Dual Interpretations and Duality Applications (continued II)

Yinyu Ye
Department of Management Science and Engineering
Stanford University
Stanford, CA 94305, U.S.A.
http://www.stanford.edu/~yyye

Recall the Facility Location Problem

Let \mathbf{c}_{j} be the location of client $j=1,2, \ldots, m$, and \mathbf{y} be the location decision of a facility to be built.

$$
\operatorname{minimize}_{\mathbf{y}} \quad \sum_{j}\left\|\mathbf{y}-\mathbf{c}_{j}\right\|_{2}
$$

Figure 1: Facility Location at Point \mathbf{y}.

Conic Formulation of the Facility Location Problem

```
minimize }\quad\mp@subsup{\sum}{j}{}\mp@subsup{\delta}{j}{
subject to }\mathbf{y}+\mp@subsup{\mathbf{x}}{j}{}=\mp@subsup{\mathbf{c}}{j}{},(\mp@subsup{\mathbf{z}}{j}{})(\mp@subsup{\delta}{j}{};\mp@subsup{\mathbf{x}}{j}{})\inSOCP,\forallj\mathrm{ .
```

The Dual:

$$
\begin{array}{ll}
\operatorname{maximize} & \sum_{j} \mathbf{c}_{j}^{T} \mathbf{z}_{j} \\
\text { subject to } & \sum_{j} \mathbf{z}_{j}=\mathbf{0}(\mathbf{y})\left(1 ; \mathbf{z}_{j}\right) \in S O C P, \forall j
\end{array}
$$

Let $\mathbf{y} *$ be the optimal location. Then the dual is equivalent to

$$
\begin{array}{ll}
\operatorname{maximize} & \sum_{j}\left(\mathbf{c}_{j}-\mathbf{y}^{*}\right)^{T} \mathbf{z}_{j} \\
\text { subject to } & \sum_{j} \mathbf{z}_{j}=\mathbf{0}(\mathbf{y}) \\
& \left(1 ; \mathbf{z}_{j}\right) \in S O C P,\left(\left(\delta_{j} ; \mathbf{x}_{j}\right)\right) \forall j
\end{array}
$$

The optimality condition would have

$$
\mathbf{z}_{j}^{*}=\left(\mathbf{c}_{j}-\mathbf{y}^{*}\right) /\left\|\left(\mathbf{c}_{j}-\mathbf{y}^{*}\right)\right\|, \forall j
$$

Portfolio Management

Let \mathbf{r} denote the expected return vector and V denote the co-variance matrix of an investment portfolio, and let x be the investment proportion vector. Then, one management model is:

$$
\begin{aligned}
\operatorname{minimize} & \mathbf{x}^{T} V \mathbf{x} \\
\text { subject to } & \mathbf{r}^{T} \mathbf{x} \geq \mu, \mathbf{e}^{T} \mathbf{x}=1, \mathbf{x} \geq \mathbf{0}
\end{aligned}
$$

where e is the vector of all ones. This is a quadratic program.
Let $V=R^{T} R$ and $\mathrm{z}=R \mathrm{x}$ (Cholesky Factor Matrix). Then the problem can be written as

$$
\begin{aligned}
\operatorname{minimize} & y_{0} \\
\text { subject to } & \mathbf{r}^{T} \mathbf{x} \geq \mu \\
& \mathbf{e}^{T} \mathbf{x}=1 \\
& R \mathbf{x}-\mathbf{y}=\mathbf{0} \\
& \mathbf{x} \geq \mathbf{0},\|\mathbf{y}\|_{2} \leq y_{0}
\end{aligned}
$$

which is a mixed linear and second-order cone program.

The Dual of Portfolio Management

Write the problem in the standard form:

$$
\begin{aligned}
\operatorname{minimize} & y_{0} \\
\text { subject to } & \mathbf{r}^{T} \mathbf{x}-s=\mu,(\lambda) \\
& \mathbf{e}^{T} \mathbf{x}=1,(\gamma) \\
& R \mathbf{x}-\mathbf{y}=\mathbf{0},(\mathbf{z}) \\
& \mathbf{x} \geq \mathbf{0}, s \geq 0,\left(y_{0} ; \mathbf{y}\right) \in S O C P
\end{aligned}
$$

The dual would be

$$
\begin{aligned}
\operatorname{maximize} & \mu \lambda+\gamma \\
\text { subject to } & -\mathbf{r} \lambda-\mathbf{e} \gamma-R^{T} \mathbf{z} \geq \mathbf{0}(\mathbf{x}) \\
& \lambda \geq 0,(s) \\
& (1 ; \mathbf{z}) \in S O C P\left(\left(y_{0} ; \mathbf{y}\right)\right)
\end{aligned}
$$

