Interior Point Algorithms II: Potential Reduction

Yinyu Ye
Department of Management Science and Engineering
Stanford University
Stanford, CA 94305, U.S.A.

http://www.stanford.edu/~yyye (LY, Chapter 5.6-5.7)
Next week: Chapters Chapters 5.7, 14.5-14.6

Primal-Dual Potential Function for LP

Typically, a single merit-function driven algorithm is preferred since it can adaptively take large step sizes as long as the merit value is sufficiently reduced, comparing to check and balance of hyper-parameters/measures of the path-following type of algorithms.

For $\mathbf{x} \in \operatorname{int} \mathcal{F}_{p}$ and $(\mathbf{y}, \mathbf{s}) \in \operatorname{int} \mathcal{F}_{d}$, the joint primal-dual potential function is defined by

$$
\psi_{n+\rho}(\mathbf{x}, \mathbf{s}):=(n+\rho) \log \left(\mathbf{x}^{T} \mathbf{s}\right)-\sum_{j=1}^{n} \log \left(x_{j} s_{j}\right)
$$

where $\rho \geq 0$ and it is fixed.

$$
\psi_{n+\rho}(\mathbf{x}, \mathbf{s})=\rho \log \left(\mathbf{x}^{T} \mathbf{s}\right)+\psi_{n}(\mathbf{x}, \mathbf{s}) \geq \rho \log \left(\mathbf{x}^{T} \mathbf{s}\right)+n \log n
$$

then, for $\rho>0, \psi_{n+\rho}(\mathbf{x}, \mathbf{s}) \rightarrow-\infty$ implies that $\mathbf{x}^{T} \mathbf{s} \rightarrow 0$. More precisely, we have

$$
\mathbf{x}^{T} \mathbf{s} \leq \exp \left(\frac{\psi_{n+\rho}(\mathbf{x}, \mathbf{s})-n \log n}{\rho}\right)
$$

Primal-Dual Potential Reduction Algorithm for LP

Once have a pair $\left(\mathrm{x}^{k}, \mathbf{y}^{k}, \mathbf{s}^{k}\right) \in \operatorname{int} \mathcal{F}$, we compute direction vectors $\mathrm{d}_{x}, \mathrm{~d}_{y}$ and d_{s} from the system equations:

$$
\begin{align*}
S^{k} \mathbf{d}_{x}+X^{k} \mathbf{d}_{s} & =\frac{\left(\mathbf{x}^{k}\right)^{T} \mathbf{s}^{k}}{n+\rho} \mathbf{e}-X^{k} S^{k} \mathbf{e} \\
A \mathbf{d}_{x} & =\mathbf{0} \tag{1}\\
-A^{T} \mathbf{d}_{y}-\mathbf{d}_{s} & =\mathbf{0}
\end{align*}
$$

Note that $\mathbf{d}_{x}^{T} \mathbf{d}_{s}=-\mathbf{d}_{x}^{T} A^{T} \mathbf{d}_{y}=0$ here. Then choose a step-size scalar $\theta(>0)$ and assign

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}+\theta \mathbf{d}_{x}>\mathbf{0}, \mathbf{y}^{k+1}=\mathbf{y}^{k}+\theta \mathbf{d}_{y}, \mathbf{s}^{k+1}=\mathbf{s}^{k}+\theta \mathbf{d}_{s}>\mathbf{0}
$$

This is the Newton method for the optimality conditions/equations of the potential minimization problem:

$$
\begin{align*}
X S \mathbf{e} & =\frac{\left(\mathbf{x}^{k}\right)^{k} \mathbf{s}^{k}}{n+\rho} \mathbf{e} \\
A \mathbf{x} & =\mathbf{b} \tag{2}\\
-A^{T} \mathbf{y}-\mathbf{s} & =-\mathbf{c}
\end{align*}
$$

To simplify rotations, let

$$
\begin{aligned}
\mathbf{d}_{x^{\prime}}+\mathbf{d}_{s^{\prime}} & =\mathbf{r}^{\prime}:=(X S)^{-0.5}\left(\frac{\mathbf{x}^{T} \mathbf{s}}{n+\rho} \mathbf{e}-X S \mathbf{e}\right) \\
A^{\prime} \mathbf{d}_{x^{\prime}} & =\mathbf{0} \\
-\left(A^{\prime}\right)^{T} \mathbf{d}_{y}-\mathbf{d}_{s^{\prime}} & =\mathbf{0}
\end{aligned}
$$

where

$$
D=X^{0.5} S^{-0.5}, A^{\prime}=A D, \mathbf{d}_{x^{\prime}}=D^{-1} \mathbf{d}_{x}, \mathbf{d}_{s^{\prime}}=D \mathbf{d}_{s}
$$

Again, we maintain $\mathbf{d}_{x^{\prime}}^{T} \mathbf{d}_{s^{\prime}}=0$.
Unlike in the path-following algorithm, $\left\|\mathbf{r}^{\prime}\right\|^{2}$ may be too big to make $\mathrm{x}+\mathrm{d}_{x}$ or $\mathrm{s}+\mathrm{d}_{s}$ positive. So that we need to add a step size θ to scale r^{\prime} such that it makes new iterate feasible.

