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Geometry of Linear Programming (LP)

Consider the following LP problem in the standard inequality form:

maximize x1 +2x2

subject to −x1 ≤ 0

x2 ≤ 1

x1 +x2 ≤ 1.5

x1 ≤ 1

−x2 ≤ 0.
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Optimality Test of LP in Inequality Form

Consider an LP with m variables and n linear inequality constraints.

• A Corner Point is an intersection point of the hyperplanes of m linearly-independent inequality

constraints.

• These constraints are called active or binding constraints at the corner solution.

• Two corner solutions are adjacent if they differ by one active constraint.

• Theorem 1 For LP in the standard form, a Corner Point is maximal if and only if the objective vector is

a conic combination of the normal direction vectors of the m hyperplanes.
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History of the Simplex Method

George B. Dantzig’s Simplex Method for LP stands as one of the most significant algorithmic

achievements of the 20th century. It is now over 50 years old and still going strong.

The basic idea of the simplex method to confine the search to corner points of the feasible region (of which

there are only finitely many) in a most intelligent way. In contrast, interior-point methods will move in the

interior of the feasible region, hoping to by-pass many corner points on the boundary of the region.

The key for the simplex method is to make computers see corner points; and the key for interior-point

methods is to stay in the interior of the feasible region.
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From Geometry to Algebra

• How to make computer recognize a corner point?

• How to make computer tell that two corners are neighboring?

• How to make computer terminate and declare optimality?

• How to make computer identify a better neighboring corner?
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LP Standard (Equality) Form

minimize c1x1 + c2x2 + ...+ cnxn

subject to a11x1 + a12x2 + ...+ a1nxn = b1,

a21x1 + a22x2 + ...+ a2nxn = b2,
...

am1x1 + am2x2 + ...+ amnxn = bm,

xj ≥ 0, j = 1, 2, ..., n.

Equivalently,

(LP ) minimize cTx

subject to Ax = b,

x ≥ 0.

(LD) maximize bTy

subject to ATy + s = c,

s ≥ 0.
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Reduction to the Standard Form

• Eliminating ”free” variables: substitute with the difference of two nonnegative variables

x = x+ − x− where x+, x− ≥ 0.

• Eliminating inequalities: add slack variables

aTx ≤ b ⇔ aTx+ s = b, s ≥ 0,

aTx ≥ b ⇔ aTx− s = b, s ≥ 0.

• Eliminating upper bounds: move them to constraints x ≤ 3 ⇔ x+ s = 3, s ≥ 0.

• Eliminating nonzezro lower bounds: shift the decision variables x ≥ 3 ⇒ x := x− 3.

• Change max cTx to min −cTx.
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An LP Example in Standard Form

minimize −x1 −2x2

subject to x1 +x3 = 1

x2 +x4 = 1

x1 +x2 +x5 = 1.5

x1, x2, x3, x4, x5 ≥ 0.
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Basic and Basic Feasible Solution (BFS)

In the LP standard form, let’s assume that we selected m linearly independent columns, denoted by the

index set B from A and solve

ABxB = b

for the m-vector xB . By setting the variables xN of x corresponding to the remaining columns of A

equal to zero, we obtain a solution x of Ax = b.

Then x is said to be a basic solution to (LP) with respect to basis AB . The components of xB are called

basic variables and those of xN are called nonbasic variables.

Two basic solutions are adjacent if they differ by exactly one basic (or nonbasic) variable. If a basic solution

satisfies xB ≥ 0, then x is called a basic feasible solution (BFS), and it is an extreme point of the feasible

region.

If one or more components in xB has value zero, x is said to be degenerate.
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Geometry vs Algebra

Theorem 2 Consider the polyhedron in the standard LP form. Then a basic feasible solution and a corner

point are equivalent; the former is algebraic and the latter is geometric.

