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Carathéodory’s theorem I

The following theorem states that a polyhedral cone can be generated by a set of basic directional vectors.

Theorem 1 Given matrix A € R™*", let convex polyhedral cone C' = { Ax : x > 0}. For any
beC,

d
b = E A, Lj,y Ty, > O,VZ
i=1
for some linearly independent vectors a;, ,...,a;, chosen from aq,...,a,,.

There is a construct proof of the theorem (page 26 of the text).
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Basic and Basic Feasible Solution | '

Now consider the feasible set {x : Ax = b, x > 0} forgivendata A € R™*" and b € R". Select
m linearly independent columns, denoted by the variable index set 3, from A. Solve Apxp = b for the
m-dimension vector X g, and set the remaining variables, X 57, to zero. Then, we obtain a solution X such
that Ax = b, that is called a basic solution to with respect to the basis A 3. If a basic solution x5 > 0,

then x is called a basic feasible solution, or BFS.

An equivalent statement of Carathéodory’s theorem is:

Theorem 2 [f there is a feasible solution x to {x : Ax = b, x > 0}, then there is a basic feasible
solution to the system (page 26 of the text), and it is an extreme or corner point of the feasible set and vice

versa.

Corollary 1 Theset {x : Ax = b, x > 0} is a polyhedral set.
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Basic and Basic Feasible Solution of the Inequality Form I

Consider the polyhedron set {y : Aly < c} where A is a m x n matrix with n. > m and full row rank,
select m linearly independent columns, denoted by the variable index set /3, from A. Solve

T
ARy =cp
for the m-dimension vector y.

Then, y is called a basic solution to with respect to the basis A in polyhedron set {y : Aly < c}.

If a basic solution A%y < cy, theny is called a basic feasible solution, or BFS of {y : A’y < c},
where index set /N represents the indices of the remaining columns of A. BFS is an extreme or corner

point of the polyhedron.
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Hyper-Planes I

The most important type of convex set is hyperplane, also called linear variety or affine set. if for any two
points are in /1 then their affine combination is also in /1.

Hyperplanes dominate the entire theory of optimization. Let a be a nonzero n-dimensional (slope) vector,
and let b be a real (intercept) number. The set

H={xecR":aex=0>b}
is a hyperplane in R". Relating to hyperplane, upper and lower closed half spaces are given by

Hy ={x:aex>b}

H_={x:aex <b}.
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Separating and supporting hyperplane theorem I

The most important theorem about the convex set is the following separating hyperplane theorem (page
510 of the text).

Theorem 3 (Separating hyperplane theorem) Let C' be a closed convex set in R and let b be a point
exterior to C'. Then there is a vectory € R"" such that

bey > supxey.
xeC

Theorem 4 (Supporting hyperplane theorem) Let C' be a closed convex set and let b be a point on the
boundary of C'. Then there is a vectory € R"" such that

bey =supxey.
xecC
Let C be a unit circle centered at point (1;1). Thatis, C' = {x € R?*: (21 — 1)* + (25 — 1) < 1}.
fb = (2;0),y = (1; —1) is a separating hyperplane vector. If b = (0; —1),y = (0; —1) is a
separating hyperplane vector. It is worth noting that these separating hyperplanes are not unique.
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Farkas’ Lemma '

The following results are Farkas’ lemma and its variants.

Theorem 5 Let A € R™*"™ andb € R"". Then, the system {x : Ax = b, x > 0} has a feasible
solution x if and only if that its alternative system —ATy > 0 and bTy > () has no feasible solution'y .

Geometrically, Farkas’ lemma means that if a vector b € R""* does not belong to the convex cone

generated by a 1, ..., a_,, then there is a hyperplane separating b from cone(a 1, ...,a_,).

Example Let A = (1,1) and b = —1. Then, thereis y = —1 such that —A’y > 0 and by > 0..
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Let {x : Ax = b, x > 0} have a feasible solution, say X. Then, {y : A’y <0, bly > 0}is
infeasible, since otherwise,

0<b'y=(Ax)'y =x"(4"y) <0
fromx > 0 and ATy < 0.

