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Two-Person Zero-Sum Game

Let P be the payoff matrix of a two-person, ”column” and ”row”, zero-sum game.

P =

 +3 −1 −4

−3 +1 +4


Players usually use randomized strategies in such a game. A randomized strategy is a vector of

probabilities, each associated with a particular decision.
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Nash Equilibrium

In a Nash Equilibrium, if your (column) strategy is a pure strategy (one where you always play a single

action), the expected payout for the (dominating) action that you are playing should be greater than or

equal to the expected payout for any other action. If you are playing a randomized strategy, the expected

payout for each action included in your strategy should be the same (if one were lower, you won’t want to

ever choose that action) and these payouts should be greater than or equal to the actions that aren’t part

of your strategy.
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LP formulation of Nash Equilibrium

”Column” strategy:

max v

s.t. ve ≤ Px

eTx = 1

x ≥ 0.

”Row” strategy:

min u

s.t. ue ≥ PTy

eTy = 1

y ≥ 0.

They are dual to each other.
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Multi-Firm LP Alliance I

Consider a finite set I of firms each of whom has operations that have representations as linear programs.

Suppose the linear program representing the operations of firm i in I entails choosing an n-column vector

x ≥ 0 of activity levels that maximize the firm’s profit

cTx

subject to the constraint that its consumption Ax of resources minorizes its available resource vector bi,

that is,

Ax ≤ bi.
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Multi-Firm LP Alliance II

An alliance is a subset of the firms. If an alliance S pools its resource vectors, the linear program that S

faces is that of choosing an n-column vector x ≥ 0 that maximizes the profit cTx that S earns subject to

its resource constraint

Ax ≤ bS =
∑
i∈S

bi.

Let V S be the resulting maximum profit of S. The grand alliance is the set I of all firms.

V S := max cTx

s.t. Ax ≤
∑

i∈S bi,

x ≥ 0,
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Multi-Firm LP Alliance III: Core

Core is the set of payment vector z = (z1, ..., z|I|) to each company such that∑
i∈I

zi = V I

and ∑
i∈S

zi ≥ V S , ∀S ⊂ I.

Theorem 1 For each optimal dual price vector for the linear program of the grand alliance, allocating each

firm the value of its resource vector at those prices yields a profit allocation vector in the core.
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Robust Optimization I

Consider a linear program

minimize (c+ Cu)Tx

subject to Ax = b,

x ≥ 0,

where u ≥ 0 and u ≤ e is a state of Nature and beyond decision maker’s control.

Robust Model:

minimize max{u≥0, u≤e}(c+ Cu)Tx

subject to Ax = b,

x ≥ 0.
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Robust Optimization II

Nature’s (primal) problem:

maximizeu cTx+ xTCu

subject to u ≤ e,

u ≥ 0.

Dual of Nature’s problem:

minimizey cTx+ eTy

subject to y ≥ CTx,

y ≥ 0.
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Robust Optimization III

Decision Maker’s Robust Model:

minimizex,y cTx+ eTy

subject to y ≥ CTx,

Ax = b,

x, y ≥ 0.
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Distributionally Robust Optimization (DRO)

Consider a stochastic optimization Problem

minimize E[f(x, ξ)]

subject to Ax = b,

x ≥ 0,

where ξ is a random vector from a distribution Ξ. Note that the expectation is a linear function of

distributions, but in practice, Ξ is unknown to the decision maker.

DRO Model:

minimize maxΞ∈D E[f(x, ξ)]

subject to Ax = b,

x ≥ 0.

where D is the distribution uncertainty/ambiguity set constructed from the statistical moments or/and

sample distributions, and it is a convex set of distributions.
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A Online Resource Allocation Linear Programming Example

order 1(t = 1) order 2(t = 2) ..... Inventory(b)

Price(πt) $100 $30 ...

Decision x1 x2 ...

Pants 1 0 ... 100

Shoes 1 0 ... 50

T-shirts 0 1 ... 500

Jacket 0 0 ... 200

Socks 1 1 ... 1000
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Online Decision Making: Resource Allocation Linear Programming

In real applications, data/information is revealed sequentially, and one has to make decisions sequentially

based on what is known – cannot wait for solving the offline problem. Consider problem:

maximizex
∑n

t=1 πtxt

subject to
∑n

t=1 aitxt ≤ bi, ∀i = 1, ...,m

0 ≤ xt ≤ 1, ∀t = 1, ..., n

Each bid/activity t requests a bundle of m resources, and the payment is πt.

Online Decision Making: we only know b at the start, but

• the constraint matrix is revealed column by column sequentially along with the corresponding objective

coefficient.

