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LP Optimality Conditions and Solution Support I

\

( clx—bly = 0
 (x,y,8) € (RY,R™,RY) : Ax = b ¢,
\ —Aly —s = —c |
or
x.-s = 0
Ax = Db
~Aly—-s = —c.

Let x* and s™ be optimal solutions with zero duality gap. Then
supp(x™)| + [supp(s™)| < n.

There are X™ and s™ such that the support sizes of X and s™ are maximal, respectively.
There are X™ and s™ such that the support size of Xx™ and s™ are minimal, respectively.

If there is s™ such that |supp(s™)| > n — d, then the support size for x* is at most d.
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Uniqueness Theorem for LP I

Given an optimal solution xX*, how to certify the uniqueness of x*?

Theorem 1 An LP optimal solution x* is unique if and only if the size of supp(x*) is maximal among all

optimal solutions and the columns of A supp(x*) are linear independent.

It is easy to see both conditions are necessary, since otherwise, one can find an optimal solution with a
different support size. To see sufficiency, suppose there there is another optimal solution y* such that
x* — y* # 0. We must have supp(y*) C supp(x*), since, otherwise, (0.5x* + 0.5y™) remains
optimal and its support size is greater than that of x* which is a contradiction. Then we see

which implies that columns of Asupp(x*) are linearly dependent.

Corollary 1 [f all optimal solutions of an LP has the same support size, then the optimal solution is unique.
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The Rank Theorem of SDP '

(SDP) min CeX
subjectto A; e X =0b;,1=1,2,....m, X > 0,

where C, A; € S".

Or simply for the SDP Feasibility problem:

Solve A; e X =0b;,1=1,2,....m, X =0,
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Solution Rank for SDP '

CeX —bly = 0 XS5 =0
AX = b AX = b
ATy -8 = —C . ATy —§ = —C
X,S = o, X,8 = 0

Let X ™ and S™ be optimal solutions with zero duality gap. Then
rank( X ™) + rank(S™) < n.
Hint of the Proof: for any symmetric PSD matrix P € S™ with rank r, there is a factorization P = V'V
where V' € R"”*"™ and columns of V' are nonzero-vectors and orthogonal to each other.
There are X ™ and S such that the ranks of X * and S* are maximal, respectively.
There are X * and S™ such that the ranks of X * and S* are minimal, respectively.

If there is S™ such that rank(,S™) > n — d, then the maximal rank of X * is at most d.
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Uniqueness Theorem for SDP I

Given an SDP optimal and complementary solution X *, how to certify the uniqueness of X *?

Theorem 2 An SDP optimal and complementary solution X * is unique if and only if the rank of X ™ is
maximal among all optimal solutions and V' * A; (V*)T, 1 = 1, ..., m, are linearly independent, where
X* = (VHITV*, V* € R™™, andr is the rank of X *.

It is easy to see why the rank of X * being maximal is necessary.

Note that for any optimal dual slack matrix S*, we have S* e (V*)1V* = () which implies that
S*(V*)1 = 0. Consider any matrix
X =(ws'uv*
where U € S and
by =A; ¢ (VHIUV* =V*A;(V)  eU, i =1,...,m.

One can see that X remains an optimal SDP solutions for any such U € S, since it makes X feasible
and remain complementary to any optimal dual slack matrix. If V*Ai(V*)T, 1 = 1,...,m, are not
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linearly independent, then one can find
VA,V eW =0, i=1,...,m, 0£W e S".

Now consider
X(a)= V)" (I+a W)V,

and then we can choose o # 0 such that X («) >~ O is another optimal solution.

To see sufficiency, suppose there there is another optimal solution Y * such that X* — Y™ £ 0. We must
have Y* = (V*)1UV* forsome I # U € S’, . Then we see

VA,V e (I-U)=0, i=1,...m,
contradicts that they are linear independent.

Corollary 2 [f all optimal solutions of an SDP has the same rank, then the optimal solution is unique.
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Rank-Reductions for CLP '

In most applications, we may not be lucky and need an effort to search a rank-minimal SDP solution for
SDP:
(SDP) min CeX

subjectto A; e X =0b;,1=1,2,....m, X =0,
where C, A; € S§".

Or simply for the SDP feasibility problem:

Solve AZ o X = bz,’& — 1,2, ceey 11, X t O,
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A Bound on Support/Rank I

Theorem 3 (Carathéodory’s theorem)

e [fthere is a minimizer for (LP), then there is a minimizer of (LP) whose support size 1 satisfying
r < m.

e [fthere is a minimizer for (SDP), then there is a minimizer of (SDP) whose rank 1 satisfying

T(T; D < m. Moreover, such a solution can be find in polynomial time.

