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Recall the Facility Location Problem

Let cj be the location of client j = 1, 2, ...,m, and y be the location decision of a facility to be built.

minimizey
∑

j ∥y − cj∥2.
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Figure 1: Facility Location at Point y.
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Conic Formulation of the Facility Location Problem

minimize
∑

j δj

subject to y + xj = cj , (zj) (δj ;xj) ∈ SOCP, ∀j.
The Dual:

maximize
∑

j c
T
j zj

subject to
∑

j zj = 0 (y) (1; zj) ∈ SOCP, ∀j.
Let y∗ be the optimal location. Then the dual is equivalent to

maximize
∑

j(cj − y∗)T zj

subject to
∑

j zj = 0 (y)

(1; zj) ∈ SOCP, ((δj ;xj)) ∀j.

The optimality condition would have

z∗j = (cj − y∗)/∥(cj − y∗)∥, ∀j
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Portfolio Management

Let r denote the expected return vector and V denote the co-variance matrix of an investment portfolio,

and let x be the investment proportion vector. Then, one management model is:

minimize xTV x

subject to rTx ≥ µ, eTx = 1, x ≥ 0.

where e is the vector of all ones. This is a quadratic program.

Let V = RTR and z = Rx (Cholesky Factor Matrix). Then the problem can be written as

minimize y0

subject to rTx ≥ µ,

eTx = 1,

Rx− y = 0,

x ≥ 0, ∥y∥2 ≤ y0

which is a mixed linear and second-order cone program.
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The Dual of Portfolio Management

Write the problem in the standard form:

minimize y0

subject to rTx− s = µ, (λ)

eTx = 1, (γ)

Rx− y = 0, (z)

x ≥ 0, s ≥ 0, (y0;y) ∈ SOCP

The dual would be

maximize µλ+ γ

subject to −rλ− eγ −RT z ≥ 0 (x)

λ ≥ 0, (s)

(1; z) ∈ SOCP ((y0;y))
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Robust Portfolio Management

In real applications, r and V may be estimated under various scenarios, say ri and Vi for i = 1, ...,m.

minimize maxi x
TVix

subject to mini r
T
i x ≥ µ,

eTx = 1, x ≥ 0.

minimize y0

subject to rTi x ≥ µ, ∀i
∥Rix∥2 ≤ y0, ∀i
eTx = 1, x ≥ 0,

where Ri is the Cholesky Factor Matrix of Vi. This can again be reduced to a mixed linear and

second-order cone program in the standard form.

6



Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note #07

Sensor Network Localization (SNL) and Graph Realization

Given a graph G = (V,E) and sets of non–negative weights, say {dij : (i, j) ∈ E}, the goal is to

compute a realization of G in the Euclidean space Rd for a given low dimension d, i.e.

• to place the vertices of G in Rd such that

• the Euclidean distance between every pair of adjacent vertices (i, j) equals (or bounded) by the

prescribed weight dij ∈ E.
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Figure 2: 50-node 2-D Graph Realization
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Figure 3: A 3-D Tensegrity Graph Realization
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Figure 4: A 3-D Needle Tower
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Figure 5: Molecular Conformation: 1F39(1534 atoms) with 85% of distances below 6rA and 10% noise on

upper and lower bounds 11



Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note #07

A Distance Geometry Model: System of Quadratic Equations

System of nonlinear equations for xi ∈ Rd:

∥xi − xj∥ = dij , ∀ (i, j) ∈ Nx, i < j,

∥ak − xj∥ = dkj , ∀ (k, j) ∈ Na,

where ak are possible points whose locations are known, often called anchors.

One can equivalently represent it as

∥xi − xj∥2 = d2ij , ∀ (i, j) ∈ Nx, i < j,

∥ak − xj∥2 = d2kj , ∀ (k, j) ∈ Na,

which becomes a system of multi-variable-quadratic equations.
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Nonlinear Least-Squares Optimization

Nonlinear least-squares or quartic polynomial minimization:

min
∑

i,j∈Nx
(∥xi − xj∥2 − d2ij)

2 +
∑

k,j∈Na
(∥ak − xj∥2 − d2kj)

2

or

min
∑

i,j∈Nx
(∥xi − xj∥ − dij)

2 +
∑

k,j∈Na
(∥ak − xj∥ − dkj)

2

Either one is a non-convex optimization problem.