Lemma 1 Let the direction vector $\mathrm{d}=\left(\mathrm{d}_{x}, \mathrm{~d}_{y}, \mathrm{~d}_{s}\right)$ be generated by equation (2), and let

$$
\begin{equation*}
\theta=\frac{\alpha \sqrt{\min (X S \mathbf{e})}}{\left\|\mathbf{r}^{\prime}\right\|} \tag{3}
\end{equation*}
$$

where α is a positive constant less than 1. Let

$$
\mathbf{x}^{+}=\mathbf{x}+\theta \mathbf{d}_{x}, \quad \mathbf{y}^{+}=\mathbf{y}+\theta \mathbf{d}_{y}, \quad \text { and } \quad \mathbf{s}^{+}=\mathbf{s}+\theta \mathbf{d}_{s}
$$

Then, we have $\left(\mathbf{x}^{+}, \mathbf{y}^{+}, \mathbf{s}^{+}\right) \in \operatorname{int} \mathcal{F}$ and

$$
\begin{gathered}
\psi_{n+\rho}\left(\mathbf{x}^{+}, \mathbf{s}^{+}\right)-\psi_{n+\rho}(\mathbf{x}, \mathbf{s}) \\
\leq-\alpha \sqrt{\min (X S \mathbf{e})}\left\|(X S)^{-1 / 2}\left(\mathbf{e}-\frac{(n+\rho)}{\mathbf{x}^{T} \mathbf{s}} X \mathbf{s}\right)\right\|+\frac{\alpha^{2}}{2(1-\alpha)}
\end{gathered}
$$

Logarithmic Approximation Lemma

We first present a technical lemma:
Lemma 2 If $\mathrm{d} \in \mathcal{R}^{n}$ such that $\|\mathbf{d}\|_{\infty}<1$ then

$$
\mathbf{e}^{T} \mathbf{d} \geq \sum_{i=1}^{n} \log \left(1+d_{i}\right) \geq \mathbf{e}^{T} \mathbf{d}-\frac{\|\mathbf{d}\|^{2}}{2\left(1-\|\mathbf{d}\|_{\infty}\right)}
$$

The proof is based on the Taylor expansion of $\ln \left(1+d_{i}\right)$ for $-1<d_{i}<1$.

Figure 1: Logarithmic approximation by linear and quadratic functions

Proof Sketch of the Theorem

It is clear that $A \mathrm{x}^{+}=\mathrm{b}$ and $A^{T} \mathbf{y}^{+}+\mathrm{s}^{+}=\mathbf{c}$. We now show that $\mathrm{x}^{+}>0$ and $\mathrm{s}^{+}>0$. This is similar to the previous proof for the path-following algorithm

$$
\left\|\theta X^{-1} \mathbf{d}_{x}\right\|^{2}+\left\|\theta S^{-1} \mathbf{d}_{s}\right\|^{2} \leq \theta^{2} \frac{\left\|\mathbf{r}^{\prime}\right\|^{2}}{\min (X S \mathbf{e})}=\frac{\alpha^{2} \min (X S \mathbf{e})}{\left\|\mathbf{r}^{\prime}\right\|^{2}} \frac{\left\|\mathbf{r}^{\prime}\right\|^{2}}{\min (X S \mathbf{e})}=\alpha^{2}<1
$$

Therefore,

$$
\mathbf{x}^{+}=\mathbf{x}+\theta \mathbf{d}_{x}=X\left(\mathbf{e}-\theta X^{-1} \mathbf{d}_{x}\right)>\mathbf{0}
$$

and

$$
\mathbf{s}^{+}=\mathbf{s}+\theta \mathbf{d}_{s}=S\left(\mathbf{e}-\theta S^{-1} \mathbf{d}_{s}\right)>\mathbf{0}
$$

