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Carathéodory’s theorem

The following theorem states that a polyhedral cone can be generated by a set of basic directional vectors.

Theorem 1 Given matrix A ∈ Rm×n, let convex polyhedral cone C = {Ax : x ≥ 0}. For any

b ∈ C ,

b =

d∑
i=1

ajixji , xji ≥ 0, ∀i

for some linearly independent vectors aj1 ,...,ajd chosen from a1,...,an.

There is a construct proof of the theorem (page 26 of the text).
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Basic and Basic Feasible Solution I

Now consider the feasible set {x : Ax = b, x ≥ 0} for given data A ∈ Rm×n and b ∈ Rm. Select

m linearly independent columns, denoted by the variable index set B, from A. Solve ABxB = b for the

m-dimension vector xB , and set the remaining variables, xN , to zero. Then, we obtain a solution x such

that Ax = b, that is called a basic solution to with respect to the basis AB . If a basic solution xB ≥ 0,

then x is called a basic feasible solution, or BFS.

An equivalent statement of Carathéodory’s theorem is:

Theorem 2 If there is a feasible solution x to {x : Ax = b, x ≥ 0}, then there is a basic feasible

solution to the system (page 26 of the text), and it is an extreme or corner point of the feasible set and vice

versa.

Corollary 1 The set {x : Ax = b, x ≥ 0} is a polyhedral set.
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Basic and Basic Feasible Solution of the Inequality Form

Consider the polyhedron set {y : ATy ≤ c} where A is a m× n matrix with n ≥ m and full row rank,

select m linearly independent columns, denoted by the variable index set B, from A. Solve

AT
By = cB

for the m-dimension vector y.

Then, y is called a basic solution to with respect to the basis AB in polyhedron set {y : ATy ≤ c}.

If a basic solution AT
Ny ≤ cN , then y is called a basic feasible solution, or BFS of {y : ATy ≤ c},

where index set N represents the indices of the remaining columns of A. BFS is an extreme or corner

point of the polyhedron.
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Hyper-Planes

The most important type of convex set is hyperplane, also called linear variety or affine set: if for any two

points are in H then their affine combination is also in H .

Hyperplanes dominate the entire theory of optimization. Let a be a nonzero n-dimensional (slope) vector,

and let b be a real (intercept) number. The set

H = {x ∈ Rn : a • x = b}

is a hyperplane in Rn. Relating to hyperplane, upper and lower closed half spaces are given by

H+ = {x : a • x ≥ b}

H− = {x : a • x ≤ b}.
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Separating and supporting hyperplane theorem

The most important theorem about the convex set is the following separating hyperplane theorem (page

510 of the text).

Theorem 3 (Separating hyperplane theorem) Let C be a closed convex set in Rm and let b be a point

exterior to C . Then there is a vector y ∈ Rm such that

b • y > sup
x∈C

x • y.

Theorem 4 (Supporting hyperplane theorem) Let C be a closed convex set and let b be a point on the

boundary of C . Then there is a vector y ∈ Rm such that

b • y = sup
x∈C

x • y.

Let C be a unit circle centered at point (1; 1). That is, C = {x ∈ R2 : (x1 − 1)2 + (x2 − 1)2 ≤ 1}.

If b = (2; 0), y = (1;−1) is a separating hyperplane vector. If b = (0;−1), y = (0;−1) is a

separating hyperplane vector. It is worth noting that these separating hyperplanes are not unique.
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Figure 1: Illustration of the separating hyperplane theorem; an exterior point b is separated by a hyperplane

from a convex set C .
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Farkas’ Lemma

The following results are Farkas’ lemma and its variants.

Theorem 5 Let A ∈ Rm×n and b ∈ Rm. Then, the system {x : Ax = b, x ≥ 0} has a feasible

solution x if and only if that its alternative system −ATy ≥ 0 and bTy > 0 has no feasible solution y.

Geometrically, Farkas’ lemma means that if a vector b ∈ Rm does not belong to the convex cone

generated by a.1, ...,a.n, then there is a hyperplane separating b from cone(a.1, ...,a.n).

Example Let A = (1, 1) and b = −1. Then, there is y = −1 such that −AT y ≥ 0 and by > 0..
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Proof

Let {x : Ax = b, x ≥ 0} have a feasible solution, say x̄. Then, {y : ATy ≤ 0, bTy > 0} is

infeasible, since otherwise,

0 < bTy = (Ax)Ty = xT (ATy) ≤ 0

from x ≥ 0 and ATy ≤ 0.