In the LP example:

Basis 3,4,5 1,4,5 3,4,1 3,2,5 3,4,2 1,2,3 1,2,4 1,2,5

Feasible?
√ √ √ √ √

x1, x2 0, 0 1, 0 1.5, 0 0, 1 0, 1.5 .5, 1 1, .5 1, 1

Neighboring Basic Solutions:

• Two basic solutions are neighboring or adjacent if they differ by exactly one basic (or nonbasic)

variable.

• A basic feasible solution is optimal if no ”better” neighboring BFS exists, or the direction to each

neighbor BFS is non-improving.
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Theorem 3 (The Fundamental Theorem of LP in Algebraic form)a Given (LP) and (LD) where A has full

row rank m,

i) if there is a feasible solution, there is a basic feasible solution (Carathéodory’s theorem);

ii) if there is an optimal solution, there is an optimal basic solution.

The simplex method is to proceed from one BFS (a corner point of the feasible region) to an adjacent or

neighboring one by choosing exactly one of non-basic variables to increase its value, in such a way as to

continuously improve the value of the objective function.

We now prove ii) in the next slide.

aText p.21
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Rounding to an Optimal Basic Feasible Solution for LP

1. Start with any optimal solution x0 = x∗ after removing all variables with the zero value, thus x0 > 0.

Let A0 be the remaining constraint matrix corresponding to x0 such that A0x0 = b. If the columns

of A0 is linearly independent, then x0 is already a BFS (if |x0| < m then fill any rest of independent

columns to make it a basis so that the BFS is degenerate). Otherwise, let k = 0 and go to the next

step.

2. Find any vector d such that Akd = 0, d ̸= 0, and let xk+1 := xk + αd where α is chosen so

that xk+1 ≥ 0 and at least one entry of xk+1 equals 0.

3. Remove all zero entries from xk+1 and let Ak+1 be the remaining constraint matrix corresponding to

xk+1 such that Ak+1xk+1 = b.

4. If the columns of Ak+1 is linearly independent, then stop with the BFS xk+1; otherwise set

k := k + 1 and return to Step 2.

The final output would be a BFS, and it should be optimal because it remains complementary to any

optimal dual vector that is complementary to the initial x∗.
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Optimality Test of the Current BFS I

Suppose the basis of a BFS is AB and the rest is AN . One can express xB (dependent variables) in

terms of xN (independent variables) using the equality constraint:

A−1
B Ax = A−1

B b, (or xB = A−1
B b−A−1

B ANxN )

where the independent xN represent the degree of freedom variables.

Then the objective function can be equivalently reduced to

cTx = cTBxB + cTNxN = cTBA
−1
B b− cTBA

−1
B ANxN + cTNxN

= cTBA
−1
B b+ (cTN − cTBA

−1
B AN )xN .

The reduced objective depends on independent variables in xN only, where

r = cT − cTBA
−1
B A

is called the reduced gradient or cost-vector of x.

Note that the reduced rB = cTB − cTBA
−1
B AB = 0.
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Optimality Test of the Current BFS II

The reduced gradient vector r ∈ Rn can be written by

r = c− ĀT cB = c−AT (A−1
B )T cB = c−ATy,

where y = (A−1
B )T cB is called the shadow price or dual vector corresponding to the current BFS.

Theorem 4 If rN ≥ 0 ( equivalently r ≥ 0) at a BFS with basic variable set B, then the BFS x is a

primal optimal basic solution and y is a dual optimal basic solution, both with AB being an optimal basis.

The proof is simply from the primal feasibility, dual feasibility and complementarity where dual slack vector

s = r.

In fact, it can also be seen from the necessary and sufficient conditions for

min
x

f(x) s.t. x ≥ 0

are that ∇f(x) ≥ 0 and it is complementary to x ≥ 0, as long as f is a differentiable convex function.
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In the LP Example, let the basic variable set B = {3, 4, 5} so that

AB =


1 0 0

0 1 0

0 0 1

 = I

and

A−1
B = I; cB = (0; 0; 0)

yT = (0, 0, 0) and rT = (−1, −2, 0, 0, 0)

The corresponding optimal corner solution is (x1, x2) = (0, 0) in the original problem, and it is not

optimal.