Now let {x : Ax = b, x > 0} have no feasible solution,orb ¢ C' := {Ax : x > 0}. We now prove
that its alternative system has a solution. We first prove

Lemma1 C = {Ax : x > 0} is a closed convex set.

That is, any convergent sequence b* € C, k = 1.2.... has its limit point b also in C'. Let
b¥ = Ax”, x¥ > 0. Then by Carathéodory’s theorem, we must have b” = Agrxgr, xgr > 0
where A is a basis of A. Therefore, X 5=, together with zero values for the nonbasic variables, is

!

bounded for all £, so that it has sub-sequence, say indexed by [ = 1, ..., where X' = x5 has a limit

point X and X > 0. Consider this very sub-sequence b’ = Ax' we must also have b’ — b. Then from
Ib — Ax[| = [[b = b’ + Ax' — A%| < [[b - b'[| + [|Ax" — A%|| < [[b - b'|| + [ A]|[|x' - %]

9
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we must have b = AX, thatis, b € C; since otherwise the right-hand side of the above inequality is

strictly greater than zero which is a contradiction.

Now since (' is a closed convex set, by the separating hyperplane theorem, there is y such that

yeb >supyec
ceC

or

yob>supy0(AX):SupATpo. (1)
x>0 x>0

FromO € C'wehavey e b > 0.

Furthermore, A”y < 0. Since otherwise, say (A”y); > 0, one can have a vector X > 0 such that

r1=a>0,79 = ... = I, = 0, from which

sup Alyex > Alyex = (Aly) -«
x>0

and it tends to 00 as v — 0. This is a contradiction because sup, - g A’y e x is bounded from above
by (1).

10
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Farkas’ Lemma Variant '

Theorem 6 Let A € R™*™ andc € R™. Then, the system {y : ¢ — Al'y > 0} has a solution'y if
and only if that Ax = 0, x > 0, and c!'x < 0 has no feasible solution x.

Example Let A = (1; —1) and ¢ = (1; —2). Then, thereis x = (1;1) > 0 such that Ax = 0 and
cl'x <.

11
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Alternative System Pair | I

— Ay >0, bly=1(>0)

A vector y, with ATy < 0 and b’y = 1, is called an infeasibility certificate for the system
{x: Ax =b, x > 0}.

12
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Alternative System Pair Il I

Ax=0,x>0, c'x=-1(<0).

c—Aly>o0

A vector X, with Ax = 0, x > 0 and ¢’ x = —1, is called an infeasibility certificate for the system
{y: c— Aly > 0}.

13
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Farkas’ Lemma for General Closed Convex Cones? '

Sre the pair
Ax =b, xe€ K,

and
—Aly e K*, bly =1(>0)
alternative systems for a general closed convex cone /< ?

Here operator Ax and Adjoint-Operator ATy minimic matrix-vector production Ax and its transpose

operation A’y where

A= (aj;as;..;a,), Ax=(a;ex;..;a,, ex), and ATy:Zyia;-r.

™m
Ax = (a; ex;..;a, ex) € R and Ay = Zy@-ai.
i

14
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An SDP Cone Example when “Alternative System” Failed I

K =383
1 0 0 1
a] — y A =
0O O 1 0
and
0
b =
2

The Problem: ' := { Ax : x € K} is not closed even when K is a closed convex cone.

15
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When Farkas’ Lemma Holds for General Cones? '

Let /X be a closed and convex cone in the rest of the course.

If there is y such that — A’y € int K* then C' := {Ax : x € K} is a closed convex cone.

Consequently,
Ax =b, xc K,

and
~Aly e K*, bly=1(>0)

are an alternative system pair.

And if there is x such that ATX:O, X € int K, then
Ax =0, x€ K, cex=—-1(<0)

and
c-Aly ¢ K*

are an alternative system pair.