Now let {x : Ax = b, x ≥ 0} have no feasible solution, or b ̸∈ C := {Ax : x ≥ 0}. We now prove

that its alternative system has a solution. We first prove

Lemma 1 C = {Ax : x ≥ 0} is a closed convex set.

That is, any convergent sequence bk ∈ C, k = 1.2.... has its limit point b̄ also in C . Let

bk = Axk, xk ≥ 0. Then by Carathéodory’s theorem, we must have bk = ABkxBk , xBk ≥ 0

where ABk is a basis of A. Therefore, xBk , together with zero values for the nonbasic variables, is

bounded for all k, so that it has sub-sequence, say indexed by l = 1, ..., where xl = xBl has a limit

point x̄ and x̄ ≥ 0. Consider this very sub-sequence bl = Axl we must also have bl → b̄. Then from

∥b̄−Ax̄∥ = ∥b̄− bl +Axl −Ax̄∥ ≤ ∥b̄− bl∥+ ∥Axl −Ax̄∥ ≤ ∥b̄− bl∥+ ∥A∥∥xl − x̄∥
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we must have b̄ = Ax̄, that is, b̄ ∈ C ; since otherwise the right-hand side of the above inequality is

strictly greater than zero which is a contradiction.

Now since C is a closed convex set, by the separating hyperplane theorem, there is y such that

y • b > sup
c∈C

y • c

or

y • b > sup
x≥0

y • (Ax) = sup
x≥0

ATy • x. (1)

From 0 ∈ C we have y • b > 0.

Furthermore, ATy ≤ 0. Since otherwise, say (ATy)1 > 0, one can have a vector x̄ ≥ 0 such that

x̄1 = α > 0, x̄2 = ... = x̄n = 0, from which

sup
x≥0

ATy • x ≥ ATy • x̄ = (ATy)1 · α

and it tends to ∞ as α → ∞. This is a contradiction because supx≥0 A
Ty • x is bounded from above

by (1).
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Farkas’ Lemma Variant

Theorem 6 Let A ∈ Rm×n and c ∈ Rn. Then, the system {y : c−ATy ≥ 0} has a solution y if

and only if that Ax = 0, x ≥ 0, and cTx < 0 has no feasible solution x.

Example Let A = (1;−1) and c = (1;−2). Then, there is x = (1; 1) ≥ 0 such that Ax = 0 and

cTx < 0.
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Alternative System Pair I

Ax = b, x ≥ 0.

−ATy ≥ 0, bTy = 1(> 0)

A vector y, with ATy ≤ 0 and bTy = 1, is called an infeasibility certificate for the system

{x : Ax = b, x ≥ 0}.
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Alternative System Pair II

Ax = 0, x ≥ 0, cTx = −1(< 0).

c−ATy ≥ 0

A vector x, with Ax = 0, x ≥ 0 and cTx = −1, is called an infeasibility certificate for the system

{y : c−ATy ≥ 0}.
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Farkas’ Lemma for General Closed Convex Cones?

Sre the pair

Ax = b, x ∈ K,

and

−ATy ∈ K∗, bTy = 1(> 0)

alternative systems for a general closed convex cone K?

Here operator Ax and Adjoint-Operator ATy minimic matrix-vector production Ax and its transpose

operation ATy, where

A = (a1;a2; ...;am), Ax = (a1 • x; ...;am • x), and ATy =
∑
i

yia
T
i .

Ax = (a1 • x; ...;am • x) ∈ Rm and ATy =
m∑
i

yiai.
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An SDP Cone Example when “Alternative System” Failed

K = S2
+.

a1 =

 1 0

0 0

 ,a2 =

 0 1

1 0


and

b =

 0

2

 .

The Problem: C := {Ax : x ∈ K} is not closed even when K is a closed convex cone.
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When Farkas’ Lemma Holds for General Cones?

Let K be a closed and convex cone in the rest of the course.

If there is y such that −ATy ∈ intK∗, then C := {Ax : x ∈ K} is a closed convex cone.

Consequently,

Ax = b, x ∈ K,

and

−ATy ∈ K∗, bTy = 1(> 0)

are an alternative system pair.

And if there is x such that ATx = 0, x ∈ intK , then

Ax = 0, x ∈ K, c • x = −1(< 0)

and

c−ATy ∈ K∗

are an alternative system pair.