Robust Portfolio Management

In real applications, \mathbf{r} and V may be estimated under various scenarios, say \mathbf{r}_{i} and V_{i} for $i=1, \ldots, m$.

$$
\begin{aligned}
\operatorname{minimize} & \max _{i} \mathbf{x}^{T} V_{i} \mathbf{x} \\
\text { subject to } & \min _{i} \mathbf{r}_{i}^{T} \mathbf{x} \geq \mu \\
& \mathbf{e}^{T} \mathbf{x}=1, \mathbf{x} \geq \mathbf{0}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{minimize} & y_{0} \\
\text { subject to } & \mathbf{r}_{i}^{T} \mathbf{x} \geq \mu, \forall i \\
& \left\|R_{i} \mathbf{x}\right\|_{2} \leq y_{0}, \forall i \\
& \mathbf{e}^{T} \mathbf{x}=1, \mathbf{x} \geq \mathbf{0}
\end{aligned}
$$

where R_{i} is the Cholesky Factor Matrix of V_{i}. This can again be reduced to a mixed linear and second-order cone program in the standard form.

Sensor Network Localization (SNL) and Graph Realization

Given a graph $G=(V, E)$ and sets of non-negative weights, say $\left\{d_{i j}:(i, j) \in E\right\}$, the goal is to compute a realization of G in the Euclidean space \mathbf{R}^{d} for a given low dimension d, i.e.

- to place the vertices of G in \mathbf{R}^{d} such that
- the Euclidean distance between every pair of adjacent vertices (i, j) equals (or bounded) by the prescribed weight $d_{i j} \in E$.

Figure 2: 50-node 2-D Graph Realization

Figure 3: A 3-D Tensegrity Graph Realization

Figure 4: A 3-D Needle Tower

Figure 5: Molecular Conformation: 1F39(1534 atoms) with 85\% of distances below 6rA and 10\% noise on upper and lower bounds

A Distance Geometry Model: System of Quadratic Equations

System of nonlinear equations for $\mathbf{x}_{i} \in R^{d}$:

$$
\begin{aligned}
& \left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|=d_{i j}, \forall(i, j) \in N_{x}, i<j, \\
& \left\|\mathbf{a}_{k}-\mathbf{x}_{j}\right\|=d_{k j}, \forall(k, j) \in N_{a}
\end{aligned}
$$

where \mathbf{a}_{k} are possible points whose locations are known, often called anchors.
One can equivalently represent it as

$$
\begin{aligned}
& \left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}=d_{i j}^{2}, \forall(i, j) \in N_{x}, i<j \\
& \left\|\mathbf{a}_{k}-\mathbf{x}_{j}\right\|^{2}=d_{k j}^{2}, \forall(k, j) \in N_{a}
\end{aligned}
$$

which becomes a system of multi-variable-quadratic equations.

Nonlinear Least-Squares Optimization

Nonlinear least-squares or quartic polynomial minimization:

$$
\min \quad \sum_{i, j \in N_{x}}\left(\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}-d_{i j}^{2}\right)^{2}+\sum_{k, j \in N_{a}}\left(\left\|\mathbf{a}_{k}-\mathbf{x}_{j}\right\|^{2}-d_{k j}^{2}\right)^{2}
$$

or

$$
\min \sum_{i, j \in N_{x}}\left(\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|-d_{i j}\right)^{2}+\sum_{k, j \in N_{a}}\left(\left\|\mathbf{a}_{k}-\mathbf{x}_{j}\right\|-d_{k j}\right)^{2}
$$

Either one is a non-convex optimization problem.

For simplicity, we assume $d=2$ in the following analysis.