Sketch of the proof continued

$$
\begin{aligned}
& \psi\left(\mathbf{x}^{+}, \mathbf{s}^{+}\right)-\psi(\mathbf{x}, \mathbf{s}) \\
= & (n+\rho) \log \left(1+\frac{\theta \mathbf{d}_{s}^{T} \mathbf{x}+\theta \mathbf{d}_{x}^{T} \mathbf{s}}{\mathbf{x}^{T} \mathbf{s}}\right)-\sum_{j=1}^{n}\left(\log \left(1+\frac{\theta d_{s_{j}}}{s_{j}}\right)+\log \left(1+\frac{\theta d_{x_{j}}}{x_{j}}\right)\right) \\
\leq & (n+\rho)\left(\frac{\theta \mathbf{d}_{s}^{T} \mathbf{x}+\theta \mathbf{d}_{x}^{T} \mathbf{s}}{\mathbf{x}^{T} \mathbf{s}}\right)-\sum_{j=1}^{n}\left(\log \left(1+\frac{\theta d_{s_{j}}}{s_{j}}\right)+\log \left(1+\frac{\theta d_{x_{j}}}{x_{j}}\right)\right) \\
\leq & (n+\rho)\left(\frac{\theta \mathbf{d}_{s}^{T} \mathbf{x}+\theta \mathbf{d}_{x}^{T} \mathbf{s}}{\mathbf{x}^{T} \mathbf{s}}\right)-\theta \mathbf{e}^{T}\left(S^{-1} \mathbf{d}_{s}+X^{-1} \mathbf{d}_{x}\right)+\frac{\left\|\theta S^{-1} \mathbf{d}_{s}\right\|^{2}+\left\|\theta X^{-1} \mathbf{d}_{x}\right\|^{2}}{2(1-\alpha)} \\
\leq & \frac{n+\rho}{\mathbf{x}^{T} \mathbf{s}} \theta\left(\mathbf{d}_{s}^{T} \mathbf{x}+\mathbf{d}_{x}^{T} \mathbf{s}\right)-\theta \mathbf{e}^{T}\left(S^{-1} \mathbf{d}_{s}+X^{-1} \mathbf{d}_{x}\right)+\frac{\alpha^{2}}{2(1-\alpha)} \\
= & \theta\left(\frac{n+\rho}{\mathbf{x}^{T} \mathbf{s}} \mathbf{e}^{T}\left(X \mathbf{d}_{s}+S \mathbf{d}_{x}\right)-\mathbf{e}^{T}\left(S^{-1} \mathbf{d}_{s}+X^{-1} \mathbf{d}_{x}\right)\right)+\frac{\alpha^{2}}{2(1-\alpha)} \\
= & \theta\left(\frac{n+\rho}{\mathbf{x}^{T} \mathbf{s}} \mathbf{e}^{T}\left(X \mathbf{d}_{s}+S \mathbf{d}_{x}\right)-\mathbf{e}^{T}(X S)^{-1}\left(X \mathbf{d}_{s}+S \mathbf{d}_{x}\right)\right)+\frac{\alpha^{2}}{2(1-\alpha)} \\
= & \theta\left(\frac{n+\rho}{\mathbf{x}^{T} \mathbf{s}} X S \mathbf{e}-\mathbf{e}\right)^{T}(X S)^{-1}\left(X \mathbf{d}_{s}+S \mathbf{d}_{x}\right)+\frac{\alpha^{2}}{2(1-\alpha)} \\
= & \theta\left(\frac{n+\rho}{\mathbf{x}^{T} \mathbf{s}} X S \mathbf{e}-\mathbf{e}\right)^{T}(X S)^{-1}\left(\frac{\mathbf{x}^{T} \mathbf{s}}{n+\rho} \mathbf{e}-X S \mathbf{e}\right)+\frac{\alpha^{2}}{2(1-\alpha)} \\
= & -\theta \cdot \frac{n+\rho}{\mathbf{x}^{T} \mathbf{s}} \cdot\left\|\mathbf{r}^{\prime}\right\|^{2}+\frac{\alpha^{2}}{2(1-\alpha)}=-\alpha \sqrt{\min (X S \mathbf{e})} \cdot \frac{n+\rho}{\mathbf{x}^{T} \mathbf{s}} \cdot\left\|\mathbf{r}^{\prime}\right\|+\frac{\alpha^{2}}{2(1-\alpha)} .
\end{aligned}
$$

Let $\mathbf{v}=X S$ e. Then, we can prove the following technical lemma:
Lemma 3 Let $\mathbf{v} \in \mathcal{R}^{n}$ be a positive vector and $\rho \geq \sqrt{n}$. Then,

$$
\sqrt{\min (\mathbf{v})}\left\|V^{-1 / 2}\left(\mathbf{e}-\frac{(n+\rho)}{\mathbf{e}^{T} \mathbf{v}} \mathbf{v}\right)\right\| \geq \sqrt{3 / 4}
$$

Combining these two lemmas we have

$$
\begin{aligned}
& \psi_{n+\rho}\left(\mathbf{x}^{+}, \mathbf{s}^{+}\right)-\psi_{n+\rho}(\mathbf{x}, \mathbf{s}) \\
& \leq-\alpha \sqrt{3 / 4}+\frac{\alpha^{2}}{2(1-\alpha)}=-\delta
\end{aligned}
$$

for a constant δ.

