Optimality Conditions for Linearly Constrained Optimization

Yinyu Ye
Department of Management Science and Engineering
Stanford University
Stanford, CA 94305, U.S.A.
http://www.stanford.edu/~yyye
(LY: Chapters 7.1-7.2, 11.1-11.3)

General Optimization Problems

Let the problem have the general mathematical programming (MP) form

$$
\begin{array}{lll}
\text { (P) } & \text { minimize } & f(\mathbf{x}) \\
& \text { subject to } & \mathbf{x} \in \mathcal{F}
\end{array}
$$

In all forms of mathematical programming, a feasible solution of a given problem is a vector that satisfies the constraints of the problem, that is, in \mathcal{F}.

First question: How does one recognize or certify an optimal solution to a generally constrained and objectived optimization problem?

Answer: Optimality Condition Theory again.

Descent Direction

Let f be a differentiable function on R^{n}. If point $\overline{\mathbf{x}} \in R^{n}$ and there exists a vector \mathbf{d} such that

$$
\nabla f(\overline{\mathbf{x}}) \mathbf{d}<0
$$

then there exists a scalar $\bar{\tau}>0$ such that

$$
f(\overline{\mathbf{x}}+\tau \mathbf{d})<f(\overline{\mathbf{x}}) \text { for all } \tau \in(0, \bar{\tau})
$$

The vector \mathbf{d} (above) is called a descent direction at $\overline{\mathbf{x}}$. If $\nabla f(\overline{\mathbf{x}}) \neq 0$, then $\nabla f(\overline{\mathbf{x}})$ is the direction of steepest ascent and $-\nabla f(\overline{\mathbf{x}})$ is the direction of steepest descent at $\overline{\mathbf{x}}$.

Denote by $\mathcal{D}_{\overline{\mathrm{X}}}^{d}$ the set of descent directions at $\overline{\mathbf{x}}$, that is,

$$
\mathcal{D}_{\overline{\mathbf{x}}}^{d}=\left\{\mathbf{d} \in R^{n}: \nabla f(\overline{\mathbf{x}}) \mathbf{d}<0\right\}
$$

Feasible Direction

At feasible point $\overline{\mathbf{x}}$, a feasible direction is

$$
\mathcal{D}_{\overline{\mathbf{x}}}^{f}:=\left\{\mathbf{d} \in R^{n}: \mathbf{d} \neq \mathbf{0}, \overline{\mathbf{x}}+\lambda \mathbf{d} \in \mathcal{F} \text { for all small } \lambda>0\right\} .
$$

Examples:

$$
\begin{gathered}
\mathcal{F}=R^{n} \Rightarrow \mathcal{D}^{f}=R^{n} \\
\mathcal{F}=\{\mathbf{x}: A \mathbf{x}=\mathbf{b}\} \Rightarrow \mathcal{D}^{f}=\{\mathbf{d}: A \mathbf{d}=0\} . \\
\mathcal{F}=\{\mathbf{x}: A \mathbf{x} \geq \mathbf{b}\} \Rightarrow \mathcal{D}^{f}=\left\{\mathbf{d}: A_{i} \mathbf{d} \geq 0, \forall i \in \mathcal{A}(\overline{\mathbf{x}})\right\},
\end{gathered}
$$

where the active or binding constraint set $\mathcal{A}(\overline{\mathrm{x}}):=\left\{i: A_{i} \overline{\mathrm{x}}=b_{i}\right\}$.

Optimality Conditions

Optimality Conditions: given a feasible solution or point $\overline{\mathbf{x}}$, what are the necessary conditions for $\overline{\mathbf{x}}$ to be a local optimizer?

A general answer would be: there exists no direction at $\overline{\mathbf{x}}$ that is both descent and feasible. Or the intersection of $\mathcal{D}_{\overline{\mathrm{x}}}^{d}$ and $\mathcal{D}_{\overline{\mathrm{x}}}^{f}$ must be empty.

