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Real n-Space; Euclidean Space

• R, R+, intR+

• Rn, Rn
+, intRn

+

• x ≥ y means xj ≥ yj for j = 1, 2, ..., n

• 0: all zero vector; and e: all one vector

• Inner-Product:

x • y := xTy =
n∑

j=1

xjyj

• Norm: ∥x∥2 =
√
xTx, ∥x∥∞ = max{|x1|, |x2|, ..., |xn|}, ∥x∥p =

(∑n
j=1 |xj |p

)1/p

• The dual of the p norm, denoted by ∥.∥∗, is the q norm, where 1
p + 1

q = 1

• Column vector:

x = (x1;x2; . . . ;xn)
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and row vector:

x = (x1, x2, . . . , xn)

• A set of vectors a1, ...,am is said to be linearly dependent if there are scalars λ1, ..., λm, not all

zero, such that the linear combination
m∑
i=1

λiai = 0

• A linearly independent set of vectors that span Rn is a basis.

• For a sequence xk ∈ Rn, k = 0, 1, ..., we say it is a contraction sequence if there is an x∗ ∈ Rn

and a scalar constant 0 < γ < 1 such that

∥xk+1 − x∗∥ ≤ γ∥xk − x∗∥, ∀k ≥ 0.
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Matrices

• A ∈ Rm×n; ai., the ith row vector; a.j , the jth column vector; aij , the i, jth entry

• 0: all zero matrix, and I : the identity matrix

• The null space N (A), the row space R(AT ), and they are orthogonal.

• det(A), tr(A): the sum of the diagonal entries of A

• Inner Product:

A •B = trATB =
∑
i,j

aijbij

• The operator norm of matrix A:

∥A∥2 := max
0̸=x∈Rn

∥Ax∥2

∥x∥2
The Frobenius norm of matrix A:

∥A∥2f := A •A =
∑
i,j

a2ij
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• Sometimes we use X = diag(x)

• Eigenvalues and eigenvectors

Av = λ · v

• Perron-Frobenius Theorem: a real square matrix with positive entries has a unique largest real

eigenvalue and the corresponding eigenvector has strictly positive components.

• Stochastic Matrices: A ≥ 0 with eTA = eT (Column-Stochastic), or Ae = e (Row-Stochastic), or

Doubly-Stochastic if both. It has a unique largest real eigenvalue 1 and corresponding non-negative

right or left eigenvector.
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Symmetric Matrices

• Sn

• The Frobenius norm:

∥X∥f =
√

trXTX =
√
X •X

• Positive Definite (PD): Q ≻ 0 iff xTQx > 0, for all x ̸= 0. The sum of PD matrices is PD.

• Positive Semidefinite (PSD): Q ≽ 0 iff xTQx ≥ 0, for all x. The sum of PSD matrices is PSD.

• PSD matrices: Sn
+, intSn

+ is the set of all positive definite matrices.
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Known Inequalities

• Cauchy-Schwarz: given x,y ∈ Rn, xTy ≤ ∥x∥∥y∥.

• Triangle: given x,y ∈ Rn, ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

• Arithmetic-geometric mean: given x ∈ Rn
+,∑
xj

n
≥

(∏
xj

)1/n

.
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Affine, Convex, Linear and Conic Combinations

When x and y are two distinct points in Rn and α runs over R ,

{z : z = αx+ (1− α)y}

is the line connecting x and y. When 0 ≤ α ≤ 1, it is called the convex combination of x and y and it is

the line segment between x and y.

{z : z = αx+ βy},

for multipliers α, β, is the linear combination of x and y, and it is the hyperplane containing origin and

x and y. When α ≥ 0, β ≥ 0, it is called the conic combination...
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Convex Set

• Ω is said to be a convex set if for every x1,x2 ∈ Ω and every real number α ∈ [0, 1], the point

αx1 + (1− α)x2 ∈ Ω.

• Ball and Ellipsoid: for given y ∈ Rn and positive definite matrix Q:

E(y, Q) = {x : (x− y)TQ(x− y) ≤ 1}.

• The intersection of convex sets is convex, the sum-set of convex sets is convex, the scaled-set of a

convext set is convex

• The convex hull of a set Ω is the intersection of all convex sets containing Ω. Given column-points of

A, the convex hull is {z = Ax : eTx = 1,x ≥ 0}.

SVM Claim: two point sets are separable by a plane if any only if their convex hulls are separable.

• An extreme point in a convex set is a point that cannot be expressed as a convex combination of other

two distinct points of the set.