SOCP Relaxation for SNL

System of SOCP Feasibility for $\mathbf{x}_{i} \in R^{2}$:

$$
\begin{aligned}
& \left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\| \leq d_{i j}, \forall(i, j) \in N_{x}, i<j \\
& \left\|\mathbf{a}_{k}-\mathbf{x}_{j}\right\| \leq d_{k j}, \forall(k, j) \in N_{a}
\end{aligned}
$$

where \mathbf{a}_{k} are points whose locations are known.
Consider the case where a single unknown point \mathbf{x}_{1} is connected to three anchors $\mathbf{a}_{k}, k=1,2,3$ on R^{2} :

$$
\left\|\mathbf{a}_{k}-\mathbf{x}\right\| \leq d_{k}, k=1,2,3
$$

The Standard SOCP Relaxation and Dual

$$
\begin{array}{ll}
\operatorname{minimize} & 0 \\
& \delta_{k}=d_{k},\left(\lambda_{k}\right), k=1,2,3 \\
& \mathbf{y}_{k}+\mathbf{x}=\mathbf{a}_{k},\left(\mathbf{z}_{k}\right), k=1,2,3 \\
& \left(\delta_{k} ; \mathbf{y}_{k}\right) \in S O C P, k=1,2,3
\end{array}
$$

The Dual

$$
\begin{aligned}
\operatorname{maximize} & \sum_{k}\left(d_{k} \lambda_{k}+\mathbf{a}_{k}^{T} \mathbf{z}_{k}\right) \\
& \sum_{k} \mathbf{z}_{k}=\mathbf{0} \\
& \left(-\lambda_{k} ;-\mathbf{z}_{k}\right) \in S O C P, k=1,2,3
\end{aligned}
$$

Suppose the true sensor location is b, the dual can be written as

$$
\begin{aligned}
\operatorname{minimize} & \sum_{k}\left(-d_{k} \lambda_{k}+\left(\mathbf{a}_{k}-\mathbf{b}\right)^{T} \mathbf{z}_{k}\right) \\
& \sum_{k} \mathbf{z}_{k}=\mathbf{0} \\
& \left(\lambda_{k} ; \mathbf{z}_{k}\right) \in S O C P, k=1,2,3
\end{aligned}
$$

Optimality Condition of the SOCP Relaxation

The conditions would be

$$
\mathbf{z}_{k}=\left(\lambda_{k} / d_{k}\right)\left(\mathbf{a}_{k}-\mathbf{b}\right)
$$

and

$$
\sum_{k}\left(\lambda_{k} / d_{k}\right)\left(\mathbf{a}_{k}-\mathbf{b}\right)=\mathbf{0}
$$

Thus, λ_{k} represents a positive force in direction $\mathbf{a}_{k}-\mathbf{b}$, and the total forces should be balanced along the three directions.

If b is in the convex-hull, this can be achieved so that the optimal solution of the SOCP relaxation is $\mathrm{x}^{*}=\mathrm{b}$.

What happen if NOT?

SDP Relaxation for SNL

Find a symmetric matrix $Z \in \mathbf{R}^{(2+n) \times(2+n)}$ such that

$$
\begin{array}{ll}
Z_{1: 2,1: 2} & =I \\
\left(\mathbf{0} ; \mathbf{e}_{i}-\mathbf{e}_{j}\right)\left(\mathbf{0} ; \mathbf{e}_{i}-\mathbf{e}_{j}\right)^{T} \bullet Z & =d_{i j}^{2}, \forall i, j \in N_{x}, i<j, \\
\left(\mathbf{a}_{k} ;-\mathbf{e}_{j}\right)\left(\mathbf{a}_{k} ;-\mathbf{e}_{j}\right)^{T} \bullet Z & =d_{k j}^{2}, \forall k, j \in N_{a}, \\
Z & \succeq \mathbf{0} .
\end{array}
$$

This is semidefinite programming feasibility system (with a null objective).
When this relaxation is exact?
One case is that the single unknown point \mathbf{x}_{1} is connected to three anchors $\mathbf{a}_{k}, k=1,2,3$. In general, if the rank of a feasible Z is 2 , then it solves the original graph relaxation problem.

Duality Theorem for SNL

Theorem 1 Let \bar{Z} be a feasible solution for SDP and \bar{U} be an optimal slack matrix of the dual. Then,

1. complementarity condition holds: $\bar{Z} \bullet \bar{U}=0$ or $\bar{Z} \bar{U}=0$;
2. $\operatorname{Rank}(\bar{Z})+\operatorname{Rank}(\bar{U}) \leq 2+n$;
3. $\operatorname{Rank}(\bar{Z}) \geq 2$ and $\operatorname{Rank}(\bar{U}) \leq n$.

An immediate result from the theorem is the following:
Corollary 1 If an optimal dual slack matrix has rank n, then every solution of the SDP has rank 2 , that is, the SDP relaxation solves the original problem exactly.