Unconstrained Problems

Consider the unconstrained problem, where f is differentiable on R^{n},

$$
\begin{array}{lc}
\text { minimize } & f(\mathbf{x}) \\
\text { subject to } & \mathbf{x} \in R^{n} .
\end{array}
$$

$\mathcal{D}_{\overline{\mathrm{x}}}^{f}=R^{n}$, so that $\mathcal{D}_{\overline{\mathrm{x}}}^{d}=\left\{\mathrm{d} \in R^{n}: \nabla f(\overline{\mathrm{x}}) \mathrm{d}<0\right\}=\emptyset:$
Theorem 1 Let $\overline{\mathrm{x}}$ be a (local) minimizer of (UP). If the functions f is continuously differentiable at $\overline{\mathrm{x}}$, then

$$
\nabla f(\overline{\mathbf{x}})=\mathbf{0}
$$

Linear Equality-Constrained Problems

Consider the linear equality-constrained problem, where f is differentiable on R^{n},

$$
\begin{array}{lc}
\operatorname{minimize} & f(\mathbf{x}) \\
\text { subject to } & A \mathbf{x}=\mathbf{b} .
\end{array}
$$

Theorem 2 (the Lagrange Theorem) Let $\overline{\mathrm{x}}$ be a (local) minimizer of (LEP). If the functions f is continuously differentiable at $\overline{\mathrm{x}}$, then

$$
\nabla f(\overline{\mathbf{x}})=\overline{\mathbf{y}}^{T} A
$$

for some $\overline{\mathbf{y}}=\left(\bar{y}_{1} ; \ldots ; \bar{y}_{m}\right) \in R^{m}$, which are called Lagrange or dual multipliers.
The geometric interpretation: the objective gradient vector is perpendicular to or the objective level set tangents the constraint hyperplanes.

Proof

Consider feasible direction space

$$
\mathcal{F}=\{\mathbf{x}: A \mathbf{x}=\mathbf{b}\} \Rightarrow \mathcal{D}_{\overline{\mathbf{x}}}^{f}=\{\mathbf{d}: A \mathbf{d}=0\}
$$

If $\overline{\mathbf{X}}$ is a local optimizer, then the intersection of the descent and feasible direction sets at $\overline{\mathbf{X}}$ must be empty or

$$
A \mathbf{d}=\mathbf{0}, \nabla f(\overline{\mathbf{x}}) \mathbf{d} \neq 0
$$

has no feasible solution for d. By the Alternative System Theorem it must be true that its alternative system has a solution, that is, there is $\overline{\mathbf{y}} \in R^{n}$ such that

$$
\nabla f(\overline{\mathbf{x}})=\overline{\mathbf{y}}^{T} A=\sum_{i=1}^{m} \bar{y}_{i} A_{i}
$$

The Logarithmic Barrier Function Problem

Consider the problem

$$
\begin{array}{cc}
\operatorname{minimize} & -\sum_{j=1}^{n} \log x_{j} \\
\text { subject to } & A \mathbf{x}=\mathbf{b} \\
& \mathbf{x} \geq \mathbf{0}
\end{array}
$$

The non-negativity constraint can be removed if the feasible region has an "interior", that is, there is a feasible solution such that $\mathbf{x}>0$. Thus, if a minimizer $\overline{\mathbf{x}}$ exists, then $\overline{\mathbf{x}}>0$ and

$$
-\mathbf{e}^{T} \bar{X}^{-1}=\overline{\mathbf{y}}^{T} A=\sum_{i=1}^{m} \bar{y}_{i} A_{i}
$$

The maximizer is calle the analytic center of the feasible region.

Linear Inequality-Constrained Problems

Let us now consider the inequality-constrained problem

(LIP)	minimize	$f(\mathbf{x})$
	subject to	$A \mathbf{x} \geq \mathbf{b}$.

Theorem 3 (the KKT Theorem) Let $\overline{\mathrm{x}}$ be a (local) minimizer of (LIP). If the functions f is continuously differentiable at $\overline{\mathbf{x}}$, then

$$
\nabla f(\overline{\mathbf{x}})=\overline{\mathbf{y}}^{T} A, \overline{\mathbf{y}} \geq \mathbf{0}
$$

for some $\overline{\mathbf{y}}=\left(\bar{y}_{1} ; \ldots ; \bar{y}_{m}\right) \in R^{m}$, which are called Lagrange or dual multipliers, and $\bar{y}_{i}=0, \quad$ if $i \notin \mathcal{A}(\overline{\mathbf{x}})$.

The geometric interpretation: the objective gradient vector is in the cone generated by the normal directions of the active-constraint hyperplanes.