16
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Primal and Dual of Conic LP '

Recall the pair of

(CLP) minimize cex
subjectto a; ex ="b;,i=1,2,....m, (Ax =Db), x € K;

and it dual problem

(CLD) maximize by
subjectto > .. y;a; +s = c, (Aly +s=c¢c), sc K*,
where y € R, s is called the dual slack vector/matrix, and /™ is the dual cone of /.

Cone K can be also a product of different cones, that is, x = (x1; X2;...) where x1 € K1, X5 € Ko,...

and so on with linear constraints:

Ai1x1 + Aoxo + ... = b.

17
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LP, SOCP, and SDP Primal-Dual Examples I

min (2; 1; 1)'x max Y
s.t. elx=1, st. e-y+s=1(2;1;1),
x > 0. s > 0.
min (2; 1; 1)x max ¥
st. elx=1, st. e-y+s=(2;1; 1),
71 =[x = 0. 51— [ls—1ll = 0.

18
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2 5) 1 X2
min
5 1 Iy XT3
1 5) 1 X2
s.t. =1,
.0 1 Iy I3
1 I9
X = t 07
ro I3

19
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Rules to Construct the Dual of CLP '

(CLP) minimize ), Ci ® Xy (CLD) minimize bly
subjectto >, Arxy = b, subjectto ALy + s, = ¢y, VK,
X, € K, Vk. s, € K., Vk.
obj. coef. vector right-hand-side
right-hand-side obj. coef. vector
A AT
Max model Min model
X, € K kth block-constraint slack s;. € K™
X, “free” kth block-constraint slack s, = 0
1th block-constraint slack s; € K y, € K*
1th block-constraint slack s; = 0 y; “free”

The dual of the dual is primal!

20
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CLP Duality Theorems I

Theorem 7 (Weak duality theorem) c @ x — b’y = x e s > ( for any feasible x of (CLP) and (y,s) of
(CLD).

The weak duality theorem shows that a feasible solution to either problem yields a bound on the value of

the other problem. We call c @ x — b’y the duality gap.

Corollary 2 Letx* € F, and (y*,s*) € F,. Then,c @ x* = b’ y* implies that x* is optimal for
(CLP) and (y™*,s™) is optimal for (CLD).

Is the reverse also true? That is, given x* optimal for (CLP), then there is (y*, s*) feasible for (CLD) and
cex* =bly*?

This is called the Strong Duality Theorem.

“True” when iK' = ‘R, that is, the polyhedral cone case, but not true in general.

21



Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note #04

Proof of Strong Duality Theorem for LP I

Suppose not, from Farkas’ lemma, we must have an infeasibility certificate (x’, 7, y’) such that
Ax' —br =0, A’y —cr <0, (x;7)>0

and

bTy/ L CTX/ — 1

If 7 > 0, then we have
0> (—y) ' (AX —br) +x(A'y —cr)=7(b'y —c'x) =7
which is a contradiction.

If 7 = 0, then the weak duality theorem also leads to a contradiction.

22
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Consider

and its dual

Geometric Interpretation I

minimize 1811 + 1229 + 223 + 624
subjectto 3z + To —2T3 +x4 =2
L1 _|_ 31‘2 — XLy = 2

$1>O,ZC2>O,CE3>O,ZC4>O.

maximize 21 + 2o

subjectto  3A\1 + Mg < 18
A+ 33X <12
—2)\1 <2

A1 — Ay < 6.

23
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\ 4

a, Obj contour

Each column a; of the primal defines a constraint of the dual as a half-space whose boundary is
orthogonal to that column vector and is located at a point determined by c;. The dual objective is
maximized at an extreme point of the dual feasible region. The active constraints at optimal solution
correspond to an optimal basis of the primal. In the specific example, b is a conic combination of a; and
a-. The weights in this combination are the x;’s in the optimal solution of the primal.

24
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Theorem 8 (LP duality theorem) If (LP) and (LD) both have feasible solutions then both problems have
optimal solutions and the optimal objective values of the objective functions are equal.

If one of (LP) or (LD) has no feasible solution, then the other is either unbounded or has no feasible
solution. If one of (LP) or (LD) is unbounded then the other has no feasible solution.

