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LP Optimality Conditions and Solution Support

(x,y, s) ∈ (Rn
+,Rm,Rn

+) :

cTx− bTy = 0

Ax = b

−ATy − s = −c

 ;

or

x. · s = 0

Ax = b

−ATy − s = −c.

Let x∗ and s∗ be optimal solutions with zero duality gap. Then

|supp(x∗)|+ |supp(s∗)| ≤ n.

There are x∗ and s∗ such that the support sizes of x∗ and s∗ are maximal, respectively.

There are x∗ and s∗ such that the support size of x∗ and s∗ are minimal, respectively.

If there is s∗ such that |supp(s∗)| ≥ n− d, then the support size for x∗ is at most d.
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Uniqueness Theorem for LP

Given an optimal solution x∗, how to certify the uniqueness of x∗?

Theorem 1 An LP optimal solution x∗ is unique if and only if the size of supp(x∗) is maximal among all

optimal solutions and the columns of Asupp(x∗) are linear independent.

It is easy to see both conditions are necessary, since otherwise, one can find an optimal solution with a

different support size. To see sufficiency, suppose there there is another optimal solution y∗ such that

x∗ − y∗ ̸= 0. We must have supp(y∗) ⊂ supp(x∗), since, otherwise, (0.5x∗ + 0.5y∗) remains

optimal and its support size is greater than that of x∗ which is a contradiction. Then we see

0 = Ax∗ −Ay∗ = A(x∗ − y∗) = Asupp(x∗)(x
∗ − y∗)supp(x∗)

which implies that columns of Asupp(x∗) are linearly dependent.

Corollary 1 If all optimal solutions of an LP has the same support size, then the optimal solution is unique.
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The Rank Theorem of SDP

(SDP ) min C •X
subject to Ai •X = bi, i = 1, 2, ...,m, X ≽ 0,

where C, Ai ∈ Sn.

Or simply for the SDP Feasibility problem:

Solve Ai •X = bi, i = 1, 2, ...,m, X ≽ 0,
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Solution Rank for SDP

C •X − bTy = 0

AX = b

−ATy − S = −C

X,S ≽ 0,

, or

XS = 0

AX = b

−AT y − S = −C

X,S ≽ 0

Let X∗ and S∗ be optimal solutions with zero duality gap. Then

rank(X∗) + rank(S∗) ≤ n.

Hint of the Proof: for any symmetric PSD matrix P ∈ Sn with rank r, there is a factorization P = V TV

where V ∈ Rr×n and columns of V are nonzero-vectors and orthogonal to each other.

There are X∗ and S∗ such that the ranks of X∗ and S∗ are maximal, respectively.

There are X∗ and S∗ such that the ranks of X∗ and S∗ are minimal, respectively.

If there is S∗ such that rank(S∗) ≥ n− d, then the maximal rank of X∗ is at most d.
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Uniqueness Theorem for SDP

Given an SDP optimal and complementary solution X∗, how to certify the uniqueness of X∗?

Theorem 2 An SDP optimal and complementary solution X∗ is unique if and only if the rank of X∗ is

maximal among all optimal solutions and V ∗Ai(V
∗)T , i = 1, ...,m, are linearly independent, where

X∗ = (V ∗)TV ∗, V ∗ ∈ Rr×n, and r is the rank of X∗.

It is easy to see why the rank of X∗ being maximal is necessary.

Note that for any optimal dual slack matrix S∗, we have S∗ • (V ∗)TV ∗ = 0 which implies that

S∗(V ∗)T = 0. Consider any matrix

X = (V ∗)TUV ∗

where U ∈ Sr
+ and

bi = Ai • (V ∗)TUV ∗ = V ∗Ai(V
∗)T • U, i = 1, ...,m.

One can see that X remains an optimal SDP solutions for any such U ∈ Sr
+, since it makes X feasible

and remain complementary to any optimal dual slack matrix. If V ∗Ai(V
∗)T , i = 1, ...,m, are not
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linearly independent, then one can find

V ∗Ai(V
∗)T •W = 0, i = 1, ...,m, 0 ̸= W ∈ Sr.

