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General Optimization Problems

Let the problem have the general mathematical programming (MP) form

(P)
minimize f(x)

subject to x ∈ F .

In all forms of mathematical programming, a feasible solution of a given problem is a vector that satisfies

the constraints of the problem, that is, in F .

First question: How does one recognize or certify an optimal solution to a generally constrained and

objectived optimization problem?

Answer: Optimality Condition Theory again.
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Descent Direction

Let f be a differentiable function on Rn. If point x̄ ∈ Rn and there exists a vector d such that

∇f(x̄)d < 0,

then there exists a scalar τ̄ > 0 such that

f(x̄+ τd) < f(x̄) for all τ ∈ (0, τ̄).

The vector d (above) is called a descent direction at x̄. If ∇f(x̄) ̸= 0, then ∇f(x̄) is the direction of

steepest ascent and −∇f(x̄) is the direction of steepest descent at x̄.

Denote by Dd
x̄ the set of descent directions at x̄, that is,

Dd
x̄ = {d ∈ Rn : ∇f(x̄)d < 0}.
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Feasible Direction

At feasible point x̄, a feasible direction is

Df
x̄ := {d ∈ Rn : d ̸= 0, x̄+ λd ∈ F for all small λ > 0}.

Examples:

F = Rn ⇒ Df = Rn.

F = {x : Ax = b} ⇒ Df = {d : Ad = 0}.

F = {x : Ax ≥ b} ⇒ Df = {d : Aid ≥ 0, ∀i ∈ A(x̄)},

where the active or binding constraint set A(x̄) := {i : Aix̄ = bi}.
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Optimality Conditions

Optimality Conditions: given a feasible solution or point x̄, what are the necessary conditions for x̄ to be a

local optimizer?

A general answer would be: there exists no direction at x̄ that is both descent and feasible. Or the

intersection of Dd
x̄ and Df

x̄ must be empty.
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Unconstrained Problems

Consider the unconstrained problem, where f is differentiable on Rn,

(UP)
minimize f(x)

subject to x ∈ Rn.

Df
x̄ = Rn, so that Dd

x̄ = {d ∈ Rn : ∇f(x̄)d < 0} = ∅:

Theorem 1 Let x̄ be a (local) minimizer of (UP). If the functions f is continuously differentiable at x̄, then

∇f(x̄) = 0.
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Linear Equality-Constrained Problems

Consider the linear equality-constrained problem, where f is differentiable on Rn,

(LEP)
minimize f(x)

subject to Ax = b.

Theorem 2 (the Lagrange Theorem) Let x̄ be a (local) minimizer of (LEP). If the functions f is

continuously differentiable at x̄, then

∇f(x̄) = ȳTA

for some ȳ = (ȳ1; . . . ; ȳm) ∈ Rm, which are called Lagrange or dual multipliers.

The geometric interpretation: the objective gradient vector is perpendicular to or the objective level set

tangents the constraint hyperplanes.
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Proof

Consider feasible direction space

F = {x : Ax = b} ⇒ Df
x̄ = {d : Ad = 0}.

If x̄ is a local optimizer, then the intersection of the descent and feasible direction sets at x̄ must be empty

or

Ad = 0, ∇f(x̄)d ̸= 0

has no feasible solution for d. By the Alternative System Theorem it must be true that its alternative

system has a solution, that is, there is ȳ ∈ Rn such that

∇f(x̄) = ȳTA =
m∑
i=1

ȳiAi.
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The Logarithmic Barrier Function Problem

Consider the problem

minimize −
∑n

j=1 log xj

subject to Ax = b,

x ≥ 0

The non-negativity constraint can be removed if the feasible region has an ”interior”, that is, there is a

feasible solution such that x > 0. Thus, if a minimizer x̄ exists, then x̄ > 0 and

−eT X̄−1 = ȳTA =

m∑
i=1

ȳiAi.

The maximizer is calle the analytic center of the feasible region.
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Linear Inequality-Constrained Problems

Let us now consider the inequality-constrained problem

(LIP)
minimize f(x)

subject to Ax ≥ b.

Theorem 3 (the KKT Theorem) Let x̄ be a (local) minimizer of (LIP). If the functions f is continuously

differentiable at x̄, then

∇f(x̄) = ȳTA, ȳ ≥ 0

for some ȳ = (ȳ1; . . . ; ȳm) ∈ Rm, which are called Lagrange or dual multipliers, and

ȳi = 0, if i ̸∈ A(x̄).