Proof

$$
\mathcal{F}=\{\mathbf{x}: A \mathbf{x} \geq \mathbf{b}\} \Rightarrow \mathcal{D}_{\mathbf{x}}^{f}=\left\{\mathbf{d}: A_{i} \mathbf{d} \geq 0, \forall i \in \mathcal{A}(\overline{\mathrm{x}})\right\}
$$

or

$$
\mathcal{D}_{\overline{\mathbf{x}}}^{f}=\{\mathbf{d}: \bar{A} \mathbf{d} \geq \mathbf{0}\},
$$

where \bar{A} corresponds to those active constraints. If $\overline{\mathrm{x}}$ is a local optimizer, then the intersection of the descent and feasible direction sets at $\overline{\mathrm{x}}$ must be empty or

$$
\bar{A} \mathbf{d} \geq \mathbf{0}, \nabla f(\overline{\mathbf{x}}) \mathbf{d}<0
$$

has no feasible solution. By the Alternative System Theorem it must be true that its alternative system has a solution, that is, there is $\overline{\mathbf{y}} \geq 0$ such that

$$
\nabla f(\overline{\mathbf{x}})=\overline{\mathbf{y}}^{T} \bar{A}=\sum_{i \in \mathcal{A}(\overline{\mathbf{x}})} \bar{y}_{i} A_{i}=\sum_{i} \bar{y}_{i} A_{i},
$$

when let $\bar{y}_{i}=0$ for all $i \notin \mathcal{A}(\overline{\mathbf{x}})$. Then we prove the theorem.

Optimization with Mixed Constraints

We now consider optimality conditions for problems having both inequality and equality constraints. These can be denoted

$$
\begin{array}{ll}
\text { minimize } f(\mathbf{x}) & \\
\text { subject to } A \mathbf{x} & =\mathbf{b} \\
& \mathbf{x} \geq \mathbf{0}
\end{array}
$$

For any feasible point $\overline{\mathrm{x}}$ of (P) we have the sets

$$
\begin{aligned}
\mathcal{A}(\overline{\mathbf{x}}) & =\left\{j: \bar{x}_{j}=0\right\} \\
\mathcal{D}_{\overline{\mathbf{x}}}^{d} & =\{\mathbf{d}: \nabla f(\overline{\mathbf{x}}) \mathbf{d}<0\}
\end{aligned}
$$

The KKT Theorem Again

Theorem 4 Let $\overline{\mathbf{x}}$ be a local minimizer for (P). Then there exist multipliers $\overline{\mathbf{y}},{ }^{-}$such that

$$
\begin{aligned}
\nabla f(\overline{\mathbf{x}}) & =\overline{\mathbf{y}}^{T} A+\overline{\mathbf{s}}^{T} \\
\overline{\mathbf{s}} & \geq \mathbf{0} \\
\bar{s}_{j} & =0 \quad \text { if } j \notin \mathcal{A}(\overline{\mathbf{x}})
\end{aligned}
$$

Optimality and Complementarity Conditions

$$
\begin{aligned}
x_{j}\left(\nabla f(\mathbf{x})-\mathbf{y}^{T} A\right)_{j} & =0, \forall j=1, \ldots, n \\
A \mathbf{x} & =\mathbf{b} \\
\nabla f(\mathbf{x})-\mathbf{y}^{T} A & \geq \mathbf{0} \\
\mathbf{x} & \geq \mathbf{0} \\
x_{j} s_{j} & =0, \forall j=1, \ldots, n \\
A \mathbf{x} & =\mathbf{b} \\
\nabla f(\mathbf{x})-\mathbf{y}^{T} A-\mathbf{s}^{T} & =\mathbf{0} \\
\mathbf{x}, \mathbf{s} & \geq \mathbf{0}
\end{aligned}
$$

Sufficient Optimality Conditions

Theorem 5 If f is a differentiable convex function in the feasible region and the feasible region is a convex set, then the (first-order) KKT optimality conditions are sufficient for the global optimality of a feasible solution.

Corollary 1 If f is differentiable convex function in the feasible region, then the (first-order) KKT optimality conditions are sufficient for the global optimality of a feasible solution for linearly constrained optimization.

How to check convexity, say $f(x)=x^{3}$?