16



Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note #04

Primal and Dual of Conic LP

Recall the pair of

(CLP ) minimize c • x
subject to ai • x = bi, i = 1, 2, ...,m, (Ax = b), x ∈ K;

and it dual problem

(CLD) maximize bTy

subject to
∑m

i yiai + s = c, (ATy + s = c), s ∈ K∗,

where y ∈ Rm, s is called the dual slack vector/matrix, and K∗ is the dual cone of K .

Cone K can be also a product of different cones, that is, x = (x1;x2; ...) where x1 ∈ K1, x2 ∈ K2,...

and so on with linear constraints:

A1x1 +A2x2 + ... = b.
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LP, SOCP, and SDP Primal-Dual Examples

min (2; 1; 1)Tx

s. t. eTx = 1,

x ≥ 0.

max y

s.t. e · y + s = (2; 1; 1),

s ≥ 0.

min (2; 1; 1)Tx

s.t. eTx = 1,

x1 − ∥x−1∥ ≥ 0.

max y

s.t. e · y + s = (2; 1; 1),

s1 − ∥s−1∥ ≥ 0.
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min

 2 .5

.5 1

 ·

 x1 x2

x2 x3


s.t.

 1 .5

.5 1

 ·

 x1 x2

x2 x3

 = 1,

x =

 x1 x2

x2 x3

 ≽ 0,

max y

s.t.

 1 .5

.5 1

 y + s =

 2 .5

.5 1

 ,

s =

 s1 s2

s2 s3

 ≽ 0.
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Rules to Construct the Dual of CLP

(CLP ) minimize
∑

k ck • xk

subject to
∑

k Akxk = b,

xk ∈ Kk, ∀k.

(CLD) minimize bTy

subject to AT
k y + sk = ck, ∀k,

sk ∈ K∗
k , ∀k.

obj. coef. vector right-hand-side

right-hand-side obj. coef. vector

A AT

Max model Min model

xk ∈ K kth block-constraint slack sk ∈ K∗

xk “free” kth block-constraint slack sk = 0

ith block-constraint slack si ∈ K yi ∈ K∗

ith block-constraint slack si = 0 yi “free”

The dual of the dual is primal!
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CLP Duality Theorems

Theorem 7 (Weak duality theorem) c • x− bTy = x • s ≥ 0 for any feasible x of (CLP) and (y, s) of

(CLD).

The weak duality theorem shows that a feasible solution to either problem yields a bound on the value of

the other problem. We call c • x− bTy the duality gap.

Corollary 2 Let x∗ ∈ Fp and (y∗, s∗) ∈ Fd. Then, c • x∗ = bTy∗ implies that x∗ is optimal for

(CLP) and (y∗, s∗) is optimal for (CLD).

Is the reverse also true? That is, given x∗ optimal for (CLP), then there is (y∗, s∗) feasible for (CLD) and

c • x∗ = bTy∗?

This is called the Strong Duality Theorem.

“True” when K = Rn
+, that is, the polyhedral cone case, but not true in general.
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Proof of Strong Duality Theorem for LP

Suppose not, from Farkas’ lemma, we must have an infeasibility certificate (x′, τ,y′) such that

Ax′ − bτ = 0, ATy′ − cτ ≤ 0, (x′; τ) ≥ 0

and

bTy′ − cTx′ = 1

If τ > 0, then we have

0 ≥ (−y′)T (Ax′ − bτ) + x′T (ATy′ − cτ) = τ(bTy′ − cTx′) = τ

which is a contradiction.

If τ = 0, then the weak duality theorem also leads to a contradiction.
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Geometric Interpretation

Consider

minimize 18x1 + 12x2 + 2x3 + 6x4

subject to 3x1 + x2 − 2x3 + x4 = 2

x1 + 3x2 − x4 = 2

x1 > 0, x2 > 0, x3 > 0, x4 > 0.

and its dual

maximize 2λ1 + 2λ2

subject to 3λ1 + λ2 6 18

λ1 + 3λ2 6 12

−2λ1 6 2

λ1 − λ2 6 6.
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Obj contour

a3

b

a1

a2

a4

a3

b

a1

a2

a4

λ1

λ2

Each column aj of the primal defines a constraint of the dual as a half-space whose boundary is

orthogonal to that column vector and is located at a point determined by cj . The dual objective is

maximized at an extreme point of the dual feasible region. The active constraints at optimal solution

correspond to an optimal basis of the primal. In the specific example, b is a conic combination of a1 and

a2. The weights in this combination are the xi’s in the optimal solution of the primal.
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Theorem 8 (LP duality theorem) If (LP) and (LD) both have feasible solutions then both problems have

optimal solutions and the optimal objective values of the objective functions are equal.