The geometric interpretation: the objective gradient vector is in the cone generated by the normal

directions of the active-constraint hyperplanes.
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Proof

F = {x : Ax ≥ b} ⇒ Df
x̄ = {d : Aid ≥ 0, ∀i ∈ A(x̄)},

or

Df
x̄ = {d : Ād ≥ 0},

where Ā corresponds to those active constraints. If x̄ is a local optimizer, then the intersection of the

descent and feasible direction sets at x̄ must be empty or

Ād ≥ 0, ∇f(x̄)d < 0

has no feasible solution. By the Alternative System Theorem it must be true that its alternative system has

a solution, that is, there is ȳ ≥ 0 such that

∇f(x̄) = ȳT Ā =
∑

i∈A(x̄)

ȳiAi =
∑
i

ȳiAi,

when let ȳi = 0 for all i ̸∈ A(x̄). Then we prove the theorem.
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Optimization with Mixed Constraints

We now consider optimality conditions for problems having both inequality and equality constraints. These

can be denoted

(P)

minimize f(x)

subject to Ax = b

x ≥ 0

For any feasible point x̄ of (P) we have the sets

A(x̄) = {j : x̄j = 0}

Dd
x̄ = {d : ∇f(x̄)d < 0}.
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The KKT Theorem Again

Theorem 4 Let x̄ be a local minimizer for (P). Then there exist multipliers ȳ,¯such that

∇f(x̄) = ȳTA+ s̄T

s̄ ≥ 0

s̄j = 0 if j ̸∈ A(x̄).
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Optimality and Complementarity Conditions

xj(∇f(x)− yTA)j = 0, ∀j = 1, . . . , n

Ax = b

∇f(x)− yTA ≥ 0

x ≥ 0.

xjsj = 0, ∀j = 1, . . . , n

Ax = b

∇f(x)− yTA− sT = 0

x, s ≥ 0
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Sufficient Optimality Conditions

Theorem 5 If f is a differentiable convex function in the feasible region and the feasible region is a convex

set, then the (first-order) KKT optimality conditions are sufficient for the global optimality of a feasible

solution.

Corollary 1 If f is differentiable convex function in the feasible region, then the (first-order) KKT optimality

conditions are sufficient for the global optimality of a feasible solution for linearly constrained optimization.

How to check convexity, say f(x) = x3?

• Hessian matrix is PSD in the feasible region.

• Epigraph is a convex set.
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LCCP Examples: Linear Optimization

(LP ) minimize cTx

subject to Ax = b, x ≥ 0.

For any feasible x of (LP), it’s optimal if for some y, s

xjsj = 0, ∀j = 1, . . . , n

Ax = b

∇(cTx) = cT = yTA+ sT

x, s ≥ 0.

Here, y are Lagrange multipliers of equality constraints, and s (reduced cost or dual slack vector in LP)

are Lagrange multipliers for x ≥ 0.
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LCCP Examples: Barrier Optimization

f(x) = cTx− µ
n∑

j=1

log(xj),

for some fixed µ > 0. Assume that interior of the feasible region is not empty:

Ax = b

cj − µ
xj

− (yTA)j = 0, ∀j = 1, . . . , n

x > 0.

Let sj =
µ
xj

for all j (note that this s is not the s in the KKT condition of f(x)). Then

xjsj = µ, ∀j = 1, . . . , n,

Ax = b,

ATy + s = c,

(x, s) > 0.
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Proof of Uniqueness

Solution pair of (x, s) of the barrier optimization problem is unique.

Suppose there two different pair (x1, s1) and (x2, s2). Note that

(s1 − s2)T (x1 − x2) = 0.

Thus, there is j such that

(s1j − s2j )(x
1
j − x2

j ) > 0.

If x1
j > x2

j , then s1j < s2j since x1
js

1
j = x2

js
2
j = µ > 0, which leads to (s1j − s2j )(x

1
j − x2

j ) < 0 – a

contradiction. Similarly, one cannot have x1
j < x2

j .
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Central Path for Linear Programming

Let (x(µ),y(µ), s(µ)) be the KKT solutions of the barried LP problem. Then the path

C = {(x(µ),y(µ), s(µ)) ∈ intF : Xs = µe, 0 < µ < ∞} ;

is called the (primal and dual) central path of linear programming.