• A set is polyhedral if it has finitely many extreme points; {x : Ax = b, x ≥ 0} and

{x : Ax ≤ b} are convex polyhedral.
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Proof of convex set

• All solutions to the system of linear equations, {x : Ax = b}, form a convex set.

• All solutions to the system of linear inequalities, {x : Ax ≤ b}, form a convex set.

• All solutions to the system of linear equations and inequalities, {x : Ax = b, x ≥ 0}, form a

convex set.

• Ball is a convex set: given center y ∈ Rn and radius r > 0, B(y, r) = {x : ∥x− y∥ ≤ r}.

• Ellipsoid is a convex set: given center y ∈ Rn and positive definite matrix Q,

E(y, Q) = {x : (x− y)TQ(x− y) ≤ 1}.
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More on proof of convex set

Consider the set B of all b, for a fixed A, such that the set, {x : Ax = b, x ≥ 0}, is feasible.

Show that B is a convex set.

Example:

B = {b : {(x1, x2) : x1 + x2 = b, (x1, x2) ≥ 0} is feasible}.
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Cone and Convex Cone

• A set C is a cone if x ∈ C implies αx ∈ C for all α > 0

• The intersection of cones is a cone

• A convex cone is a cone and also a convex set

• A pointed cone is a cone that does not contain a line

• Dual:

C∗ := {y : x • y ≥ 0 for all x ∈ C}.

Theorem 1 The dual is always a closed convex cone, and the dual of the dual is the closure of convex hall

of C .
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Cone Examples

• Example 2.1: The n-dimensional non-negative orthant, Rn
+ = {x ∈ Rn : x ≥ 0}, is a convex

cone. The dual cone is itself.

• Example 2.2: The set of all positive semi-definite matrices in Sn, Sn
+, is a convex cone, called the

positive semi-definite matrix cone. The dual cone is itself.

• Example 2.3: The set {x ∈ Rn : x1 ≥ ∥x−1∥}, Nn
2 , is a convex cone in Rn called the

second-order cone. The dual cone is itself.

• Example 2.4: The set {x ∈ Rn : x1 ≥ ∥x−1∥p}, Nn
p , is a convex cone in Rn called the p-order

cone with p ≥ 1. The dual cone is the q-order cone with 1
q + 1

p = 1.
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Polyhedral Convex Cones

• A cone C is (convex) polyhedral if C can be represented by

C = {x : Ax ≤ 0} or {x : x = Ay, y ≥ 0}

for some matrix A. In the latter case, K is generated by the columns of A.

• The nonnegative orthant is a polyhedral cone but the second-order cone is not polyhedral.

14



MS&E310 Lecture Note #03

Figure 1: Polyhedral and non-polyhedral cones.
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Real Functions

• Continuous functions

• Weierstrass theorem: a continuous function f defined on a compact set (bounded and closed)

Ω ⊂ Rn has a minimizer in Ω.

• The gradient vector: ∇f(x) = {∂f/∂xi}, for i = 1, ..., n.

• The Hessian matrix: ∇2f(x) =
{

∂2f
∂xi∂xj

}
for i = 1, ..., n; j = 1, ..., n.

• Vector function: f = (f1; f2; ...; fm)

• The Jacobian matrix of f is

∇f(x) =


∇f1(x)

...

∇fm(x)

 .
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• The least upper bound or supremum of f over Ω

sup{f(x) : x ∈ Ω}

and the greatest lower bound or infimum of f over Ω

inf{f(x) : x ∈ Ω}
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Convex Functions

• f is a (strongly) convex function iff for 0 < α < 1,

f(αx+ (1− α)y)(<) ≤ αf(x) + (1− α)f(y).

• The sum of convex functions is a convex function; the max of convex functions is a convex function;

• The Composed function f(ϕ(x)) is convex if ϕ(x) is a convex and f(·) is convex&non-decreasing.

• The (lower) level set of f is convex:

L(z) = {x : f(x) ≤ z}.

• Convex set {(z;x) : f(x) ≤ z} is called the epigraph of f .

• tf(x/t) is a convex function of (t;x) for t > 0 if f(·) is a convex function; it’s homogeneous with

degree 1.

18



MS&E310 Lecture Note #03

Convex Function Examples

• ∥x∥p for p ≥ 1.

∥αx+ (1− α)y∥p ≤ ∥αx∥p + ∥(1− α)y∥p ≤ α∥x∥p + (1− α)∥y∥p,

from the triangle inequality.

• Logistic function log(1 + ea
Tx+b) is convex.

• ex1 + ex2 + ex3 .

• log(ex1 + ex2 + ex3): we will prove it later.