Now consider

X(α) = (V ∗)T (I + α ·W )V ∗,

and then we can choose α ̸= 0 such that X(α) ≽ 0 is another optimal solution.

To see sufficiency, suppose there there is another optimal solution Y ∗ such that X∗ − Y ∗ ̸= 0. We must

have Y ∗ = (V ∗)TUV ∗ for some I ̸= U ∈ Sr
+ . Then we see

V ∗Ai(V
∗)T • (I − U) = 0, i = 1, ...,m,

contradicts that they are linear independent.

Corollary 2 If all optimal solutions of an SDP has the same rank, then the optimal solution is unique.
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Rank-Reductions for CLP

In most applications, we may not be lucky and need an effort to search a rank-minimal SDP solution for

SDP:

(SDP ) min C •X
subject to Ai •X = bi, i = 1, 2, ...,m, X ≽ 0,

where C, Ai ∈ Sn.

Or simply for the SDP feasibility problem:

Solve Ai •X = bi, i = 1, 2, ...,m, X ≽ 0,
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A Bound on Support/Rank

Theorem 3 (Carathéodory’s theorem)

• If there is a minimizer for (LP), then there is a minimizer of (LP) whose support size r satisfying

r ≤ m.

• If there is a minimizer for (SDP), then there is a minimizer of (SDP) whose rank r satisfying
r(r+1)

2 ≤ m. Moreover, such a solution can be find in polynomial time.

How Sharp is the Rank Bound? The rank bound is sharp: consider n = 4 and the SDP problem:

(ei − ej)(ei − ej)
T •X = 1, ∀i < j = 1, 2, 3, 4,

X ≽ 0,

Applications: Finding the extreme eigenvalue of a symmetric matrix and the singular value of any matrix

are convex optimization!
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Application of the Rank Theorem

Consider the spheretical minimization

min xTQx+ 2cTx

s.t. ∥x∥2 = 1.
or

min xTQx+ 2xn+1 · cTx
s.t. ∥x∥2 = 1,

x2
n+1 = 1.

The SDP relaxation is

min

 Q c

cT 0

 · Z

s.t.

 I 0

0T 0

 · Z = 1,

 0 0

0T 1

 · Z = 1

Z ≽ 0

where Z = (x;xn+1)(x;xn+1)
T ∈ Sn+1. The relaxation is EXACT since it has a rank-one optimal

solution matrix.
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Application of the Rank Theorem

Consider the spheretical minimization

min xTQx+ 2cTx

s.t. ∥x∥2 = 1.
or

min xTQx+ 2xn+1 · cTx
s.t. ∥x∥2 = 1,

x2
n+1 = 1.

The SDP relaxation is

min

 Q c

cT 0

 · Z

s.t.

 I 0

0T 0

 · Z = 1,

 0 0

0T 1

 · Z = 1

Z ≽ 0

where Z = (x;xn+1)(x;xn+1)
T ∈ Sn+1. The relaxation is EXACT since it has a rank-one optimal

solution matrix.
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The Null-Space Support-Reduction for LP

1. Start at any feasible solution x0 and, without loss of generality, assume x0 > 0, and let k = 0 and

A0 = A.

2. Find any Akd = 0, d ̸= 0, and let xk+1 = xk + αd where α is chosen such as xk+1 ≥ 0 and

at least one of xk+1 equals 0.

3. Eliminate the the variable(s) in xk+1 and column(s) in Ak corresponding to xk+1
j = 0, and let the

new narrower matrix be Ak+1.

4. Set k = k + 1 and return to step 2.

This process is called rounding, or purification, procedure in linear programming.
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I: The Null-Space Reduction for SDP

Let X∗ be an optimal SDP solution. If the rank, r, of X∗ satisfies the inequality of the theorem, then we

need do nothing. Thus, we assume r(r + 1)/2 > m, and let

V TV = X∗, V ∈ Rr×n.

Then consider

Minimize V CV T • U

Subject to V AiV
T • U = bi, i = 1, ...,m

U ≽ 0.