If one of (LP) or (LD) has no feasible solution, then the other is either unbounded or has no feasible

solution. If one of (LP) or (LD) is unbounded then the other has no feasible solution.

The above theorems show that if a pair of feasible solutions can be found to the primal and dual problems

with equal objective values, then these are both optimal. The converse is also true; there is no “gap.”
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The LP Primal and Dual Relations

26



Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note #04

Optimality Conditions for LP

(x,y, s) ∈ (Rn
+,Rm,Rn

+) :

cTx− bTy = 0

Ax = b

−ATy − s = −c

 ,

which is a system of linear inequalities and equations. Now it is easy to verify whether or not a pair

(x,y, s) is optimal.
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Complementarity Gap

For feasible x and (y, s), xT s = xT (c−ATy) = cTx− bTy is called the complementarity gap.

If xT s = 0, then we say x and s are complementary to each other.

Since both x and s are nonnegative, xT s = 0 implies that x. ∗ s = 0 or xjsj = 0 for all j = 1, . . . , n.

x. ∗ s = 0

Ax = b

−ATy − s = −c.

This system has total 2n+m unknowns and 2n+m equations including n nonlinear equations.
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Theorem 9 (Strict complementarity theorem) If (LP) and (LD) both have feasible solutions then both

problems have a pair of strictly complementary solutions x∗ ≥ 0 and s∗ ≥ 0 meaning

X∗s∗ = 0 and x∗ + s∗ > 0.

Moreover, the supports

P ∗ = {j : x∗
j > 0} and Z∗ = {j : s∗j > 0}

are invariant for all pairs of strictly complementary solutions.

Given (LP) or (LD), the pair of P ∗ and Z∗ is called the (strict) complementarity partition, solving which can

be viewed as a binary classification problem for a given data (A,b, c).

{x : AP∗xP∗ = b, xP∗ ≥ 0, xZ∗ = 0} is called the primal optimal face, and

{y : cZ∗ −AT
Z∗y ≥ 0, cP∗ −AT

P∗y = 0} is called the dual optimal face.
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An Example

Consider the primal problem:

minimize x1 +x2 +1.5 · x3

subject to x1 + x3 = 1

x2 + x3 = 1

x1, x2, x3 ≥ 0;

The dual problem is

maximize y1 +y2

subject to y1 +s1 = 1

y2 +s2 = 1

y1 +y2 +s3 = 1.5

s ≥ 0.

where P ∗ = {3} and Z∗ = {1, 2}.
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Proof of the LP strict complementarity theorem

For any given index 1 ≤ j ≤ n, consider

z̄j := minimize −xj

subject to Ax = b,

−cTx ≥ −z∗,

x ≥ 0;

and its dual

maximize bTy − z∗τ

subject to ATy − cτ + s = −ej ,

s ≥ 0, τ ≥ 0.

If z̄j < 0, then we have an optimal solution for (LP) such that x∗
j > 0. On the other hand, if z̄j = 0, from

the LP strong duality theorem, we have a solution (y, s, τ) such that

bTy − z∗τ = 0, ATy − cτ + s = −ej , (s, τ) ≥ 0.
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In this solution, if τ > 0, then we have

bT (y/τ)− z∗ = 0, AT (y/τ) + (s+ ej)/τ = c

which is an optimal solution for the dual with slack s∗j > 0 where y∗ = y/τ, s∗ = (s+ ej)/τ . If

τ = 0, we have bTy = 0, ATy + s+ ej = 0, s, τ ≥ 0. Then for any optimal dual solution (y∗, s∗),

(y∗ + y, s∗ + s+ ej) is also an optimal dual solution where the jth slack is strictly positive.

Thus, for each given 1 ≤ j ≤ n, there is an optimal solution pair (xj , sj) such that either xj
j > 0 or

sjj > 0. Let an optimal solution pair be

x∗ =
1

n

∑
j

xj and s∗ =
1

n

∑
j

sj .

Then it is a strict complementarity solution pair.

Let (x1, s1) and (x2, s2) be two strict complementarity solution pairs. Note that we still have

0 = (x1)T s2 = (x2)T s1

from the Strong Duality theorem. This indicates that they must have same strict complementarity partition,

since, otherwise, we must have an j such that x1
j > 0 and s2j > 0 or (x1)T s2 > 0.
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Strong Duality for General CLP?