How Sharp is the Rank Bound? The rank bound is sharp: consider n = 4 and the SDP problem:

(ei—ej)(ez-—ej)ToX =1, Vi< j=1,2,3,4,
X =0,

Applications: Finding the extreme eigenvalue of a symmetric matrix and the singular value of any matrix
are convex optimization!
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Application of the Rank Theorem I

Consider the spheretical minimization

. - - min  x?Qx + 2r,41 -cl'x
min X" (X + 2c'x

or st x| = 1.
st ||x[|2 = 1.
The SDP relaxation is
C
min -/
cl 0
I 0 0O O
ol 0 ol 1
Z =0

where 7 = (X; 2, 11)(X; ZCn_|_1)T € S™ "1, The relaxation is EXACT since it has a rank-one optimal

solution matrix.
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Application of the Rank Theorem I

Consider the spheretical minimization

. - - min  x?Qx + 2r,41 -cl'x
min X" (X + 2c'x

or  sit. x||? = 1,
st ||x[|2 = 1. |
The SDP relaxation is
C

min -/

cl 0

I 0 0O O

ol 0 ol 1

Z =0

where 7 = (X; 2, 11)(X; ZCn_|_1)T € S™ "1, The relaxation is EXACT since it has a rank-one optimal
solution matrix.
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The Null-Space Support-Reduction for LP I

1. Start at any feasible solution x" and, without loss of generality, assume x” > 0,andlet k = 0 and

AV = A,

2. Findany A*d =0, d = 0, and let xh Tl — xF + od where « is chosen such as x*t1 > 0 and

k+1

at least one of x equals 0.

3. Eliminate the the variable(s) in x"*+1 and column(s) in AF corresponding to xf“ = 0, and let the
new narrower matrix be A**1.

4. Set k = k + 1 and return to step 2.

This process is called rounding, or purification, procedure in linear programming.
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I: The Null-Space Reduction for SDP I

Let X ™ be an optimal SDP solution. If the rank, r, of X * satisfies the inequality of the theorem, then we
need do nothing. Thus, we assume (7 + 1)/2 > m, and let

VIV = X*, Ve R
Then consider
Minimize VCV71 eU

U = 0.

Note that VCV ', VA,V 'sand U are r x r symmetric matrices and, in particular,

VOV eI =Ce V'V =CeX*=2"
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Moreover, for any feasible solution of (1) one can construct a feasible matrix solution for (??) using
X(U)=V'UV and CeX(U)=VCV"' eU. 2)

Thus, the minimal value of (1) is also 2™, and U = [ is a minimizer of (1).

Now we show that any feasible solution U to (1) is a minimizer for (1); thereby X (U ) of (2) is a minimizer
for (??). Consider the dual of (1)

z*:= Maximize bly=>" by

Subjectto VOV™ =S "y, VA VT,

Let v* be a dual maximizer. Since U = [ is an interior optimizer for the primal, the strong duality
condition holds, i.e.,

Le(VCVT = yivA;VT) =0

1=1
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so that we have

m
vevt =y yivA VT =o.
i=1
Then, any feasible solution of (1) satisfies the strong duality condition so that it must be also optimal.

Consider the system of homogeneous linear equations
VAV eW =0,i=1,...m

where 11/ is a X 1 symmetric matrices (does not need to be definite). This system has 7 (7 + 1) /2 real
number variables and 1 equations. Thus, as long as (7 + 1) /2 > m, we must be able to find a
symmetric matrix 11 % 0 to satisfy all 7 equations. Without loss of generality, let 11 be either indefinite
or negative semidefinite (if it is positive semidefinite, we take — 1" as 1), that is, |1/ has at least one

negative eigenvalue, and consider

Ula) =1+ aW.

Choosing @* = 1/|)\| where )\ is the least eigenvalue of 1/, we have

U(a™) =0
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and it has at least one 0 eigenvalue or rank(U (o)) < r, and
VAV e U(a*) =VAV e (I+a*W)=VAV eI =b;,i=1,...,m.
That is, U (o) is a feasible and so it is an optimal solution for (1). Then,
X(U(a*) =V"'U(a*)V
is @ new minimizer for SDP, and rank(X (U (a*))) < r.

This process can be repeated till the system of homogeneous linear equations has only all zero solution,
which is necessarily given by (7 + 1) /2 < m. The total number of such reduction steps is bounded by

n — 1 and each step uses no more than O(m2n) arithmetic operations and finds the least eigenvalue of
W, which is a polynomial time.
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Il. The Principle-Component or Eigenvalue Reduction I

Let X be an SDP solution with rank r and

T
X = E )\z‘Vz'V?
1=1

where
A > >0 >N\,

Then, let

d
X = E )\@'V@'V?
1=1
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lll. Continuous Randomized Reduction '

Let X be an SDP solution with rank 7 and
X=vvt
where V € R™*" is any factorization matrix of X

Then, let random matrix

1 1

d
R = Zfi‘fiT, & € N(O, gl); or &; € Binary(0, g[)
i=1

that is, each entry either 1 or —1 in the latter case. Then assign
X =VRV".
Note that (V'&;)(VE;)" € N(0,+X) and

EX]=VERVT=vVvT =X.
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Approximate Low-Rank SDP Theorem I

For simplicity, consider the SDP feasibility problem
AlOX:bZ z:l,,m, XEO
where A1, ..., A,, are positive semidefinite matrices and scalars (b1, ...,b,,) > 0.