- Hessian matrix is PSD in the feasible region.
- Epigraph is a convex set.

LCCP Examples: Linear Optimization

$(L P) \quad$ minimize $\quad \mathbf{c}^{T} \mathbf{x}$

$$
\text { subject to } A \mathrm{x}=\mathrm{b}, \mathrm{x} \geq \mathbf{0}
$$

For any feasible x of (LP), it's optimal if for some y, s

$$
\begin{aligned}
x_{j} s_{j} & =0, \forall j=1, \ldots, n \\
A \mathbf{x} & =\mathbf{b} \\
\nabla\left(\mathbf{c}^{T} \mathbf{x}\right)=\mathbf{c}^{T} & =\mathbf{y}^{T} A+\mathbf{s}^{T} \\
\mathbf{x}, \mathbf{s} & \geq \mathbf{0}
\end{aligned}
$$

Here, y are Lagrange multipliers of equality constraints, and s (reduced cost or dual slack vector in LP) are Lagrange multipliers for $\mathrm{x} \geq 0$.

LCCP Examples: Barrier Optimization

$$
f(\mathbf{x})=\mathbf{c}^{T} \mathbf{x}-\mu \sum_{j=1}^{n} \log \left(x_{j}\right)
$$

for some fixed $\mu>0$. Assume that interior of the feasible region is not empty:

$$
\begin{aligned}
A \mathbf{x} & =\mathbf{b} \\
c_{j}-\frac{\mu}{x_{j}}-\left(\mathbf{y}^{T} A\right)_{j} & =0, \forall j=1, \ldots, n \\
\mathbf{x} & >\mathbf{0}
\end{aligned}
$$

Let $s_{j}=\frac{\mu}{x_{j}}$ for all j (note that this \mathbf{s} is not the s in the KKT condition of $f(\mathbf{x})$). Then

$$
\begin{aligned}
x_{j} s_{j} & =\mu, \forall j=1, \ldots, n \\
A \mathbf{x} & =\mathbf{b} \\
A^{T} \mathbf{y}+\mathbf{s} & =\mathbf{c} \\
(\mathbf{x}, \mathbf{s}) & >\mathbf{0}
\end{aligned}
$$

Proof of Uniqueness

Solution pair of (x, s) of the barrier optimization problem is unique.
Suppose there two different pair $\left(\mathrm{x}^{1}, \mathrm{~s}^{1}\right)$ and $\left(\mathrm{x}^{2}, \mathrm{~s}^{2}\right)$. Note that

$$
\left(s^{1}-s^{2}\right)^{T}\left(x^{1}-x^{2}\right)=0
$$

Thus, there is j such that

$$
\left(s_{j}^{1}-s_{j}^{2}\right)\left(x_{j}^{1}-x_{j}^{2}\right)>0
$$

If $x_{j}^{1}>x_{j}^{2}$, then $s_{j}^{1}<s_{j}^{2}$ since $x_{j}^{1} s_{j}^{1}=x_{j}^{2} s_{j}^{2}=\mu>0$, which leads to $\left(s_{j}^{1}-s_{j}^{2}\right)\left(x_{j}^{1}-x_{j}^{2}\right)<0$ - a contradiction. Similarly, one cannot have $x_{j}^{1}<x_{j}^{2}$.

Central Path for Linear Programming

Let $(\mathbf{x}(\mu), \mathbf{y}(\mu), \mathbf{s}(\mu))$ be the KKT solutions of the barried LP problem. Then the path

$$
\mathcal{C}=\{(\mathbf{x}(\mu), \mathbf{y}(\mu), \mathbf{s}(\mu)) \in \operatorname{int} \mathcal{F}: X \mathbf{s}=\mu \mathbf{e}, 0<\mu<\infty\}
$$

is called the (primal and dual) central path of linear programming.
Theorem 6 Let both (LP) and (LD) have interior feasible points for the given data set (A, b, c). Then for any $0<\mu<\infty$, the central path point pair $(\mathbf{x}(\mu), \mathbf{y}(\mu), \mathbf{s}(\mu))$ exists and is unique.