• an irrevocable decision must be made as soon as an order arrives without observing or knowing the

future data.
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Sequential Convex Programming Mechanism

(SCPM): maximizext,s πtxt + u(s)

s.t. atxt + s = b−
∑t−1

j=1 aj x̄j ,

0 ≤ xt ≤ 1,

s ≥ 0.∑t−1
j=1 aj x̄j : allocated resource vector before the new arrival.

Possible Concave Value Functions:

• Exponential: u(si) = b · (1− exp(−si/b)), for some positive constant b.

• Logarithmic: u(si) = b · log(si), for some positive constant b.

• Quadratic:

u(si) =

 b · (1− (1− si/b)
2) 0 ≤ si ≤ b

b si ≥ b
for some positive constant b.
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Online Linear Programming

Main Assumptions

• The columns at arrive in a random order.

• We know the total number of columns n a priori.

Other technical assumptions

• 0 ≤ ait ≤ 1, for all (i, t);

• πt ≥ 0 for all t

The algorithm/mechanism quality is evaluated on the expected performance over all the permutations

comparing to the offline optimal solution, i.e., an algorithm A is c-competitive if and only if

Eσ

[
n∑

t=1

πtxt(σ,A)

]
≥ c ·OPT (A, π).
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Comments on the Online Model

• The online approach is distribution-free. It allows for great robustness in practical problems. If the

columns or arrivals are drawn i.i.d. from a certain distribution (either known or unknown to the

decision maker), then the first assumption is automatically met.

• The second assumption is necessary for one to obtain a near optimal solution. However, it can be

relaxed to an approximate knowledge of n or the length of decision horizon.

• Both assumptions are reasonable and standard in many operations research and computer science

applications.
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Main Theorems

Theorem 2 For any fixed 0 < ϵ < 1, there is no online algorithm for solving the linear program with

competitive ratio 1− ϵ if

B <
log(m)

ϵ2
.

Theorem 3 For any fixed 0 < ϵ < 1, there is a 1− ϵ competitive online algorithm for solving the linear

program if

B ≥ Ω

(
m log (n/ϵ)

ϵ2

)
.

Agrawal, Wang and Y [Operations Research 2014]
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Comments on the Main Theorems

• The condition of B to hold the main result is independent of the size of OPT (A, π) or the objective

coefficients, and is also independent of any possible distribution of input data. Therefore, it’s

checkable.

• The condition on sample size 1/ϵ2 is necessary as it is common in many learning-based algorithm.

• The condition is proportional only to log(n) so that it is way below to satisfy everyone’s demand.
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Key Ideas to Prove Negative Result

• Consider m = 1 and inventory level B, one can construct an instance where OPT = B, and there

will be a loss of
√
B with a high probability, which give an approximation ratio 1− 1√

B
.

• Consider general m and inventory level B for each good. We are able to construct an instance to

decompose the problem into log(m) separable problems, each of which has an inventory level

B/ log(m) on a composite “single good” and OPT = B/ log(m).

• Then, with hight probability each “single good” case has a loss of
√
B/ log(m) and the total loss of√

B · log(m). Thus, approximation ratio is at best 1−
√

log(m)√
B

.
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Dual of the RA Problem

minimizex bTp+
∑n

j=1 zj

subject to pTat − πt + zt ≥ 0 ∀j = 1, ..., n

(p, z) ≥ 0

Strict Complementarity/Optimality Conditions:

xt =


0 if πt < pTat

1 if πt > pTat

(0 1) if πt = pTat

p are itemized prices of Goods!
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Price Observation of Online Learning I

The problem would be easy if there is an ”ideal price” vector:

Bid 1(t = 1) Bid 2(t = 2) ..... Inventory(b) p∗

Bid(πt) $100 $30 ...

Decision x1 x2 ...

Pants 1 0 ... 100 $45

Shoes 1 0 ... 50 $45

T-shirts 0 1 ... 500 $10

Jackets 0 0 ... 200 $55

Hats 1 1 ... 1000 $15
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One-Time Learning Algorithm

We start with a simple learning policy

• Set xt = 0 for all 1 ≤ t ≤ ϵn;

• Solve the ϵ portion of the problem

maximizex
∑ϵn

t=1 πtxt

subject to
∑ϵn

t=1 aitxt ≤ (1− ϵ)ϵbi i = 1, ...,m

0 ≤ xt ≤ 1 t = 1, ..., ϵn

and get the optimal dual solution p̂;

• Determine the future allocation xt as:

xt =

 0 if πt ≤ p̂Tat

1 if πt > p̂Tat

as long as aitxt ≤ bi −
∑t−1

j=1 aijxj for all i; otherwise, set xt = 0.
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One-Time Learning Algorithm Result

Theorem 4 For any fixed ϵ > 0, the one-time learning algorithm is (1− ϵ) competitive for solving the

linear program when

B ≥ Ω
(

m log (n/ϵ)
ϵ3

)

Outline of the Proof:

• With high probability, we clear the market;

• With high probability, the revenue is near-optimal if we include the initial ϵ portion revenue;

• With high probability, the first ϵ portion revenue, a learning cost, doesn’t contribute too much.