The above theorems show that if a pair of feasible solutions can be found to the primal and dual problems

with equal objective values, then these are both optimal. The converse is also true; there is no “gap.”

25
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The LP Primal and Dual Relations '

X1

x, 20

Primal || F-B F-UB IF
Dual
. ©
; BB
min  -x;, — X,
max +
. X, — x, = M Y
S.t.
x4 ox, =1 N V2
-V T Y, S

26
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Optimality Conditions for LP I

( clx—bly = 0 \
2 (x.y,8) € (R%,R™ RY) : Ax = b o,
\ ~Aly —-s = —c )

which is a system of linear inequalities and equations. Now it is easy to verify whether or not a pair

(x,y,s) is optimal.

27
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Complementarity Gap I
T

For feasible x and (y,s), x’'s = x!'(c — A'y) = ¢! x — bl'y is called the complementarity gap.

If x''s = 0, then we say X and s are complementary to each other.

Since both x and s are nonnegative, x’ s = 0 implies that x_* s = 0 or xjs; = 0forally =1,...,n.
x xs = 0
Ax =
Aty —s = —c.

This system has total 272 + m unknowns and 2n -+ m equations including 72 nonlinear equations.

28
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Theorem 9 (Strict complementarity theorem) If (LP) and (LD) both have feasible solutions then both
problems have a pair of strictly complementary solutions x* > 0 and s* > 0 meaning

X*s*=0 and x*+s™ > 0.
Moreover, the supports
P ={j:2;>0} and Z*={j: s; >0}
are invariant for all pairs of strictly complementary solutions.

Given (LP) or (LD), the pair of P* and Z™ is called the (strict) complementarity partition, solving which can

be viewed as a binary classification problem for a given data (A, b, c¢).

{x: Ap«xp+ = b, xp+ > 0, xz+ = 0} is called the primal optimal face, and
{y: czx — AL.y >0, cp- — Ag*y = 0} is called the dual optimal face.

29



Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note #04

An Example I

Consider the primal problem:

minimize x71 +x9 +1.5-x3

subjectto + x3 =1
L9 —+ I3 =1
X1, L2, L3 > 07

The dual problem is

maximize Y7 +Y2

subjectto 1 +s1 =1
y2 +s2 =1

Y1 +y2 +s3 =15
s > 0.

where P* = {3} and Z* ={1,2}.

30
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Proof of the LP strict complementarity theorem I

For any given index 1 < 7 < n, consider

Zj := minimize  —;
subjectto Ax = b,
—cl'x > —2*,
x > 0;
and its dual
maximize bly — z*r
subjectto Ay —cT +s = —ej,
s>0,7>0.
If z; < 0, then we have an optimal solution for (LP) such that x;k > (). On the other hand, if z; = 0, from
the LP strong duality theorem, we have a solution (y, s, 7) such that

b'y —2*r=0, Ay —cr +s = —ej, (s,7) > 0.

31



Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note #04

In this solution, if 7 > (0, then we have
b'(y/7)—2* =0, Al(y/7)+ (s +ej)/T=c

which is an optimal solution for the dual with slack s > O where y* = y/7,8" = (s + e;) /7. If
7=0,wehave b’y =0, A'y +s+e; =0, s,7 > 0. Then for any optimal dual solution (y*, s*),
(y* +y,s"+s+ ej) is also an optimal dual solution where the 7th slack is strictly positive.

Thus, for each given 1 < 7 < n, there is an optimal solution pair (Xj, Sj> such that either azg > 0 or

sg > (). Let an optimal solution pair be

1 : 1 :
* J * J
X = — x/ and S8 = — S”.
o2 2
J J
Then it is a strict complementarity solution pair.

Let (x',s') and (x?, s) be two strict complementarity solution pairs. Note that we still have
0= (Xl)TS2 _ (XZ)Tsl

from the Strong Duality theorem. This indicates that they must have same strict complementarity partition,
since, otherwise, we must have an j such that 27 > O and s7 > 0 or (x")*'s” > 0.