By increasing either of (x1, x2), one can further improve the objective value.
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However, in the LP Example, let the basic variable set B = {1, 2, 3} so that

AB =


1 0 1

0 1 0

1 1 0


and

A−1
B =


0 −1 1

0 1 0

1 1 −1


yT = (0, −1, −1) and rT = (0, 0, 0, 1, 1)

The corresponding optimal corner solution is (x1, x2) = (0.5, 1) in the original problem, and it is

optimal.
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Changing Basis for the LP Example

With the initial basic variable set B = {3, 4, 5}, let us choose x1 (entering variable) to increase. Then we

have 
x3

x4

x5

 =


1

1

3
2

−


1

0

1

x1.

How much can we increase x1 while the current basic variables remain feasible (or non-negative)?

In order to keep all variables nonnegative, the largest value is x1 = 1. Then we see x3 becomes zero and

it is called outgoing variable. This leads to a new basis B = {1, 4, 5}

The largest increase of the entering variable can be determined by minimum ratio test (MRT) procedure.
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Minimum Ratio Test (MRT)

• Select the entering variable xe with its reduced cost re < 0;

• If column (AB)
−1A.e ≤ 0, then Objective is Unbounded

• Minimum Ratio Test (MRT): the largest increase is θ where

θ := min

{
((AB)

−1b)i
(AB)−1A.e

: (AB)
−1A.e > 0

}

• When the entering variable reaches θ, select any current basic variables who reaches zero value.

• If there are multiple basic variables reach zero value, the new BFS will be degenerate (one of its basic

variable has value 0). Pretending it is ϵ > 0 but arbitrarily small and continue the process.
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The Simplex Algorithm

0. Initialize with a minimization problem in feasible canonical form with respect to a basic index set B. Let

N denote the complementary index set.

1. Test for termination: Compute xB = (AB)
−1b ≥ 0, yT = cTB(AB)

−1, and r = c−ATy.

2. Select

re = minj∈N{rj}.

If re ≥ 0, stop. The solution is optimal.

3. Otherwise determine whether the vector (AB)
−1A.e contains a positive entry. If not, the objective

function is unbounded below – terminate; otherwise, let xe be the entering basic variable.

4. Determine the outgoing: execute the MRT to determine the outgoing variable xo.

5. Update basis: update B and AB and return to Step 1.
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How Good is the Simplex Method

Very good on average, but the worse case ...?

When the simplex method is used to solve a linear program the number of iterations to solve the problem

starting from a basic feasible solution is typically a small multiple of m, e.g., between 2m and 3m.

At one time researchers believed—and attempted to prove—that the simplex algorithm (or some variant

thereof) always requires a number of iterations that is bounded by a polynomial expression in the problem

size.
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Klee and Minty Example

Consider

max xn

subject to x1 ≥ 0

x1 ≤ 1

xj ≥ ϵ xj−1 j = 2, . . . , n

xj ≤ 1− ϵ xj−1 j = 2, . . . , n

where 0 < ϵ < 1/2. This presentation of the problem emphasizes the idea (see the figures below) that

the feasible region of the problem is a perturbation of the n-cube.
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The formulation above does not immediately reveal the standard form representation of the problem.

Instead, we consider a different one, namely

max
n∑

j=1

10n−jxj

subject to 2

i−1∑
j=1

10i−jxj + xi ≤ 100i−1 i = 1, . . . , n

xj ≥ 0 j = 1, . . . , n

The problem abovea also be used is easily cast as a linear program in standard form. Unfortunately, it is

less apparent how to exhibit the relationship between its feasible region and a perturbation of the unit cube.

aIt should be noted that there is no need to express this problem in terms of powers of 10. Using any constant C > 1 would yield

the same effect (an exponential number of pivot steps).
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Example

max 100x1 + 10x2 + x3

subject to x1 ≤ 1

20x1 + x2 ≤ 100

200x1 + 20x2 + x3 ≤ 10, 000

In this case, we have three constraints and three variables (along with their non-negativity constraints).