T+ T2 + 23 =1,

X1 T2
~ 0.

Xy X3

We try to find an approximate X >~ 0 of rank at most d:
ﬁ(m,n,d)-bi§Ai0)A(§oz(m,n,d)-bi Vi=1,...,m.

Here, « > 1 and [ € (0, 1] are called the distortion factors. Clearly, the closer are both to 1, the better.
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The Main Theorem '

Theorem 4 Letr = max{rank(A;)} and X = V'V be a feasible solution. Then, for any d > 1, the
randomly generated

1

d

(1 N 121In(4mr)

for1 < d < 12In(4mr)

d
a(m,n,d) = < o
12
1+ \/ HEZ mr) ford > 121n(4mr)
and
( 1
@m)e/ for1 < d < 41In(2m)
Y 7d —
e L1 \/41“(2m) ford > 41n(2m)
ma -~ or n(2m
\ : e(2m)2/d’ d
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Some Remarks and Open Questions I

e There is always a low-rank, or sparse, approximate SDP solution with respect to a bounded relative

residual distortion. As the allowable rank increases, the distortion bounds become smaller and smaller.
e The lower distortion factor is independent of n and the rank of A;s.
e The factors can be improved if we only consider one—sided inequalities.
e This result contains as special cases several well-known results in the literature.
e Can the distortion upp bound be improved such that it’s independent of rank of A;?
e |s there deterministic rank-reduction procedure? Choose the largest d eigenvalue component of X ?
e General symmetric A;?

e In practical applications, we see much smaller distortion, why?
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IV. {—1, 1} Randomized Reduction I

Let X be an SDP solution with rank 7 and
X =vv?l.

Then, let random vector
ue N,I) and % = Sign(Vu)

where
1 ifx>0

Sign(z) =
—1 otherwise.

Note that Vu € N (0, X). It was proved by Sheppard (1900):

9 )
E|l2:2;] = - arcsin(X;;), 1,7 =1,2,...,n.

This is the basis for proving the Max-Cut approximation algoroithm.
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V. Objective-Guided Reduction I

Construct a suitable objective for the SDP solution set

Minimize Re X
Subjectto A; ¢ X =0b;,1=1,...,m,
CeX <a-z¥,
X =0,
where z* is the minimal objective value of the SDP relaxation, and « is a tolerance factor.

The selection of matrix F is problem dependent. Examples include the .1 norm function, the tensegrity
graph approach, etc.

Example: The Kissing Problem (matlab demo).
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Tensegrity (Tensional-Integrity) Objective for SNL: a Chain Graph I

Anchor-free SNL: let €; be the unit vector (one for the ith entry and zeros for the else)

(ei_ej)(ei_ej)T‘X — dgjav(27])€E72<]7

X = 0.

For certain graphs, to select a subset edges to maximize and/or a subset of edges to minimize is
guaranteed to finding the lowest rank SDP solution — Tensegrity Method.

To Maxim ze
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The Chain Graph Example I

Consider:
max eses e X
st. eel e X =1,
(e1 —ez)(e1 —ex) @ X =1,
(e2 —e3)(ez —e3)’ o X =1,
X >=0¢eS83,

where its maximal solution X* = (1; 2: 3)%(1; 2; 3). The dual is

min Y1 + Y2 + Y3

st y1e1ef +ya(er —ex)(er —ex)’ +ys(ex —e3)(ex —e3)’ — S = ezes,

S>=0¢eS3,

The dual has a rank-two solution with (17 = 3, 2 = 3, y3 = 3).
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Applications I

GD with ADMM initialization

¢ 0 (1]
08880 Q00008 @ :.

Q 0000 COOCOee  e0eee
. o000 e 0

Figure 1: Dimension Reduction — Unfolding Scroll of Happiness
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Figure 2: Molecular Conformation — 1F39(1534 atoms) with 85% of distances below 6rA and 10% noise on
upper and lower bounds
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VI. Steepest-Descent Reduction I

Use the approximate constructed from the SDP relaxation as the initial solution and apply the

gradientdescent mathod in minimizing the onlinear square constraint errors.

For SNL example, it would be

: 2
min Z(i,j)EE (sz —x;1* - dgj)
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