(1)

Note that V CV T , V AiV
T s and U are r × r symmetric matrices and, in particular,

V CV T • I = C • V TV = C •X∗ = z∗.

13



Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note #08

Moreover, for any feasible solution of (1) one can construct a feasible matrix solution for (??) using

X(U) = V TUV and C •X(U) = V CV T • U. (2)

Thus, the minimal value of (1) is also z∗, and U = I is a minimizer of (1).

Now we show that any feasible solution U to (1) is a minimizer for (1); thereby X(U) of (2) is a minimizer

for (??). Consider the dual of (1)

z∗ := Maximize bTy =
∑m

i=1 biyi

Subject to V CV T ≽
∑m

i=1 yiV AiV
T .

(3)

Let y∗ be a dual maximizer. Since U = I is an interior optimizer for the primal, the strong duality

condition holds, i.e.,

I • (V CV T −
m∑
i=1

y∗i V AiV
T ) = 0

14



Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note #08

so that we have

V CV T −
m∑
i=1

y∗i V AiV
T = 0.

Then, any feasible solution of (1) satisfies the strong duality condition so that it must be also optimal.

Consider the system of homogeneous linear equations

V AiV
T •W = 0, i = 1, ...,m

where W is a r × r symmetric matrices (does not need to be definite). This system has r(r + 1)/2 real

number variables and m equations. Thus, as long as r(r + 1)/2 > m, we must be able to find a

symmetric matrix W ̸= 0 to satisfy all m equations. Without loss of generality, let W be either indefinite

or negative semidefinite (if it is positive semidefinite, we take −W as W ), that is, W has at least one

negative eigenvalue, and consider

U(α) = I + αW.

Choosing α∗ = 1/|λ̄| where λ̄ is the least eigenvalue of W , we have

U(α∗) ≽ 0
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and it has at least one 0 eigenvalue or rank(U(α∗)) < r, and

V AiV
T • U(α∗) = V AiV

T • (I + α∗W ) = V AiV
T • I = bi, i = 1, ...,m.

That is, U(α∗) is a feasible and so it is an optimal solution for (1). Then,

X(U(α∗)) = V TU(α∗)V

is a new minimizer for SDP, and rank(X(U(α∗))) < r.

This process can be repeated till the system of homogeneous linear equations has only all zero solution,

which is necessarily given by r(r + 1)/2 ≤ m. The total number of such reduction steps is bounded by

n− 1 and each step uses no more than O(m2n) arithmetic operations and finds the least eigenvalue of

W , which is a polynomial time.
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II. The Principle-Component or Eigenvalue Reduction

Let X̄ be an SDP solution with rank r and

X̄ =
r∑

i=1

λiviv
T
i

where

λ1 ≥ λ2 ≥ . . . ≥ λn.

Then, let

X̂ =

d∑
i=1

λiviv
T
i
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III. Continuous Randomized Reduction

Let X̄ be an SDP solution with rank r and

X̄ = V V T

where V ∈ Rn×r is any factorization matrix of X̄

Then, let random matrix

R =

d∑
i=1

ξiξ
T
i , ξi ∈ N(0,

1

d
I); or ξi ∈ Binary(0,

1

d
I)

that is, each entry either 1 or −1 in the latter case. Then assign

X̂ = V RV T .

Note that (V ξi)(V ξi)
T ∈ N(0, 1

dX̄) and

E[X̂] = V E[R]V T = V V T = X̄.

18



Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note #08

Approximate Low-Rank SDP Theorem

For simplicity, consider the SDP feasibility problem

Ai •X = bi i = 1, . . . ,m, X ≽ 0

where A1, . . . , Am are positive semidefinite matrices and scalars (b1, . . . , bm) ≥ 0.

x1 + x2 + x3 = 1, x1 x2

x2 x3

 ≽ 0.

We try to find an approximate X̂ ≽ 0 of rank at most d:

β(m,n, d) · bi ≤ Ai • X̂ ≤ α(m,n, d) · bi ∀ i = 1, . . . ,m.