32
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Strong Duality for General CLP? I

The strong duality theorem may not hold for general convex cones:

0O 1 O 0O 0 O 0O -1 0
c=11 0 0 (,aa=1]1] 0 1 0 [|,a2= —1 0 O
0O 0 O 0O 0 O O 0 2
and
0
b =
2

33
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When Strong Duality Theorems Holds for CLP I

Theorem 10 The following statements hold for every pair of (CLP) and (CLD):

i) If (CLP) and (CLD) both are feasible, and furthermore one of them have an interior, then there is no

duality gap between (CLP) and (CLD). However, one of the optimal solution may not be attainable.

if) If (CLP) and (CLD) both are feasible and have interior, then, then both have attainable optimal solutions
with no duality gap.

lii) If (CLP) or (CLD) is feasible and unbounded, then the other has no feasible solution.

iv) If (CLP) or (CLD) is infeasible, and furthermore the other is feasible and has an interior, then the other
Is unbounded.

In case i), one of the optimal solution may not be attainable although no gap.

34
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SDP Example with Zero-Duality Gap but not Attainable I

I 0 0 1
C'= ,Alz , and b1:2
0 0 1 0

The primal has an interior, but the dual does not.

35
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Proof of CLP Strong Duality Theorem under Nonempty Interior Cond. I

i) Let /-, be feasible and have an interior, and let z* be its infimum. Then we consider the alternative
system pair
Ax —br=0,cex — "7 <0, (x,7) € K X R.,

and
Ay +s=c, -bly+r=—2% (s,r) € K* x R,.

But the former is infeasible, so that we have a solution for the latter. From the Weak Duality theorem, we
must have x = 0, that is, we have a solution (y, s) such that

Aly +s=c, bly =2* se K*.

i) We only need to prove that there exist a solution x € F,, such that c @ x = 2™, that is, the infimum of
(CLP) is attainable. But this is just the other side of the proof given that ./ ; is feasible and has an interior,
and z™ is also the supremum of (CLD).

iii) The proof by contradiction follows the Weak Duality Theorem.

36
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iv) Suppose .f; is empty and /-, is feasible and have an interior. Then, we have X € int /X and 7 > 0
such that Ax — b7 = 0, (X,7) € int(K x R, ). Then, for any z*, we again consider the alternative
system pair

Ax —br=0,cex — "7 <0, (x,7) € K X R,

and
Aly +s=c, -bly+s=—2* (s,5) € K* x R,.

But the latter is infeasible, so that the formal has a feasible solution for any z*. At such an solution, if
7 > 0,we have c ® (x/7) < z*;if 7 = (, we have X + ax, where X is any feasible solution for (CLP),

being feasible for (CLP) and its objective value goes to —o0 as «x goes to oo.

37
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The CLP Primal and Dual Relations '

Primal || F-B F-UB IF

- O @
F-UB @

Dual

_ 0O O
min o X
0 O
max 2Y2
0O O
s.t. o X =0 0O O 0 1 0O O
0 1 st w1 + 2 +5 =
0 1 1 0 0O O
0 1
o X =2 S ~ 0
1 0
X ~ 0

The Dual is feasible and bounded, but Primal is infeasible.
38



Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note #04

Optimality and Complementarity Conditions for SDP I

CeX —bly = 0 XS5 =0
AX = b AX =
ATy -8 = —C . —ATy—-8 = -C
X, 5 = 0, X, = 0

Let X * and S™ be optimal solutions with zero duality gap. Then
rank( X ™) + rank(S™) < n.

Hint of the Proof: for any symmetric PSD matrix P € S™ with rank r, there is a factorization P = V'V

where V' € R"*"™ and columns of V' are nonzero-vectors and orthogonal to each other.

When rank( X ™) + rank(S™) = n, then they are strictly complemetary

39
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SDP Strict Complementarity May Not exists I

0O 0 O 0 0 0 0O —1 0
C=10090[,A49=| 01 0 |,42=] -1 0 0
0 0 0 0 0 0 0 0 2
and
O 3
b = , K =87
0

The maximal solution rank of either the primal or dual is one.

40