Theorem 6 Let both (LP) and (LD) have interior feasible points for the given data set (A, b, c). Then for

any 0 < µ < ∞, the central path point pair (x(µ),y(µ), s(µ)) exists and is unique.
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KKT Application: Fisher’s Equilibrium Price

Player i ∈ B’s optimization problem for given prices pj , j ∈ G.

maximize uT
i xi :=

∑
j∈G uijxij

subject to pTxi :=
∑

j∈G pjxij ≤ wi,

xij ≥ 0, ∀j,

Assume that the amount of each good is s̄j . The equilinitum price vector is the one that for all j ∈ G∑
i∈B

x(p)ij = s̄j
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Example of Fisher’s Equilibrium Price

There two goods, x and y, each with 1 unit on the market. Buyer 1, 2’s optimization problems for given

prices px, py .

maximize 2x1 + y1

subject to px · x1 + py · y1 ≤ 5,

x1, y1 ≥ 0;

maximize 3x2 + y2

subject to px · x2 + py · y2 ≤ 8,

x2, y2 ≥ 0.

px =
26

3
, py =

13

3
, x1 =

1

13
, y1 = 1, x2 =

12

13
, y2 = 0
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Equilibrium Price Conditions

Player i ∈ B’s dual problem for given prices pj , j ∈ G.

minimize wiyi

subject to pyi ≥ ui, yi ≥ 0

The necessary and sufficient conditions for an equilibrium point xi,p are:

pTxi = wi, xi ≥ 0, ∀i,
pjyi ≥ uij , yi ≥ 0, ∀i, j,

uT
i xi = wiyi, ∀i,∑
i xij = s̄j , ∀j.

<=>

pTxi = wi, xi ≥ 0, ∀i,
pj ≥ wi

uij

uT
i xi

, ∀i, j,∑
i xij = s̄j , ∀j.
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Equilibrium Price Conditions (continued)

These conditions can be equivalently represented by∑
j s̄jpj ≤

∑
i wi, xi ≥ 0, ∀i,

pj ≥ wi
uij

uT
i xi

, ∀i, j,∑
i xij = s̄j , ∀j.

since from the second inequality (after multiplying xij to both sides and take sum over j) we have

pTxi ≥ wi, ∀i.

Then, from the rest conditions∑
i

wi ≥
∑
j

s̄jpj =
∑
i

pTxi ≥
∑
i

wi.

Thus, every inequality in the sequel has to be equal, that is, pTxi = wi, ∀i and

pjxij = wi
uijxij

uT
i xi

, ∀i, j .
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Equilibrium Price Property

If uij has at least one positive coefficient for every j, then we must have pj > 0 for every j at every

equilibrium. Moreover, The second inequality can be rewritten as

log(uT
i xi) + log(pj) ≥ log(wi) + log(uij), ∀i, j, uij > 0.

The function on the left is (strictly) concave in xi and pj . Thus,

Theorem 7 The equilibrium set of the Fisher Market is convex, and the equilibrium price vector is unique.
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Aggregate Social Optimization

maximize
∑

i∈B wi log(u
T
i xi)

subject to
∑

i∈B xij = s̄j , ∀j ∈ G, xij ≥ 0, ∀i, j.

Theorem 8 (Eisenberg and Gale 1959) Optimal dual (Lagrange) multiplier vector of equality constraints is

an equilibrium price vector.

The proof is from Optimality Conditions of the Aggregate Social Problem:

wi
uij

uT
i xi

≤ pj , ∀i, j

wi
uijxij

uT
i xi

= pjxij , ∀i, j (complementarity)∑
i xij = s̄j , ∀j
xi ≥ 0, ∀i,

which is identical to the equilibrium conditions described earlier.

25



Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note #12

Rewrite Aggregate Social Optimization

maximize
∑

i∈B wi log ui

subject to
∑

j∈G uT
ijxij − ui = 0, ∀i ∈ B∑

i∈B xij = s̄j , ∀j ∈ G

xij ≥ 0, ui ≥ 0, ∀i, j,
This is called the weighted analytic center problem.

Question: Is the price vector p unique when at least one uij > 0 among i ∈ B and uij > 0 among

j ∈ G.

Aggregate Example:

maximize 5 log(2x1 + y1) + 8 log(3x2 + y2)

subject to x1 + x2 = 1,

y1 + y2 = 1,

x1, x2, y1, y2 ≥ 0.
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Using the Lagrangian Function to Derive Optimality Conditions

We consider the general constrained optimization:

min f(x)

s.t. ci(x) (≤,=,≥) 0, i = 1, ...,m,

For Lagrange Multipliers:

Λ := {λi (≤,′ free′,≥) 0, i = 1, ...,m},

the Lagrangian Function is given by

L(x, λ) = f(x)− λT c(x) = f(x)−
m∑
i=1

λici(x), λ ∈ Λ.

∇xL(x, λ) = 0 and λici(x) = 0, ∀i.

27