The strong duality theorem may not hold for general convex cones:

c =


0 1 0

1 0 0

0 0 0

 ,a1 =


0 0 0

0 1 0

0 0 0

 ,a2 =


0 −1 0

−1 0 0

0 0 2


and

b =

 0

2

 .
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When Strong Duality Theorems Holds for CLP

Theorem 10 The following statements hold for every pair of (CLP) and (CLD):

i) If (CLP) and (CLD) both are feasible, and furthermore one of them have an interior, then there is no

duality gap between (CLP) and (CLD). However, one of the optimal solution may not be attainable.

ii) If (CLP) and (CLD) both are feasible and have interior, then, then both have attainable optimal solutions

with no duality gap.

iii) If (CLP) or (CLD) is feasible and unbounded, then the other has no feasible solution.

iv) If (CLP) or (CLD) is infeasible, and furthermore the other is feasible and has an interior, then the other

is unbounded.

In case i), one of the optimal solution may not be attainable although no gap.
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SDP Example with Zero-Duality Gap but not Attainable

C =

 1 0

0 0

 , A1 =

 0 1

1 0

 , and b1 = 2.

The primal has an interior, but the dual does not.
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Proof of CLP Strong Duality Theorem under Nonempty Interior Cond.

i) Let Fp be feasible and have an interior, and let z∗ be its infimum. Then we consider the alternative

system pair

Ax− bτ = 0, c • x− z∗τ < 0, (x, τ) ∈ K ×R+,

and

ATy + s = c, −bTy + κ = −z∗, (s, κ) ∈ K∗ ×R+.

But the former is infeasible, so that we have a solution for the latter. From the Weak Duality theorem, we

must have κ = 0, that is, we have a solution (y, s) such that

ATy + s = c, bTy = z∗, s ∈ K∗.

ii) We only need to prove that there exist a solution x ∈ Fp such that c • x = z∗, that is, the infimum of

(CLP) is attainable. But this is just the other side of the proof given that Fd is feasible and has an interior,

and z∗ is also the supremum of (CLD).

iii) The proof by contradiction follows the Weak Duality Theorem.
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iv) Suppose Fd is empty and Fp is feasible and have an interior. Then, we have x̄ ∈ intK and τ̄ > 0

such that Ax̄− bτ̄ = 0, (x̄, τ̄) ∈ int(K ×R+). Then, for any z∗, we again consider the alternative

system pair

Ax− bτ = 0, c • x− z∗τ < 0, (x, τ) ∈ K ×R+,

and

ATy + s = c, −bTy + s = −z∗, (s, s) ∈ K∗ ×R+.

But the latter is infeasible, so that the formal has a feasible solution for any z∗. At such an solution, if

τ > 0, we have c • (x/τ) < z∗; if τ = 0, we have x̂+ αx, where x̂ is any feasible solution for (CLP),

being feasible for (CLP) and its objective value goes to −∞ as α goes to ∞.
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The CLP Primal and Dual Relations

min

 0 0

0 0

 •X

s.t.

 0 0

0 1

 •X = 0 0 1

1 0

 •X = 2

X ≽ 0

max 2y2

s.t. y1

 0 0

0 1

+ y2

 0 1

1 0

+ S =

 0 0

0 0


S ≽ 0

The Dual is feasible and bounded, but Primal is infeasible.
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Optimality and Complementarity Conditions for SDP

C •X − bTy = 0

AX = b

−ATy − S = −C

X,S ≽ 0,

, or

XS = 0

AX = b

−AT y − S = −C

X,S ≽ 0

Let X∗ and S∗ be optimal solutions with zero duality gap. Then

rank(X∗) + rank(S∗) ≤ n.

Hint of the Proof: for any symmetric PSD matrix P ∈ Sn with rank r, there is a factorization P = V TV

where V ∈ Rr×n and columns of V are nonzero-vectors and orthogonal to each other.

When rank(X∗) + rank(S∗) = n, then they are strictly complemetary
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SDP Strict Complementarity May Not exists

C =


0 0 0

0 0 0

0 0 0

 , A1 =


0 0 0

0 1 0

0 0 0

 , A2 =


0 −1 0

−1 0 0

0 0 2


and

b =

 0

0

 ; K = S3
+.

The maximal solution rank of either the primal or dual is one.
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