Then, we prove that the one-time learning algorithm is (1− ϵ) competitive under condition

B ≥ 6m log(n/ϵ)
ϵ3 .

But this is one ϵ factor higher than the lower bound...
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Dynamic Price Updating Algorithm

In the dynamic price learning algorithm, we update the price at time ϵn, 2ϵn, 4ϵn, ..., till 2kϵ ≥ 1.

At time ℓ ∈ {ϵn, 2ϵn, ...}, the price vector is the optimal dual solution to the following linear program:

maximizex
∑ℓ

t=1 πtxt

subject to
∑ℓ

t=1 aitxt ≤ (1− hℓ)
ℓ
nbi i = 1, ...,m

0 ≤ xt ≤ 1 t = 1, ..., ℓ

where

hℓ = ϵ

√
n

ℓ
;

and this price vector is used to determine the allocation for the next immediate period.
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Dynamic Price Updating Algorithm

In the dynamic price updating algorithm, we update the price at time ϵn, 2ϵn, 4ϵn ... At time

ℓ ∈ {ϵn, 2ϵn, ...}, the price is the optimal dual solution to the following linear program:

maximizex
∑ℓ

t=1 πtxt

subject to
∑ℓ

t=1 aitxt ≤ (1− hℓ)
ℓ
nbi i = 1, ...,m

0 ≤ xt ≤ 1 t = 1, ..., ℓ

where

hℓ = ϵ

√
n

ℓ

And this price is used to determine the allocation for the next immediate period.
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Geometric Pace/Grid of Price Updating
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Comments on Dynamic Learning Algorithm

• In the dynamic algorithm, we update the prices log2 (1/ϵ) times during the entire time horizon.

• The numbers hℓ play an important role in improving the condition on B in the main theorem. It

basically balances the probability that the inventory ever gets violated and the lost of revenue due to

the factor 1− hℓ.

• Choosing large hℓ (more conservative) at the beginning periods and smaller hℓ (more aggressive) at

the later periods, one can now control the loss of revenue by an ϵ order while the required size of B

can be weakened by an ϵ factor.
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Dynamic/Adaptive Price Updating Algorithm

Similar to the dynamic price updating algorithm, we update the price at time ϵn, 2ϵn, 3ϵn ... At time

ℓ ∈ {ϵn, 2ϵn, ...}, the price is the optimal dual solution to the following linear program:

maximizex
∑ℓ

t=1 πtxt

subject to
∑ℓ

t=1 aitxt ≤ ℓ
n−ℓ b̂i i = 1, ...,m

0 ≤ xt ≤ 1 t = 1, ..., ℓ

where b̂i is the remaining inventory at the beginning of the tth period. And this price is used to determine

the allocation for the next immediate period.
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Related Work on Random-Permutation

Sufficient Condition Learning

Kleinberg [2005] B ≥ 1
ϵ2

, for m = 1 Dynamic

Devanur et al [2009] OPT ≥ m2 log(n)

ϵ3
One-time

Feldman et al [2010] B ≥ m logn
ϵ3

and OPT ≥ m logn
ϵ

One-time

Agrawal et al [2010] B ≥ m logn
ϵ2

or OPT ≥ m2 logn
ϵ2

Dynamic

Molinaro/Ravi [2013] B ≥ m2 logm
ϵ2

Dynamic

Kesselheim et al [2014] B ≥ logm
ϵ2

Dynamic*

Gupta/Molinaro [2014] B ≥ logm
ϵ2

Dynamic*

Agrawal/Devanur [2014] B ≥ logm
ϵ2

Dynamic*

Table 1: Comparison of several existing results
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Summary and Future Questions on OLP

• B = logm
ϵ2 is now a necessary and sufficient condition (differing by a constant factor).

• Thus, they are near-optimal online algorithms for a very general class of online linear programs under

the permutation assumption.

• The algorithms are distribution-free and/or non-parametric, thereby robust to distribution/data

uncertainty.

• The dynamic learning has the feature of “learning-while-doing”, and is provably better than one-time

learning by a factor.

• Buy-and-sell or double market worked under the iid inputs.

• Price-Posting multi-good model?
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