For simplicity, we assume d = 2 in the following analysis.
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SOCP Relaxation for SNL

System of SOCP Feasibility for xi ∈ R2:

∥xi − xj∥ ≤ dij , ∀ (i, j) ∈ Nx, i < j,

∥ak − xj∥ ≤ dkj , ∀ (k, j) ∈ Na,

where ak are points whose locations are known.

Consider the case where a single unknown point x1 is connected to three anchors ak, k = 1, 2, 3

onR2:

∥ak − x∥ ≤ dk, k = 1, 2, 3
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The Standard SOCP Relaxation and Dual

minimize 0

δk = dk, (λk), k = 1, 2, 3

yk + x = ak, (zk), k = 1, 2, 3

(δk;yk) ∈ SOCP, k = 1, 2, 3

The Dual

maximize
∑

k(dkλk + aTk zk)∑
k zk = 0,

(−λk;−zk) ∈ SOCP, k = 1, 2, 3

Suppose the true sensor location is b, the dual can be written as

minimize
∑

k(−dkλk + (ak − b)T zk)∑
k zk = 0,

(λk; zk) ∈ SOCP, k = 1, 2, 3
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Optimality Condition of the SOCP Relaxation

The conditions would be

zk = (λk/dk)(ak − b)

and ∑
k

(λk/dk)(ak − b) = 0

Thus, λk represents a positive force in direction ak − b, and the total forces should be balanced along

the three directions.

If b is in the convex-hull, this can be achieved so that the optimal solution of the SOCP relaxation is

x∗ = b.

What happen if NOT?
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SDP Relaxation for SNL

Find a symmetric matrix Z ∈ R(2+n)×(2+n) such that

Z1:2,1:2 = I

(0; ei − ej)(0; ei − ej)
T • Z = d2ij , ∀ i, j ∈ Nx, i < j,

(ak;−ej)(ak;−ej)
T • Z = d2kj , ∀ k, j ∈ Na,

Z ≽ 0.

This is semidefinite programming feasibility system (with a null objective).

When this relaxation is exact?

One case is that the single unknown point x1 is connected to three anchors ak, k = 1, 2, 3.

In general, if the rank of a feasible Z is 2, then it solves the original graph relaxation problem.
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Duality Theorem for SNL

Theorem 1 Let Z̄ be a feasible solution for SDP and Ū be an optimal slack matrix of the dual. Then,

1. complementarity condition holds: Z̄ • Ū = 0 or Z̄Ū = 0;

2. Rank(Z̄) + Rank(Ū) ≤ 2 + n;

3. Rank(Z̄) ≥ 2 and Rank(Ū) ≤ n.

An immediate result from the theorem is the following:

Corollary 1 If an optimal dual slack matrix has rank n, then every solution of the SDP has rank 2, that is,

the SDP relaxation solves the original problem exactly.
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Theoretical Analyses on SNL-SDP Relaxation

A sensor network is 2-universally-localizable (UL) if there is a unique localization in R2 and there is no

xj ∈ Rh, j = 1, ..., n, where h > 2, such that

∥xi − xj∥2 = d2ij , ∀ i, j ∈ Nx, i < j,

∥(ak;0)− xj∥2 = d̂2kj , ∀ k, j ∈ Na.

The latter says that the problem cannot be localized in a higher dimension space where anchor points are

simply augmented to (ak;0) ∈ Rh, k = 1, ...,m.
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Figure 6: One sensor-Two anchors: Not Localizable

20



Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note #07

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

Figure 7: Two sensor-Three anchors: Strongly Localizable
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Figure 8: Two sensor-Three anchors: Localizable but not Strongly
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Figure 9: Two sensor-Three anchors: Not Localizable
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Figure 10: Two sensor-Three anchors: Strongly Localizable
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Universally-Localizable Problems (ULP)

Theorem 2 The following SNL problems are Universally-Localizable:

• If every edge length is specified, then the sensor network is 2-universally-localizable (Schoenberg

1942).

• There is a sensor network (trilateral graph), with O(n) edge lengths specified, that is

2-universally-localizable (So 2007).

• If one sensor with its edge lengths to at least three anchors (in general positions) specified, then it is

2-universally-localizable (So and Y 2005).