KKT Application: Fisher's Equilibrium Price

Player $i \in B$'s optimization problem for given prices $p_{j}, j \in G$.

$$
\begin{array}{cc}
\text { maximize } & \mathbf{u}_{i}^{T} \mathbf{x}_{i}:=\sum_{j \in G} u_{i j} x_{i j} \\
\text { subject to } & \mathbf{p}^{T} \mathbf{x}_{i}:=\sum_{j \in G} p_{j} x_{i j} \leq w_{i} \\
& x_{i j} \geq 0, \quad \forall j
\end{array}
$$

Assume that the amount of each good is \bar{s}_{j}. The equilinitum price vector is the one that for all $j \in G$

$$
\sum_{i \in B} x(\mathbf{p})_{i j}=\bar{s}_{j}
$$

Example of Fisher's Equilibrium Price

There two goods, x and y, each with 1 unit on the market. Buyer 1,2 's optimization problems for given prices p_{x}, p_{y}.

$$
\begin{array}{cc}
\text { maximize } & 2 x_{1}+y_{1} \\
\text { subject to } & p_{x} \cdot x_{1}+p_{y} \cdot y_{1} \leq 5 \\
x_{1}, y_{1} \geq 0 \\
3 x_{2}+y_{2} \\
\text { maximize } & p_{x} \cdot x_{2}+p_{y} \cdot y_{2} \leq 8 \\
\text { subject to } \\
x_{2}, y_{2} \geq 0 \\
p_{x}=\frac{26}{3}, p_{y}=\frac{13}{3}, x_{1}=\frac{1}{13}, y_{1}=1, x_{2}=\frac{12}{13}, y_{2}=0
\end{array}
$$

Equilibrium Price Conditions

Player $i \in B$'s dual problem for given prices $p_{j}, j \in G$.

$$
\begin{array}{cc}
\operatorname{minimize} & w_{i} y_{i} \\
\text { subject to } & \mathbf{p} y_{i} \geq \mathbf{u}_{i}, y_{i} \geq 0
\end{array}
$$

The necessary and sufficient conditions for an equilibrium point $\mathbf{x}_{i}, \mathrm{p}$ are:

$$
\begin{array}{clll}
\mathbf{p}^{T} \mathbf{x}_{i}=w_{i}, \mathbf{x}_{i} \geq \mathbf{0}, & \forall i, & \mathbf{p}^{T} \mathbf{x}_{i}=w_{i}, \mathbf{x}_{i} \geq \mathbf{0}, & \forall i, \\
p_{j} y_{i} \geq u_{i j}, y_{i} \geq 0, & \forall i, j, & <=> & p_{j} \geq w_{i} \frac{u_{i j}}{\mathbf{u}_{i}^{T} \mathbf{x}_{i}}, \\
\mathbf{u}_{i}^{T} \mathbf{x}_{i}=w_{i} y_{i}, & \forall i, & \forall i, j, \\
\sum_{i} x_{i j}=\bar{s}_{j}, & \forall j . & \sum_{i} x_{i j}=\bar{s}_{j}, & \forall j .
\end{array}
$$

Equilibrium Price Conditions (continued)

These conditions can be equivalently represented by

$$
\begin{array}{cl}
\sum_{j} \bar{s}_{j} p_{j} \leq \sum_{i} w_{i}, \mathbf{x}_{i} \geq \mathbf{0}, & \forall i, \\
p_{j} \geq w_{i} \frac{u_{i j}}{\mathbf{u}_{i}^{T} \mathbf{x}_{i}}, & \forall i, j, \\
\sum_{i} x_{i j}=\bar{s}_{j}, & \forall j
\end{array}
$$

since from the second inequality (after multiplying $x_{i j}$ to both sides and take sum over j) we have

$$
\mathbf{p}^{T} \mathbf{x}_{i} \geq w_{i}, \forall i
$$

Then, from the rest conditions

$$
\sum_{i} w_{i} \geq \sum_{j} \bar{s}_{j} p_{j}=\sum_{i} \mathbf{p}^{T} \mathbf{x}_{i} \geq \sum_{i} w_{i}
$$

Thus, every inequality in the sequel has to be equal, that is, $\mathbf{p}^{T} \mathbf{x}_{i}=w_{i}, \forall i$ and $p_{j} x_{i j}=w_{i} \frac{u_{i j} x_{i j}}{\mathbf{u}_{i}^{T} \mathbf{x}_{i}}, \forall i, j$.

