. Ax −bτ +b̄θ = 0,

−ATy +cτ −c̄θ = s ≥ 0,

bTy −cTx +z̄θ = κ ≥ 0,

−b̄Ty +c̄Tx −z̄τ = −(n+ 1),

y free, x ≥ 0, τ ≥ 0, θ free.

Denote by Fh the set of all points (y,x, τ, θ, s, κ) that are feasible for (HSDP). Denote by F0
h the set of

interior feasible points with (x, τ, s, κ) > 0 in Fh. By combining the constraints, we can derive the last

(equality) constraint as

eTx+ eT s+ τ + κ− (n+ 1)θ = (n+ 1),

which serves indeed as a normalizing constraint for (HSDP) to prevent the all-zero solution.
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Theorem 4 Consider problems (HSDP) and (HSDD).

i) (HSDD) has the same form as (HSDP), i.e., (HSDD) is simply (HSDP) with (y,x, τ, θ) being replaced

by (y′,x′, τ ′, θ′).

ii) (HSDP) has a strictly feasible point

y = 0, x = e > 0, τ = 1, θ = 1, s = e > 0, κ = 1.

iii) (HSDP) has an optimal solution and its optimal solution set is bounded.

iv) The optimal value of (HSDP) is zero, and

(y,x, τ, θ, s, κ) ∈ Fh implies that (n+ 1)θ = xT s+ τκ.

v) There is an optimal solution (y∗,x∗, τ∗, θ∗ = 0, s∗, κ∗) ∈ Fh such that x∗ + s∗

τ∗ + κ∗

 > 0,
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which we call a strictly self-complementary solution. (Similarly, we sometimes call an optimal solution

to (HSDP) a self-complementary solution; the strict inequalities above need not hold.)
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Theorem 5 Let (y∗,x∗, τ∗, θ∗ = 0, s∗, κ∗) be a strictly self complementary solution for (HSDP).

i) (LP) has a solution (feasible and bounded) if and only if τ∗ > 0. In this case, x∗/τ∗ is an optimal

solution for (LP) and (y∗/τ∗, s∗/τ∗) is an optimal solution for (LD).

ii) (LP) has no solution if and only if κ∗ > 0. In this case, x∗/κ∗ or s∗/κ∗ or both are certificates for

proving infeasibility: if cTx∗ < 0 then (LD) is infeasible; if −bTy∗ < 0 then (LP) is infeasible; and if

both cTx∗ < 0 and −bTy∗ < 0 then both (LP) and (LD) are infeasible.
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Theorem 6 i) For any µ > 0, there is a unique (y,x, τ, θ, s, κ) in F0
h , such that Xs

τκ

 = µe.

ii) Let (dy,dx, dτ , dθ,ds, dκ) be in the null space of the constraint matrix of (HSDP) after adding

surplus variables s and κ, i.e.,

Adx −bdτ +b̄dθ = 0,

−ATdy +cdτ −c̄dθ −ds = 0,

bTdy −cTdx +z̄dθ −dκ = 0,

−b̄Tdy +c̄Tdx −z̄dτ = 0.

(4)

(dx)
Tds + dτdκ = 0.
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Endogenous Potential Function and Central Path

ψn+ρ(x, s, τ, κ) := (n+ 1 + ρ) log(xT s+ τκ)−
n∑
j=1

log(xjsj)− log(τκ),

and

C =

(y,x, τ, θ, s, κ) ∈ F0
h :

 Xs

τκ

 =
xT s+ τκ

n+ 1
e

 .

Obviously, the initial interior feasible point proposed in Theorem 4 is on the path with µ = 1 or

(x0)T s0 + τ0κ0 = n+ 1.
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Solving (HSDP)

Consider solving the following system of linear equations for (dy,dx, dτ , dθ,ds, dκ) that satisfies (4)

and  Xds + Sdx

τkdκ + κkdτ

 = γµe−

 Xs

τκ

 .

Theorem 7 The O(
√
n log((x0)T s0/ϵ)) interior-point algorithm, coupled with a termination technique

described above, generates a strictly self-complementary solution for (HSDP) in

O(
√
n(log(c(A,b, c)) + log n)) iterations and O(n3(log(c(A,b, c)) + log n)) operations, where

c(A,b, c) is a positive number depending on the data (A,b, c). If (LP) and (LD) have integer data with

bit length L, then by the construction, the data of (HSDP) remains integral and its length is O(L).

Moreover, c(A,b, c) ≤ 2L. Thus, the algorithm terminates in O(
√
nL) iterations and O(n3L)

operations.
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Example

Consider the example where

A =
(

−1 0 0
)
, b = 1, and c =

(
0 1 −1

)
.

Then,

y∗ = 2, x∗ = (0, 2, 1)T , τ∗ = 0, θ∗ = 0, s∗ = (2, 0, 0)T , κ∗ = 1

could be a strictly self-complementary solution generated for (HSDP) with

cTx∗ = 1 > 0, by∗ = 2 > 0.

Thus (y∗, s∗) demonstrates the infeasibility of (LP), but x∗ doesn’t show the infeasibility of (LD). Of

course, if the algorithm generates instead x∗ = (0, 1, 2)T , then we get demonstrated infeasibility of both.
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Software Implementation

Cplex, GUROBI

SEDUMI: http://sedumi.mcmaster.ca/

MOSEK: http://www.mosek.com/products_mosek.html

IPOPT: https://projects.coin-or.org/Ipopt

hsdLPsolver: Sparse Linear Programming Solver (Matlabe .m file).
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