Here, α ≥ 1 and β ∈ (0, 1] are called the distortion factors. Clearly, the closer are both to 1, the better.
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The Main Theorem

Theorem 4 Let r = max{rank(Ai)} and X̄ = V V T be a feasible solution. Then, for any d ≥ 1, the

randomly generated

X̂ = V [
d∑

i=1

ξiξ
T
i ]V

T , ξi ∈ N(0,
1

d
I)

α(m,n, d) =


1 +

12 ln(4mr)

d
for 1 ≤ d ≤ 12 ln(4mr)

1 +

√
12 ln(4mr)

d
for d > 12 ln(4mr)

and

β(m,n, d) =


1

e(2m)2/d
for 1 ≤ d ≤ 4 ln(2m)

max

{
1

e(2m)2/d
, 1−

√
4 ln(2m)

d

}
for d > 4 ln(2m)
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Some Remarks and Open Questions

• There is always a low-rank, or sparse, approximate SDP solution with respect to a bounded relative

residual distortion. As the allowable rank increases, the distortion bounds become smaller and smaller.

• The lower distortion factor is independent of n and the rank of Ais.

• The factors can be improved if we only consider one–sided inequalities.

• This result contains as special cases several well-known results in the literature.

• Can the distortion upp bound be improved such that it’s independent of rank of Ai?

• Is there deterministic rank-reduction procedure? Choose the largest d eigenvalue component of X?

• General symmetric Ai?

• In practical applications, we see much smaller distortion, why?
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IV. {−1, 1} Randomized Reduction

Let X be an SDP solution with rank r and

X = V V T .

Then, let random vector

u ∈ N(0, I) and x̂ = Sign(V u)

where

Sign(x) =

 1 if x ≥ 0

−1 otherwise.

Note that V u ∈ N(0, X). It was proved by Sheppard (1900):

E[x̂ix̂j ] =
2

π
arcsin(X̄ij), i, j = 1, 2, . . . , n.

This is the basis for proving the Max-Cut approximation algoroithm.
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V. Objective-Guided Reduction

Construct a suitable objective for the SDP solution set

Minimize R •X
Subject to Ai •X = bi, i = 1, . . . ,m,

C •X ≤ α · z∗,
X ≽ 0,

where z∗ is the minimal objective value of the SDP relaxation, and α is a tolerance factor.

The selection of matrix R is problem dependent. Examples include the L1 norm function, the tensegrity

graph approach, etc.

Example: The Kissing Problem (matlab demo).
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Tensegrity (Tensional-Integrity) Objective for SNL: a Chain Graph

Anchor-free SNL: let ei be the unit vector (one for the ith entry and zeros for the else)

(ei − ej)(ei − ej)
T •X = d2ij , ∀ (i, j) ∈ E, i < j,

X ≽ 0.

For certain graphs, to select a subset edges to maximize and/or a subset of edges to minimize is

guaranteed to finding the lowest rank SDP solution – Tensegrity Method.

To Maximize
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The Chain Graph Example

Consider:

max e3e3 •X
s.t. e1e

T
1 •X = 1,

(e1 − e2)(e1 − e2)
T •X = 1,

(e2 − e3)(e2 − e3)
T •X = 1,

X ≽ 0 ∈ S3,

where its maximal solution X∗ = (1; 2; 3)T (1; 2; 3). The dual is

min y1 + y2 + y3

s.t. y1e1e
T
1 + y2(e1 − e2)(e1 − e2)

T + y3(e2 − e3)(e2 − e3)
T − S = e3e3,

S ≽ 0 ∈ S3,

The dual has a rank-two solution with (y1 = 3, y2 = 3, y3 = 3).
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Applications

Figure 1: Dimension Reduction – Unfolding Scroll of Happiness
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Figure 2: Molecular Conformation – 1F39(1534 atoms) with 85% of distances below 6rA and 10% noise on

upper and lower bounds
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VI. Steepest-Descent Reduction

Use the approximate constructed from the SDP relaxation as the initial solution and apply the

gradientdescent mathod in minimizing the onlinear square constraint errors.

For SNL example, it would be

min
∑

(i,j)∈E

(
∥xi − xj∥2 − d2ij

)2
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