Equilibrium Price Property

If $u_{i j}$ has at least one positive coefficient for every j, then we must have $p_{j}>0$ for every j at every equilibrium. Moreover, The second inequality can be rewritten as

$$
\log \left(\mathbf{u}_{i}^{T} \mathbf{x}_{i}\right)+\log \left(p_{j}\right) \geq \log \left(w_{i}\right)+\log \left(u_{i j}\right), \forall i, j, u_{i j}>0
$$

The function on the left is (strictly) concave in \mathbf{x}_{i} and p_{j}. Thus,
Theorem 7 The equilibrium set of the Fisher Market is convex, and the equilibrium price vector is unique.

Aggregate Social Optimization

$$
\begin{array}{lc}
\operatorname{maximize} & \sum_{i \in B} w_{i} \log \left(\mathbf{u}_{i}^{T} \mathbf{x}_{i}\right) \\
\text { subject to } & \sum_{i \in B} x_{i j}=\bar{s}_{j}, \quad \forall j \in G, x_{i j} \geq 0, \quad \forall i, j
\end{array}
$$

Theorem 8 (Eisenberg and Gale 1959) Optimal dual (Lagrange) multiplier vector of equality constraints is an equilibrium price vector.

The proof is from Optimality Conditions of the Aggregate Social Problem:

$$
\begin{aligned}
w_{i} \frac{u_{i j}}{\mathbf{u}_{i}^{T} \mathbf{x}_{i}} & \leq p_{j}, \quad \forall i, j \\
w_{i} \frac{u_{i j} x_{i j}}{\mathbf{u}_{i}^{T} \mathbf{x}_{i}} & =p_{j} x_{i j}, \quad \forall i, j \quad \text { (complementarity) } \\
\sum_{i} x_{i j} & =\bar{s}_{j}, \quad \forall j \\
\mathbf{x}_{i} & \geq \mathbf{0}, \forall i
\end{aligned}
$$

which is identical to the equilibrium conditions described earlier.

Rewrite Aggregate Social Optimization

$$
\begin{array}{ll}
\operatorname{maximize} & \sum_{i \in B} w_{i} \log u_{i} \\
\text { subject to } & \sum_{j \in G} u_{i j}^{T} x_{i j}-u_{i}=0, \quad \forall i \in B \\
& \sum_{i \in B} x_{i j}=\bar{s}_{j}, \quad \forall j \in G \\
& x_{i j} \geq 0, u_{i} \geq 0, \quad \forall i, j
\end{array}
$$

This is called the weighted analytic center problem.
Question: Is the price vector \mathbf{p} unique when at least one $u_{i j}>0$ among $i \in B$ and $u_{i j}>0$ among $j \in G$.

Aggregate Example:

$$
\begin{array}{ll}
\operatorname{maximize} & 5 \log \left(2 x_{1}+y_{1}\right)+8 \log \left(3 x_{2}+y_{2}\right) \\
\text { subject to } & x_{1}+x_{2}=1 \\
& y_{1}+y_{2}=1 \\
& x_{1}, x_{2}, y_{1}, y_{2} \geq 0
\end{array}
$$

Using the Lagrangian Function to Derive Optimality Conditions

We consider the general constrained optimization:

$$
\begin{array}{ll}
\min & f(\mathbf{x}) \\
\text { s.t. } & c_{i}(\mathbf{x}) \quad(\leq,=, \geq) \quad 0, i=1, \ldots, m
\end{array}
$$

For Lagrange Multipliers:

$$
\Lambda:=\left\{\lambda_{i} \quad\left(\leq^{\prime},^{\prime} \text { free }^{\prime}, \geq\right) \quad 0, i=1, \ldots, m\right\}
$$

the Lagrangian Function is given by

$$
\begin{gathered}
L(\mathbf{x}, \lambda)=f(\mathbf{x})-\lambda^{T} \mathbf{c}(\mathbf{x})=f(\mathbf{x})-\sum_{i=1}^{m} \lambda_{i} c_{i}(\mathbf{x}), \lambda \in \Lambda \\
\nabla_{x} L(\mathbf{x}, \lambda)=\mathbf{0} \quad \text { and } \quad \lambda_{i} c_{i}(\mathbf{x})=0, \forall i
\end{gathered}
$$