Description of Algorithm

Given $\left(\mathbf{x}^{0}, \mathbf{y}^{0}, \mathbf{s}^{0}\right) \in \operatorname{int} \mathcal{F}$. Set $\rho \geq \sqrt{n}$ and $k:=0$.
While $\left(\mathbf{x}^{k}\right)^{T} \mathbf{s}^{k} \geq \epsilon$ do

1. Set $(\mathbf{x}, \mathbf{s})=\left(\mathbf{x}^{k}, \mathbf{s}^{k}\right)$ and $\gamma=n /(n+\rho)$ and compute $\left(\mathbf{d}_{x}, \mathbf{d}_{y}, \mathbf{d}_{s}\right)$ from (2).
2. Let $\mathbf{x}^{k+1}=\mathbf{x}^{k}+\bar{\alpha} \mathbf{d}_{x}, \mathbf{y}^{k+1}=\mathbf{y}^{k}+\bar{\alpha} \mathbf{d}_{y}$, and $\mathbf{s}^{k+1}=\mathbf{s}^{k}+\bar{\alpha} \mathbf{d}_{s}$ where

$$
\bar{\alpha}=\arg \min _{\alpha \geq 0} \psi_{n+\rho}\left(\mathbf{x}^{k}+\alpha \mathbf{d}_{x}, \mathbf{s}^{k}+\alpha \mathbf{d}_{s}\right)
$$

3. Let $k:=k+1$ and return to Step 1 .

Theorem 1 Let $\rho \geq \sqrt{n}$ and $\psi_{n+\rho}\left(\mathbf{x}^{0}, \mathbf{s}^{0}\right) \leq \rho \log \left(\left(\mathbf{x}^{0}\right)^{T} \mathbf{s}^{0}\right)+n \log n$. Then, the Algorithm terminates in at most $O\left(\rho \log \left(\left(\mathbf{x}^{0}\right)^{T} \mathbf{s}^{0} / \epsilon\right)\right)$ iterations with

$$
\begin{aligned}
& \left(\mathbf{x}^{k}\right)^{T} \mathbf{s}^{k}=\mathbf{c}^{T} \mathbf{x}^{k}-\mathbf{b}^{T} \mathbf{y}^{k} \leq \epsilon \\
\left(\mathbf{x}^{k}\right)^{T} \mathbf{s}^{k} \quad & \leq \exp \left(\frac{\psi_{n+\rho}\left(\mathbf{x}^{k}, \mathbf{s}^{k}\right)-n \log n}{\rho}\right) \\
& \leq \exp \left(\frac{\psi_{n+\rho}\left(\mathbf{x}^{0}, \mathbf{s}^{0}\right)-n \log n-\rho \log \left(\left(\mathbf{x}^{0}\right)^{T} \mathbf{s}^{0} / \epsilon\right)}{\rho}\right) \\
& \leq \exp \left(\frac{\rho \log \left(\mathbf{x}^{0}, \mathbf{s}^{0}\right)-\rho \log \left(\left(\mathbf{x}^{0}\right)^{T} \mathbf{s}^{0} / \epsilon\right)}{\rho}\right) \\
& =\exp (\log (\epsilon))=\epsilon
\end{aligned}
$$

The adaptively search of best ρ ?

Termination with Exact Optimizers

- The first is a "cross-over" procedure to find a basic feasible solution (BFS, corner point) whose objective value is at least as good as the current interior point. Let $A, \mathbf{b}, \mathbf{c}$ be integers and L be their bit length, and let a second best BFS solution be $\mathrm{x}^{2 n d}$ and the optimal objective value be z^{*}. Then

$$
\mathbf{c}^{T} \mathbf{x}^{2 n d}-z^{*}>2^{-L}
$$

Thus, one can terminate interior-point algorithm when

$$
\mathbf{c}^{T} \mathbf{x}^{k}-\mathbf{b}^{T} \mathbf{y}^{k} \leq 2^{-L}
$$

- The second approach is to compute a strictly complementary solution pair. The method uses the primal-dual interior-point pair to identify the strict complementarity partition $\left(P^{*}, Z^{*}\right)$ and then "purify or project" the primal interior solution onto the primal optimal face and the dual interior solution onto the dual optimal face, based on the following theorem:
Theorem 2 Given an interior solution x^{k} and s^{k} in the solution sequence generated by an
interior-point algorithm, define

$$
P^{k}=\left\{j: x_{j}^{k} \geq s_{j}^{k}, \forall j\right\} \quad \text { and } \quad Z^{k}=\{1, \ldots, n\} \backslash P^{k}
$$

Then, we have $P^{k}=P^{*}$ whenever

$$
\mathbf{c}^{T} \mathbf{x}^{k}-\mathbf{b}^{T} \mathbf{y}^{k} \leq 2^{-L}
$$

Thus, the worst-case iteration bound for interior-point algorithms is $O(\sqrt{n} L)$ if the initial point pair $\left(\mathbf{x}^{0}\right)^{T} \mathbf{s}^{0} \leq 2^{L}$.