After adding slack variables, we get a problem in standard form. The system has m = 3 equations and

n = 6 nonnegative variables. In tableau form, the problem is
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T0

−z x1 x2 x3 x4 x5 x6 1

1 100 10 1 0 0 0 0

0 1 0 0 1 0 0 1

0 20 1 0 0 1 0 100

0 200 20 1 0 0 1 10,000

• • •

The bullets below the tableau indicate the columns that are basic.
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T1

−z x1 x2 x3 x4 x5 x6 1

1 0 10 1 –100 0 0 –100

0 1 0 0 1 0 0 1

0 0 1 0 –20 1 0 80

0 0 20 1 –200 0 1 9,800

• • •
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T2

−z x1 x2 x3 x4 x5 x6 1

1 0 0 1 100 –10 0 –900

0 1 0 0 1 0 0 1

0 0 1 0 –20 1 0 80

0 0 0 1 200 –20 1 8,200

• • •
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T3

−z x1 x2 x3 x4 x5 x6 1

1 –100 0 1 0 –10 0 –1,000

0 1 0 0 1 0 0 1

0 20 1 0 0 1 0 100

0 –200 0 1 0 –20 1 8,000

• • •
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T4

−z x1 x2 x3 x4 x5 x6 1

1 100 0 0 0 10 –1 –9,000

0 1 0 0 1 0 0 1

0 20 1 0 0 1 0 100

0 –200 0 1 0 –20 1 8,000

• • •
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T5

−z x1 x2 x3 x4 x5 x6 1

1 0 0 0 –100 10 –1 –9,100

0 1 0 0 1 0 0 1

0 0 1 0 –20 1 0 80

0 0 0 1 200 –20 1 8,200

• • •
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T6

−z x1 x2 x3 x4 x5 x6 1

1 0 –10 0 100 0 –1 –9,900

0 1 0 0 1 0 0 1

0 0 1 0 –20 1 0 80

0 0 20 1 –200 0 1 9,800

• • •
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T7

−z x1 x2 x3 x4 x5 x6 1

1 –100 –10 0 0 0 –1 –10,000

0 1 0 0 1 0 0 1

0 20 1 0 0 1 0 100

0 200 20 1 0 0 1 10,000

• • •
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(x1, x2, x3, x4, x5, x6) = (0, 0, 104, 1, 102, 0)

is optimal and that the objective function value is 10, 000.

Along the way, we made 23 − 1 = 7 pivot steps. The objective function made a strict increase with each

change of basis.

Remark. The instance of the linear program (1) in which n = 3 leads to 23 − 1 pivot steps when the

greedy rule is used to select the pivot column. The general problem of the class (1) takes 2n − 1 pivot

steps. To get an idea of how bad this can be, consider the case where n = 50. Now 250 − 1 ≈ 1015. In

a year with 365 days, there are approximately 3× 107 seconds. If a computer were running continuously

and performing T iterations of the Simplex Algorithm per second, it would take approximately

1015

3T × 108
=

1

3T
× 108 years

to solve the problem using the Simplex Algorithm with the greedy pivot selection rule.
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Resolving Cycling in the Simplex Algorithm

In a system of rank m, a (basic) solution that uses fewer than m columns to represent the right-hand side

vector is said to be degenerate. Otherwise, it is called nondegenerate.

A basic feasible solution will be nondegenerate if and only if its m basic variables are positive.

Why is degeneracy a problem? The Simplex Algorithm can cycling (an infinite repetition of a finite

sequence of bases) when a degenerate basic feasible solution crops up in the course of executing the

algorithm, unless a suitable rule is employed to break the ties. Fortunately, there are rules to overcome this

problem.
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Cycling Example

min −2x1 − 3x2 + x3 + 12x4

s.t. −2x1 − 9x2 + x3 + 9x4 +x5 = 0

1
3x1 + x2 − 1

3x3 − 2x4 +x6 = 0

x1, x2, x3, x4, x5, x6 ≥ 0

Initially, the basic variables are {x5, x6} and it is in the canonical form. The pivot sequence shown in the

table below leads back to the original system after 6 pivots.