25



Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note #07

ULPs Can be Localized as Convex Optimization

Theorem 3 (So and Y 2005) The following statements are equivalent:

1. The sensor network is 2-universally-localizable;

2. The max-rank solution of the SDP relaxation has rank 2;

3. The solution matrix has Y = XTX or Tr(Y −XTX) = 0 .

When an optimal dual (stress) slack matrix has rank n, then the problem is 2-strongly-localizable-problem

(SLP). This is a sub-class of ULP.

Example: if one sensor with its edge lengths to three anchors (in general positions) are specified, then it is

2-strongly-localizable.
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One Sensor and three Anchors

Find x1 ∈ R2 such that

∥ak − x1∥2 = d̂2kj , for k = 1, 2, 3,

Let x̄1 be the true position of the sensor.
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SDP Relaxation Standard Form

(1; 0; 0)(1; 0; 0)T • Z = 1,

(0; 1; 0)(0; 1; 0)T • Z = 1,

(1; 1; 0)(1; 1; 0)T • Z = 2,

(ak;−1)(ak;−1)T • Z = d̂2k1, for k = 1, 2, 3,

Z ≽ 0.

Z̄ =

 I x̄1

x̄T
1 x̄T

1 x̄1

 = (I, x̄1)
T (I, x̄1)

is a feasible rank-2 solution for the relaxation.
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Dual Slack Matrices

 (
w1 + w3 w3

w3 w2 + w3

) +
∑3

k=1 ŵk1aka
T
k −

∑3
k=1 ŵk1ak

−(
∑3

k=1 ŵk1ak)
T ŵ11 + ŵ21 + ŵ31

 ≽ 0.

Does an optimal slack matrix U have rank 1 with

w1 + w2 + 2w3 +
3∑

k=1

ŵk1d̂
2
k1 = 0?
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Optimal Dual Slack Matrix

If we choose w•’s such that

Ū = (−x̄1; 1)(−x̄1; 1)
T ,

then, Ū ≽ 0 and Ū • X̄ = 0 so that Ū is an optimal slack matrix for the dual and its rank is 1.
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How to Select w’s

We only need to consider choosing ŵ’s:∑3
k=1 ŵk1ak = x̄1

ŵ11 + ŵ21 + ŵ31 = 1.
or

∑3
k=1 ŵk1(ak − x̄1) = 0

ŵ11 + ŵ21 + ŵ31 = 1.

This system always has a solution if ak is not co-linear.

Then, select the rest  w1 + w3 w3

w3 w2 + w3

 = x̄1x̄
T
1 −

3∑
k=1

ŵk1aka
T
k
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Other Conditions?

Even if ak is co-linear, the system ∑3
k=1 ŵk1(ak − x̄1) = 0

ŵ11 + ŵ21 + ŵ31 = 1

may still have a solution w•?

Physical interpretation: ŵkj is a stress/force on the edge and all stresses are balanced or at an

equilibrium state. The objective represents the potential of the system.
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Localize All Localizable Points

Theorem 4 (So and Y 2005) If a problem (graph) contains a subproblem (subgraph) that is

universally-localizable, then the submatrix solution corresponding to the subproblem in the SDP solution

has rank 2. That is, the SDP relaxation computes a solution that localize all possibly localizable unknown

sensor points.

The proof is similar to the proof of Theorem 3 by removing the notes that is not localizable.

Implication: Diagonals of “co-variance” matrix

Ȳ − X̄T X̄,

Ȳjj − ∥x̄j∥2, can be used as a measure to see whether jth sensor’s estimated position is reliable or not.
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Uncertainty Analysis and Confidence Measure

Alternatively, each xj ’s can be viewed as uncertain points from the incomplete/uncertain distance

measures. Then the solution to the SDP problem provides the first and second moment estimation

(Bertsimas and Y 1998).

Generally, x̄j is a point estimate of xj and Ȳij is a point estimate xT
i xj .

Consequently,

Ȳjj − ∥x̄j∥2,

which is the individual variance estimation of sensor j, gives an interval estimation for its true position

(Biswas and Y 2004).
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SDP Relaxation with Noise Data

When the distance measurements have noise, one can minimize the total error as

min
∑

(i,j)∈Nx
(sij)

2 +
∑

(k,j)∈Na
(sakj)

2

Z1:2,1:2 = I

(0; ei − ej)(0; ei − ej)
T • Z + sij = d2ij , ∀ (i, j) ∈ Nx, i < j,

(ak;−ej)(ak;−ej)
T • Z + sakj = d2kj , ∀ (k, j) ∈ Na,

Z ≽ 0.
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