Initialization

- Combining the primal and dual into a single linear feasibility problem, then applying LP algorithms to find a feasible point of the problem. Theoretically, this approach can retain the currently best complexity result.
- The big M method, i.e., add one or more artificial column(s) and/or row(s) and a huge penalty parameter M to force solutions to become feasible during the algorithm.
- Phase I-then-Phase II method, i.e., first try to find a feasible point (and possibly one for the dual problem), and then start to look for an optimal solution if the problem is feasible and bounded.
- Combined Phase I-Phase II method, i.e., approach feasibility and optimality simultaneously. To our knowledge, the "best" complexity of this approach is $O(n \log (R / \epsilon))$.

Homogeneous and Self-Dual Algorithm

- It solves the linear programming problem without any regularity assumption concerning the existence of optimal, feasible, or interior feasible solutions, while it retains the currently best complexity result
- It can start at any positive primal-dual pair, feasible or infeasible, near the central ray of the positive orthant (cone), and it does not use any big M penalty parameter or lower bound.
- Each iteration solves a system of linear equations whose dimension is almost the same as that solved in the standard (primal-dual) interior-point algorithms.
- If the LP problem has a solution, the algorithm generates a sequence that approaches feasibility and optimality simultaneously; if the problem is infeasible or unbounded, the algorithm will produce an infeasibility certificate for at least one of the primal and dual problems.

Primal-Dual Alternative Systems

A pair of LP has two alternatives

$$
\begin{aligned}
& \text { (Solvable) } \quad A \mathrm{x}-\mathbf{b}=\mathbf{0} \\
& -A^{T} \mathbf{y}+\mathbf{c} \geq \mathbf{0}, \\
& \text { or } \\
& \text { (Infeasible) } \\
& A \mathrm{x}=\mathbf{0} \\
& -A^{T} \mathbf{y} \geq \mathbf{0}, \\
& \mathbf{b}^{T} \mathbf{y}-\mathbf{c}^{T} \mathbf{x} \quad>0, \\
& \mathrm{y} \text { free, } \mathrm{x} \geq \mathbf{0}
\end{aligned}
$$

An Integrated Homogeneous System

The two alternative systems can be homogenized as one:

$$
\begin{aligned}
(H P) & =\mathbf{0}-\mathbf{b} \tau \\
-A^{T} \mathbf{y}+\mathbf{c} \tau & =\mathbf{s} \geq \mathbf{0} \\
\mathbf{b}^{T} \mathbf{y}-\mathbf{c}^{T} \mathbf{x} & =\kappa \geq 0 \\
\mathbf{y} \text { free, }(\mathbf{x} ; \tau) & \geq \mathbf{0}
\end{aligned}
$$

where the two alternatives are

$$
\text { (Solvable) : }(\tau>0, \kappa=0) \text { or (Infeasible) }:(\tau=0, \kappa>0)
$$

The Homogeneous System is Self-Dual

$$
\begin{aligned}
A \mathbf{x}-\mathbf{b} \tau & =\mathbf{0},\left(\mathbf{y}^{\prime}\right) \\
-A^{T} \mathbf{y}+\mathbf{c} \tau & =\mathbf{s} \geq \mathbf{0},\left(\mathbf{x}^{\prime}\right) \\
\mathbf{b}^{T} \mathbf{y}-\mathbf{c}^{T} \mathbf{x} & =\kappa \geq 0,\left(\tau^{\prime}\right) \\
\mathbf{y} \text { free, }(\mathbf{x} ; \tau) & \geq \mathbf{0}
\end{aligned}
$$

$(H D) \quad A \mathbf{x}^{\prime}-\mathbf{b} \tau^{\prime}=\mathbf{0}$,

$$
\begin{aligned}
A^{T} \mathbf{y}^{\prime}-\mathbf{c} \tau^{\prime} & \leq \mathbf{0}, \\
-\mathbf{b}^{T} \mathbf{y}^{\prime}+\mathbf{c}^{T} \mathbf{x}^{\prime} & \leq 0, \\
\mathbf{y}^{\prime} \text { free, }\left(\mathbf{x}^{\prime} ; \tau^{\prime}\right) & \geq \mathbf{0}
\end{aligned}
$$