Theoretical Analyses on SNL-SDP Relaxation

A sensor network is 2 -universally-localizable (UL) if there is a unique localization in \mathbf{R}^{2} and there is no $x_{j} \in \mathbf{R}^{h}, j=1, \ldots, n$, where $h>2$, such that

$$
\begin{aligned}
& \left\|x_{i}-x_{j}\right\|^{2}=d_{i j}^{2}, \forall i, j \in N_{x}, i<j \\
& \left\|\left(a_{k} ; \mathbf{0}\right)-x_{j}\right\|^{2}=\hat{d}_{k j}^{2}, \forall k, j \in N_{a}
\end{aligned}
$$

The latter says that the problem cannot be localized in a higher dimension space where anchor points are simply augmented to $\left(a_{k} ; \mathbf{0}\right) \in \mathbf{R}^{h}, k=1, \ldots, m$.

Figure 6: One sensor-Two anchors: Not Localizable

Figure 7: Two sensor-Three anchors: Strongly Localizable

Figure 8: Two sensor-Three anchors: Localizable but not Strongly

Figure 9: Two sensor-Three anchors: Not Localizable

Figure 10: Two sensor-Three anchors: Strongly Localizable

Universally-Localizable Problems (ULP)

Theorem 2 The following SNL problems are Universally-Localizable:

- If every edge length is specified, then the sensor network is 2-universally-localizable (Schoenberg 1942).
- There is a sensor network (trilateral graph), with $O(n)$ edge lengths specified, that is 2-universally-localizable (So 2007).
- If one sensor with its edge lengths to at least three anchors (in general positions) specified, then it is 2-universally-localizable (So and Y 2005).

ULPs Can be Localized as Convex Optimization

Theorem 3 (So and Y 2005) The following statements are equivalent:

1. The sensor network is 2 -universally-localizable;
2. The max-rank solution of the SDP relaxation has rank 2;
3. The solution matrix has $Y=X^{T} X$ or $\operatorname{Tr}\left(Y-X^{T} X\right)=0$.

When an optimal dual (stress) slack matrix has rank n, then the problem is 2 -strongly-localizable-problem (SLP). This is a sub-class of ULP.

Example: if one sensor with its edge lengths to three anchors (in general positions) are specified, then it is 2 -strongly-localizable.

One Sensor and three Anchors

Find $x_{1} \in \mathbf{R}^{2}$ such that

$$
\left\|\mathbf{a}_{k}-\mathbf{x}_{1}\right\|^{2}=\hat{d}_{k j}^{2}, \text { for } k=1,2,3
$$

Let $\overline{\mathbf{X}}_{1}$ be the true position of the sensor.

SDP Relaxation Standard Form

$$
\begin{aligned}
& (1 ; 0 ; 0)(1 ; 0 ; 0)^{T} \bullet Z=1, \\
& (0 ; 1 ; 0)(0 ; 1 ; 0)^{T} \bullet Z=1, \\
& (1 ; 1 ; 0)(1 ; 1 ; 0)^{T} \bullet Z=2, \\
& \left(\mathbf{a}_{k} ;-1\right)\left(\mathbf{a}_{k} ;-1\right)^{T} \bullet Z=\hat{d}_{k 1}^{2}, \text { for } k=1,2,3, \\
& Z \succeq \mathbf{0} .
\end{aligned}
$$

$$
\bar{Z}=\left(\begin{array}{cc}
I & \overline{\mathbf{x}}_{1} \\
\overline{\mathbf{x}}_{1}^{T} & \bar{x}_{1}^{T} \bar{x}_{1}
\end{array}\right)=\left(I, \overline{\mathbf{x}}_{1}\right)^{T}\left(I, \overline{\mathbf{x}}_{1}\right)
$$

is a feasible rank-2 solution for the relaxation.

Dual Slack Matrices

$$
\left(\begin{array}{cc}
\left(\begin{array}{cc}
w_{1}+w_{3} & w_{3} \\
w_{3} & w_{2}+w_{3}
\end{array}\right)+\sum_{k=1}^{3} \hat{w}_{k 1} \mathbf{a}_{k} \mathbf{a}_{k}^{T} & -\sum_{k=1}^{3} \hat{w}_{k 1} a_{k} \\
& -\left(\sum_{k=1}^{3} \hat{w}_{k 1} a_{k}\right)^{T}
\end{array}\right.
$$

Does an optimal slack matrix U have rank 1 with

$$
w_{1}+w_{2}+2 w_{3}+\sum_{k=1}^{3} \hat{w}_{k 1} \hat{d}_{k 1}^{2}=0 ?
$$

Optimal Dual Slack Matrix

If we choose w_{\bullet} 's such that

$$
\bar{U}=\left(-\bar{x}_{1} ; 1\right)\left(-\overline{\mathbf{x}}_{1} ; 1\right)^{T}
$$

then, $\bar{U} \succeq 0$ and $\bar{U} \bullet \bar{X}=0$ so that \bar{U} is an optimal slack matrix for the dual and its rank is 1 .