Theorem 2 Every local minimizer is a global minimizer in minimizing a convex objective function over a

convex feasible set. If the objective is strongly convex in the feasible set, the minimizer is unique.

Theorem 3 Every local minimizer is a boundary solution in minimizing a concave objective function (with

non-zero gradient everywhere) over a convex feasible set. If the objective is strongly concave in the

feasible set, every local minimizer must be an extreme solution.
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Proof of convex function

Consider the minimal-objective value function of b for fixed A and c:

z(b) := minimize cTx

subject to Ax = b,

x ≥ 0.

Show that z(b) is a convex function in b for all feasible b.
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Theorems on functions

Taylor’s theorem or the mean-value theorem:

Theorem 4 Let f ∈ C1 be in a region containing the line segment [x,y]. Then there is a α, 0 ≤ α ≤ 1,

such that

f(y) = f(x) +∇f(αx+ (1− α)y)(y − x).

Furthermore, if f ∈ C2 then there is a α, 0 ≤ α ≤ 1, such that

f(y) = f(x) +∇f(x)(y − x) + (1/2)(y − x)T∇2f(αx+ (1− α)y)(y − x).

Theorem 5 Let f ∈ C1. Then f is convex over a convex set Ω if and only if

f(y) ≥ f(x) +∇f(x)(y − x)

for all x, y ∈ Ω.

Theorem 6 Let f ∈ C2. Then f is convex over a convex set Ω if and only if the Hessian matrix of f is

positive semi-definite throughout Ω.
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System of Linear Equations

Solve for x ∈ Rn from:

a1x = b1

a2x = b2

· · · · ·
amx = bm

⇒ Ax = b
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x0

3x+2y=12

2x+3y=12

(2.4,2.4)

(4,0) (6,0)

(0,4)

y

(0,6)

Figure 2: System of linear equations
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Fundamental Theorem of Linear Equations

Theorem 7 Given A ∈ Rm×n and b ∈ Rm, the system {x : Ax = b} has a solution if and only if

that ATy = 0 and bTy ̸= 0 has no solution.

A vector y, with ATy = 0 and bTy ̸= 0, is called an infeasibility certificate for the system.

Example Let A = (1;−1) and b = (1; 1). Then, y = (1/2; 1/2) is an infeasibility certificate.

Alternative systems: {x : Ax = b} and {y : ATy = 0, bTy ̸= 0}.
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0

b

Ax

Figure 3: b is not in the set {Ax : x}, and y is the distance vector from b to the set.
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Linear least-squares problem

Given A ∈ Rm×n and c ∈ Rn,

(LS) minimize ∥c−ATy∥2

subject to y ∈ Rm.

A close form solution:

AATy = Ac or y = (AAT )−1Ac.

c−ATy = c−AT (AAT )−1Ac = c− Pc

Projection matrix: P = AT (AAT )−1A or P = I −AT (AAT )−1A.
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0

c

Pc

Figure 4: Projection of c onto a subspace
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Choleski decomposition method

AAT = LΛLT

LΛLTy∗ = Ac
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System of nonlinear equations

Given f(x) : Rn → Rn, the problem is to solve n equations for n unknowns:

f(x) = 0.

Given a point xk, Newton’s Method sets

f(x) ≃ f(xk) +∇f(xk)(x− xk) = 0.

xk+1 = xk − (∇f(xk))−1f(xk)

or solve for direction vector dx:

∇f(xk)dx = −f(xk) and xk+1 = xk + dx.
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x

f(x)

a

f(b)

f(a)

bz c
f(c)

Figure 5: Newton’s method for root finding
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The quasi Newton method

For minimization of objective function f(x), then f(x) = ∇f(x)

xk+1 = xk − α(∇2f(xk))−1∇f(xk)

where scalar α ≥ 0 is called step-size. More generally

xk+1 = xk − αMk∇f(xk)

where Mk is an n× n symmetric matrix. In particular, if Mk = I , the method is called the gradient

method, where f is viewed as the gradient vector of a real function.
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Convergence and Big O

• {xk}∞0 denotes a seqence x0,x1,x2, ...,xk, ....

• xk → x̄ iff

∥xk − x̄∥ → 0

• g(x) ≥ 0 is a real valued function of a real nonnegative variable, the notation g(x) = O(x) means

that g(x) ≤ c̄x for some constant c̄;

• g(x) = Ω(x) means that g(x) ≥ cx for some constant c;

• g(x) = θ(x) means that cx ≤ g(x) ≤ c̄x.

• g(x) = o(x) means that g(x) goes to zero faster than x does:

lim
x→0

g(x)

x
= 0
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