Pivot number 1 2 3 4 5 6

Basic var. out x6 x5 x2 x1 x4 x3

Basic var. in x2 x1 x4 x3 x6 x5
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Methods for Resolving Cycling

There are several methods for resolving degeneracy in linear programming. Among these are:

1. Perturbation of the right-hand side.

2. Lexicographic ordering.

3. Application of Bland’s pivot selection rule.
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Bland’s Rule

It is a double least-index rule consisting of the following two parts:

(i) Among all candidates for the entering column (i.e., those with rj < 0), choose the one with the

smallest index, say e.

(ii) Among all rows i for which the minimum ratio test results in a tie, choose the row r for which the

corresponding basic variable has the smallest index, jr .

Theorem 5 Under Bland’s pivot selection rule, the Simplex Algorithm cannot cycle.
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Sketch of Proof

We think of the initial data as being expressed in a tableau of m+ 1 rows and n+ 2 columns (indexed

from 0 to n+ 1) which we write as

A =

 1 cT 0

0 A b

 .

One row (the 0th, A0.) and column (the 0th, A.0) pertain the variable x0 we wish to optimize. The

column indexed by n+ 1 is the right-hand side of the system of equations (augmented by an equation for

the objective function).

Let Ā denote the first n+ 1 columns of A, i.e., with column A.n+1 deleted. Analogous notations will be

used for pivotal transforms of Ā.

Now if cycling occurs, there is a set τ of indices j ∈ {1, . . . , n} such that xj becomes basic during

cycling. Clearly τ has only a finite number of elements, so it has a largest element which we denote by q.

Let A′ denote the tableau that first specifies q as the pivot column. This means that xq becomes a basic

variable in the next tableau.

Let y = (y0, y1, . . . , yn) = Ā′
0.. By virtue of the definition of q and the rule that results in the choice of
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q, we have

y0 = 1, yj ≥ 0 1 ≤ j < q, yq < 0. (1)

Note that the (n+ 1)-vector y belongs to the row space of Ā. Now xq must also leave the basis at some

tableau A′′. Let xq = xjr , and let t denote the pivot column when xq becomes nonbasic. Define the

(n+ 1)-vector v = (v0, v1, . . . , vn) as follows:

vji = ā′′it i = 0, 1, . . . ,m, vt = −1, vj = 0 else. (2)

Note that v0 = vj0 = ā′′0t < 0, vq = ā′′rt > 0, and v is in the null space of Ā. Thus, y · v = 0, and by

construction y0v0 < 0. Hence yjvj > 0 for some j ≥ 1. Since yj ̸= 0, xj must be nonbasic in A′;

since vj ̸= 0, then either xj is basic in A′′ or else j = t. Accordingly, j ∈ τ , and hence j ≤ q. By the

construction again, yq < 0 < vq which implies that yqvq < 0 hence j < q.

Furthermore, (1) implies that yj > 0, so vj > 0. Next we observe that vt = −1 implies j ̸= t. All these

lead to the conclusion that xj is currently basic in A′′. Let j = jp for some p. Then vj = ā′′pt > 0.

Note that during the cycling the right-hand-side vector b̄ does not change and the values of all variables in

τ are fixed at 0. This implies b̄′′p = 0. We have established that j = jp, ā
′′
pt > 0 and b̄′′p = 0. But this

contradicts the assumption that xq is removed from the basic set corresponding to tableau A′′, since

j < q and by Bland’s rule j should be removed. This means that cycling cannot occur when Bland’s Rule

39



Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note #09

is applied.

Remark. This elegant degeneracy resolution rule has the drawback that it may result in pivot choices that

do not significantly improve the objective function value. It may also force the selection of dangerously

small pivot elements.
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