Theorem 3 System (HP) is feasible (e.g. all zeros) and any feasible solution ($\mathbf{y}, \mathrm{x}, \tau, \mathrm{s}, \kappa)$ is self-complementary:

$$
\mathbf{x}^{T} \mathbf{s}+\tau \kappa=0
$$

Furthermore, it has a strictly self-complementary feasible solution

$$
\binom{\mathbf{x}+\mathbf{s}}{\tau+\kappa}>\mathbf{0}
$$

Let's Find Such a Feasible Solution

Given $\mathrm{x}^{0}=\mathrm{e}>0, \mathrm{~s}^{0}=\mathrm{e}>0$, and $\mathrm{y}^{0}=0$, we formulate
$(H S D P) \min \theta$

$$
\begin{aligned}
& \text { s.t. } A \mathbf{x} \quad-\mathbf{b} \tau \quad+\overline{\mathbf{b}} \theta=\mathbf{0} \text {, } \\
& -A^{T} \mathbf{y} \quad+\mathbf{c} \tau \quad-\overline{\mathbf{c}} \theta \geq \mathbf{0}, \\
& \mathbf{b}^{T} \mathbf{y} \quad-\mathbf{c}^{T} \mathbf{x} \quad+\bar{z} \theta \geq 0, \\
& \mathbf{y} \text { free, } \quad \mathbf{x} \geq \mathbf{0}, \quad \tau \geq 0, \quad \theta \text { free, }
\end{aligned}
$$

where

$$
\overline{\mathbf{b}}=\mathbf{b}-A \mathbf{e}, \quad \overline{\mathbf{c}}=\mathbf{c}-\mathbf{e}, \quad \bar{z}=\mathbf{c}^{T} \mathbf{e}+1
$$

But it may just give us the all-zero solution.

A HSD linear program

Let's try to add one more constraint to prevent the all-zero solution

$$
\begin{aligned}
& (H S D P) \quad \text { min } \\
& \begin{array}{lll}
\text { s.t. } \quad A \mathbf{x} & -\mathbf{b} \tau \quad+\overline{\mathbf{b}} \theta=\mathbf{0},
\end{array} \\
& \text { s.t. } \quad A \mathbf{x}-\mathbf{b} \tau \quad+\overline{\mathbf{b}} \theta=\mathbf{0}, \\
& -A^{T} \mathbf{y} \quad+\mathbf{c} \tau \\
& \begin{aligned}
\mathbf{b}^{T} \mathbf{y} & -\mathbf{c}^{T} \mathbf{x} \\
-\overline{\mathbf{b}}^{T} \mathbf{y} & +\overline{\mathbf{c}}^{T} \mathbf{x} \quad-\bar{z} \tau
\end{aligned} \\
& \begin{aligned}
\mathbf{b}^{T} \mathbf{y} & -\mathbf{c}^{T} \mathbf{x} \\
-\overline{\mathbf{b}}^{T} \mathbf{y} & +\overline{\mathbf{c}}^{T} \mathbf{x} \quad-\bar{z} \tau
\end{aligned} \\
& (n+1) \theta \\
& \mathbf{y} \text { free, } \quad \mathbf{x} \geq \mathbf{0}, \quad \tau \geq 0, \quad \theta \text { free. }
\end{aligned}
$$

Note that the constraints of (HSDP) form a skew-symmetric system and the objective coeffcient vector is the negative of the right-hand-side vector, so that it remains a self-dual linear program.
$(\mathbf{y}=\mathbf{0}, \mathbf{x}=\mathbf{e}, \tau=1, \theta=1)$ is a strictly feasible point for (HSDP).

$$
\begin{aligned}
& (H S D P) \quad \min \quad(n+1) \theta \\
& \text { s.t. } \\
& A \mathbf{x} \quad-\mathbf{b} \tau \\
& -A^{T} \mathbf{y} \quad+\mathbf{c} \tau \quad-\overline{\mathbf{c}} \theta \quad=\mathbf{s} \geq \mathbf{0}, \\
& \mathbf{b}^{T} \mathbf{y}-\mathbf{c}^{T} \mathbf{x} \quad+\bar{z} \theta=\kappa \geq 0, \\
& -\overline{\mathbf{b}}^{T} \mathbf{y}+\overline{\mathbf{c}}^{T} \mathbf{x} \quad-\bar{z} \tau \quad=-(n+1), \\
& \mathbf{y} \text { free }, \quad \mathbf{x} \geq \mathbf{0}, \quad \tau \geq 0, \quad \theta \text { free. }
\end{aligned}
$$

Denote by \mathcal{F}_{h} the set of all points $(\mathbf{y}, \mathrm{x}, \tau, \theta, \mathrm{s}, \kappa)$ that are feasible for (HSDP). Denote by \mathcal{F}_{h}^{0} the set of interior feasible points with $(\mathrm{x}, \tau, \mathrm{s}, \kappa)>0$ in \mathcal{F}_{h}. By combining the constraints, we can derive the last (equality) constraint as

$$
\mathbf{e}^{T} x+\mathbf{e}^{T} s+\tau+\kappa-(n+1) \theta=(n+1)
$$

which serves indeed as a normalizing constraint for (HSDP) to prevent the all-zero solution.