How to Select w 's

We only need to consider choosing \hat{w} 's:

$$
\begin{array}{cc}
\sum_{k=1}^{3} \hat{w}_{k 1} \mathbf{a}_{k}=\overline{\mathbf{x}}_{1} & \text { or } \\
\hat{w}_{11}+\hat{w}_{21}+\hat{w}_{31}=1 . & \sum_{k=1}^{3} \hat{w}_{k 1}\left(\mathbf{a} k-\overline{\mathbf{x}}_{1}\right)=\mathbf{0} \\
\hat{w}_{11}+\hat{w}_{21}+\hat{w}_{31}=1
\end{array}
$$

This system always has a solution if \mathbf{a}_{k} is not co-linear.
Then, select the rest

$$
\left(\begin{array}{cc}
w_{1}+w_{3} & w_{3} \\
w_{3} & w_{2}+w_{3}
\end{array}\right)=\overline{\mathbf{x}}_{1} \overline{\mathbf{x}}_{1}^{T}-\sum_{k=1}^{3} \hat{w}_{k 1} \mathbf{a}_{k} \mathbf{a}_{k}^{T}
$$

Other Conditions?

Even if \mathbf{a}_{k} is co-linear, the system

$$
\begin{gathered}
\sum_{k=1}^{3} \hat{w}_{k 1}\left(\mathbf{a} k-\overline{\mathbf{x}}_{1}\right)=\mathbf{0} \\
\hat{w}_{11}+\hat{w}_{21}+\hat{w}_{31}=1
\end{gathered}
$$

may still have a solution w_{\bullet} ?
Physical interpretation: $\hat{w}_{k j}$ is a stress/force on the edge and all stresses are balanced or at an equilibrium state. The objective represents the potential of the system.

Localize All Localizable Points

Theorem 4 (So and Y 2005) If a problem (graph) contains a subproblem (subgraph) that is universally-localizable, then the submatrix solution corresponding to the subproblem in the SDP solution has rank 2. That is, the SDP relaxation computes a solution that localize all possibly localizable unknown sensor points.

The proof is similar to the proof of Theorem 3 by removing the notes that is not localizable.
Implication: Diagonals of "co-variance" matrix

$$
\bar{Y}-\bar{X}^{T} \bar{X}
$$

$\bar{Y}_{j j}-\left\|\bar{x}_{j}\right\|^{2}$, can be used as a measure to see whether j th sensor's estimated position is reliable or not.

Uncertainty Analysis and Confidence Measure

Alternatively, each x_{j} 's can be viewed as uncertain points from the incomplete/uncertain distance measures. Then the solution to the SDP problem provides the first and second moment estimation (Bertsimas and Y 1998).

Generally, \bar{x}_{j} is a point estimate of x_{j} and $\bar{Y}_{i j}$ is a point estimate $x_{i}^{T} x_{j}$.
Consequently,

$$
\bar{Y}_{j j}-\left\|\bar{x}_{j}\right\|^{2},
$$

which is the individual variance estimation of sensor j, gives an interval estimation for its true position (Biswas and Y 2004).

SDP Relaxation with Noise Data

When the distance measurements have noise, one can minimize the total error as

$$
\begin{array}{rlr}
\min & \sum_{(i, j) \in N_{x}}\left(s_{i j}\right)^{2}+\sum_{(k, j) \in N_{a}}\left(s_{k j}^{a}\right)^{2} & \\
& =I \\
Z_{1: 2,1: 2} & =d_{i j}^{2}, \forall(i, j) \in N_{x}, i<j \\
\left(\mathbf{0} ; \mathbf{e}_{i}-\mathbf{e}_{j}\right)\left(\mathbf{0} ; \mathbf{e}_{i}-\mathbf{e}_{j}\right)^{T} \bullet Z+s_{i j} & =d^{2} \\
\left(\mathbf{a}_{k} ;-\mathbf{e}_{j}\right)\left(\mathbf{a}_{k} ;-\mathbf{e}_{j}\right)^{T} \bullet Z+s_{k j}^{a} & =d_{k j}^{2}, \forall(k, j) \in N_{a} \\
Z & & \succeq \mathbf{0}
\end{array}
$$