Theorem 4 Consider problems (HSDP) and (HSDD).
i) (HSDD) has the same form as (HSDP), i.e., (HSDD) is simply (HSDP) with $(\mathbf{y}, \mathbf{x}, \tau, \theta)$ being replaced by $\left(\mathbf{y}^{\prime}, \mathbf{x}^{\prime}, \tau^{\prime}, \theta^{\prime}\right)$.
ii) (HSDP) has a strictly feasible point

$$
\mathbf{y}=\mathbf{0}, \quad x=\mathbf{e}>\mathbf{0}, \quad \tau=1, \quad \theta=1, \quad \mathbf{s}=\mathbf{e}>\mathbf{0}, \quad \kappa=1
$$

iii) (HSDP) has an optimal solution and its optimal solution set is bounded.
iv) The optimal value of (HSDP) is zero, and

$$
(\mathbf{y}, \mathbf{x}, \tau, \theta, \mathbf{s}, \kappa) \in \mathcal{F}_{h} \quad \text { implies that } \quad(n+1) \theta=\mathbf{x}^{T} \mathbf{S}+\tau \kappa
$$

v) There is an optimal solution $\left(\mathbf{y}^{*}, \mathbf{x}^{*}, \tau^{*}, \theta^{*}=0, \mathrm{~s}^{*}, \kappa^{*}\right) \in \mathcal{F}_{h}$ such that

$$
\binom{\mathbf{x}^{*}+\mathbf{s}^{*}}{\tau^{*}+\kappa^{*}}>\mathbf{0}
$$

which we call a strictly self-complementary solution. (Similarly, we sometimes call an optimal solution to (HSDP) a self-complementary solution; the strict inequalities above need not hold.)

Theorem $5 \operatorname{Let}\left(\mathbf{y}^{*}, \mathrm{x}^{*}, \tau^{*}, \theta^{*}=0, \mathrm{~s}^{*}, \kappa^{*}\right)$ be a strictly self complementary solution for (HSDP).
i) (LP) has a solution (feasible and bounded) if and only if $\tau^{*}>0$. In this case, $\mathrm{x}^{*} / \tau^{*}$ is an optimal solution for (LP) and $\left(\mathrm{y}^{*} / \tau^{*}, \mathrm{~s}^{*} / \tau^{*}\right)$ is an optimal solution for ($L D$).
ii) $(L P)$ has no solution if and only if $\kappa^{*}>0$. In this case, $\mathrm{x}^{*} / \kappa^{*}$ or $\mathrm{s}^{*} / \kappa^{*}$ or both are certificates for proving infeasibility: if $\mathbf{c}^{T} \mathbf{x}^{*}<0$ then $(L D)$ is infeasible; if $-\mathbf{b}^{T} \mathbf{y}^{*}<0$ then $(L P)$ is infeasible; and if both $\mathbf{c}^{T} \mathbf{x}^{*}<0$ and $-\mathbf{b}^{T} \mathbf{y}^{*}<0$ then both $(L P)$ and $(L D)$ are infeasible.

Theorem 6 i) For any $\mu>0$, there is a unique $(\mathbf{y}, \mathbf{x}, \tau, \theta, \mathbf{s}, \kappa)$ in \mathcal{F}_{h}^{0}, such that

$$
\binom{X \mathbf{s}}{\tau \kappa}=\mu \mathbf{e}
$$

ii) Let $\left(\mathbf{d}_{y}, \mathbf{d}_{x}, d_{\tau}, d_{\theta}, \mathbf{d}_{s}, d_{\kappa}\right)$ be in the null space of the constraint matrix of (HSDP) after adding surplus variables s and κ, i.e.,

$$
\begin{aligned}
& A \mathbf{d}_{x}-\mathbf{b} d_{\tau}+\overline{\mathbf{b}} d_{\theta} \quad=\mathbf{0}, \\
& -A^{T} \mathbf{d}_{y} \quad+\mathbf{c} d_{\tau} \quad-\overline{\mathbf{c}} d_{\theta} \quad-\mathbf{d}_{s} \quad=\mathbf{0}, \\
& \mathbf{b}^{T} \mathbf{d}_{y}-\mathbf{c}^{T} \mathbf{d}_{x} \quad+\bar{z} d_{\theta} \quad-d_{\kappa}=0 \\
& -\overline{\mathbf{b}}^{T} \mathbf{d}_{y}+\overline{\mathbf{c}}^{T} \mathbf{d}_{x} \quad-\bar{z} d_{\tau} \quad=0 . \\
& \left(\mathbf{d}_{x}\right)^{T} \mathbf{d}_{s}+d_{\tau} d_{\kappa}=0 .
\end{aligned}
$$

Endogenous Potential Function and Central Path

$$
\psi_{n+\rho}(\mathbf{x}, \mathbf{s}, \tau, \kappa):=(n+1+\rho) \log \left(\mathbf{x}^{T} \mathbf{s}+\tau \kappa\right)-\sum_{j=1}^{n} \log \left(x_{j} s_{j}\right)-\log (\tau \kappa)
$$

and

$$
\mathcal{C}=\left\{(\mathbf{y}, \mathbf{x}, \tau, \theta, \mathbf{s}, \kappa) \in \mathcal{F}_{h}^{0}:\binom{X \mathbf{s}}{\tau \kappa}=\frac{\mathbf{x}^{T} \mathbf{s}+\tau \kappa}{n+1} \mathbf{e}\right\}
$$

Obviously, the initial interior feasible point proposed in Theorem 4 is on the path with $\mu=1$ or $\left(\mathbf{x}^{0}\right)^{T} \mathbf{s}^{0}+\tau^{0} \kappa^{0}=n+1$.

Solving (HSDP)

Consider solving the following system of linear equations for $\left(\mathbf{d}_{y}, \mathbf{d}_{x}, d_{\tau}, d_{\theta}, \mathbf{d}_{s}, d_{\kappa}\right)$ that satisfies (4) and

$$
\binom{X \mathbf{d}_{s}+S \mathbf{d}_{x}}{\tau^{k} d_{\kappa}+\kappa^{k} d_{\tau}}=\gamma \mu \mathbf{e}-\binom{X \mathbf{s}}{\tau \kappa}
$$

Theorem 7 The $O\left(\sqrt{n} \log \left(\left(\mathbf{x}^{0}\right)^{T} \mathbf{s}^{0} / \epsilon\right)\right)$ interior-point algorithm, coupled with a termination technique described above, generates a strictly self-complementary solution for (HSDP) in $O(\sqrt{n}(\log (c(A, \mathbf{b}, \mathbf{c}))+\log n))$ iterations and $O\left(n^{3}(\log (c(A, \mathbf{b}, \mathbf{c}))+\log n)\right)$ operations, where $c(A, \mathbf{b}, \mathbf{c})$ is a positive number depending on the data $(A, \mathbf{b}, \mathbf{c})$. If $(L P)$ and $(L D)$ have integer data with bit length L, then by the construction, the data of (HSDP) remains integral and its length is $O(L)$. Moreover, $c(A, \mathbf{b}, \mathbf{c}) \leq 2^{L}$. Thus, the algorithm terminates in $O(\sqrt{n} L)$ iterations and $O\left(n^{3} L\right)$ operations.

Example

Consider the example where

$$
A=\left(\begin{array}{ccc}
-1 & 0 & 0
\end{array}\right), \quad b=1, \quad \text { and } \quad \mathbf{c}=\left(\begin{array}{lll}
0 & 1 & -1
\end{array}\right) .
$$

Then,

$$
y^{*}=2, \quad \mathbf{x}^{*}=(0,2,1)^{T}, \quad \tau^{*}=0, \quad \theta^{*}=0, \quad \mathbf{s}^{*}=(2,0,0)^{T}, \quad \kappa^{*}=1
$$

could be a strictly self-complementary solution generated for (HSDP) with

$$
\mathbf{c}^{T} \mathbf{x}^{*}=1>0, \quad b y^{*}=2>0
$$

Thus (y^{*}, \mathbf{s}^{*}) demonstrates the infeasibility of (LP), but \mathbf{x}^{*} doesn't show the infeasibility of (LD). Of course, if the algorithm generates instead $\mathrm{x}^{*}=(0,1,2)^{T}$, then we get demonstrated infeasibility of both.

Software Implementation

Cplex, GUROBI
SEDUMI: http://sedumi.mcmaster.ca/
MOSEK: http://www.mosek.com/products_mosek.html
IPOPT: https://projects.coin-or.org/Ipopt
hsdLPsolver: Sparse Linear Programming Solver (Matlabe .m file).

