Mathematical Preliminaries

Yinyu Ye
Department of Management Science and Engineering
Stanford University
Stanford, CA 94305, U.S.A.
http://www.stanford.edu/~yyye

Chapters 1 and Appendixes A,B.1-B.2,C. 1

Real n-Space; Euclidean Space

- $\mathcal{R}, \quad \mathcal{R}_{+}, \quad$ int \mathcal{R}_{+}
- $\boldsymbol{R}^{n}, \quad \mathcal{R}_{+}^{n}, \quad \operatorname{int} R_{+}^{n}$
- $\mathbf{x} \geq \mathbf{y}$ means $x_{j} \geq y_{j}$ for $j=1,2, \ldots, n$
- 0: all zero vector; and e: all one vector
- Inner-Product:

$$
\mathbf{x} \bullet \mathbf{y}:=\mathbf{x}^{T} \mathbf{y}=\sum_{j=1}^{n} x_{j} y_{j}
$$

- Norm: $\|\mathbf{x}\|_{2}=\sqrt{\mathbf{x}^{T} \mathbf{x}}, \quad\|\mathbf{x}\|_{\infty}=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{n}\right|\right\}, \quad\|\mathbf{x}\|_{p}=\left(\sum_{j=1}^{n}\left|x_{j}\right|^{p}\right)^{1 / p}$
- The dual of the p norm, denoted by $\|\cdot\|^{*}$, is the q norm, where $\frac{1}{p}+\frac{1}{q}=1$
- Column vector:

$$
\mathbf{x}=\left(x_{1} ; x_{2} ; \ldots ; x_{n}\right)
$$

and row vector:

$$
\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

- A set of vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}$ is said to be linearly dependent if there are scalars $\lambda_{1}, \ldots, \lambda_{m}$, not all zero, such that the linear combination

$$
\sum_{i=1}^{m} \lambda_{i} \mathbf{a}_{i}=\mathbf{0}
$$

- A linearly independent set of vectors that span R^{n} is a basis.
- For a sequence $\mathbf{x}^{k} \in R^{n}, k=0,1, \ldots$, we say it is a contraction sequence if there is an $\mathbf{x}^{*} \in R^{n}$ and a scalar constant $0<\gamma<1$ such that

$$
\left\|\mathbf{x}^{k+1}-\mathbf{x}^{*}\right\| \leq \gamma\left\|\mathbf{x}^{k}-\mathbf{x}^{*}\right\|, \forall k \geq 0
$$

Matrices

- $A \in \mathcal{R}^{m \times n} ; \mathbf{a}_{i,}$, the i th row vector; $\mathbf{a}_{. j}$, the j th column vector; $a_{i j}$, the i, j th entry
- 0 : all zero matrix, and I : the identity matrix
- The null space $\mathcal{N}(A)$, the row space $\mathcal{R}\left(A^{T}\right)$, and they are orthogonal.
- $\operatorname{det}(A), \operatorname{tr}(A)$: the sum of the diagonal entries of A
- Inner Product:

$$
A \bullet B=\operatorname{tr} A^{T} B=\sum_{i, j} a_{i j} b_{i j}
$$

- The operator norm of matrix A :

$$
\|A\|^{2}:=\max _{\mathbf{0} \neq \mathbf{x} \in \mathcal{R}^{n}} \frac{\|A \mathbf{x}\|^{2}}{\|\mathbf{x}\|^{2}}
$$

The Frobenius norm of matrix A :

$$
\|A\|_{f}^{2}:=A \bullet A=\sum_{i, j} a_{i j}^{2}
$$

- Sometimes we use $X=\operatorname{diag}(\mathbf{x})$
- Eigenvalues and eigenvectors

$$
A \mathbf{v}=\lambda \cdot \mathbf{v}
$$

- Perron-Frobenius Theorem: a real square matrix with positive entries has a unique largest real eigenvalue and the corresponding eigenvector has strictly positive components.
- Stochastic Matrices: $A \geq 0$ with $\mathbf{e}^{T} A=\mathbf{e}^{T}$ (Column-Stochastic), or $A \mathbf{e}=\mathbf{e}$ (Row-Stochastic), or Doubly-Stochastic if both. It has a unique largest real eigenvalue 1 and corresponding non-negative right or left eigenvector.

Symmetric Matrices

- \mathcal{S}^{n}
- The Frobenius norm:

$$
\|X\|_{f}=\sqrt{\operatorname{tr} X^{T} X}=\sqrt{X \bullet X}
$$

- Positive Definite (PD): $Q \succ \mathbf{0}$ iff $\mathbf{x}^{T} Q \mathbf{x}>0$, for all $\mathbf{x} \neq \mathbf{0}$. The sum of PD matrices is PD.
- Positive Semidefinite (PSD): $Q \succeq \mathbf{0}$ iff $\mathbf{x}^{T} Q \mathbf{x} \geq 0$, for all \mathbf{x}. The sum of PSD matrices is PSD.
- PSD matrices: $\mathcal{S}_{+}^{n}, \quad \operatorname{int} \mathcal{S}_{+}^{n}$ is the set of all positive definite matrices.

Known Inequalities

- Cauchy-Schwarz: given $\mathbf{x}, \mathbf{y} \in \mathcal{R}^{n}, \mathbf{x}^{T} \mathbf{y} \leq\|\mathbf{x}\|\|\mathbf{y}\|$.
- Triangle: given $\mathbf{x}, \mathbf{y} \in \mathcal{R}^{n},\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$.
- Arithmetic-geometric mean: given $\mathrm{x} \in \mathcal{R}_{+}^{n}$,

$$
\frac{\sum x_{j}}{n} \geq\left(\prod x_{j}\right)^{1 / n}
$$

Affine, Convex, Linear and Conic Combinations

When \mathbf{x} and \mathbf{y} are two distinct points in R^{n} and α runs over R,

$$
\{\mathbf{z}: \mathbf{z}=\alpha \mathbf{x}+(1-\alpha) \mathbf{y}\}
$$

is the line connecting \mathbf{x} and \mathbf{y}. When $0 \leq \alpha \leq 1$, it is called the convex combination of \mathbf{x} and \mathbf{y} and it is the line segment between x and y .

$$
\{\mathbf{z}: \mathbf{z}=\alpha \mathbf{x}+\beta \mathbf{y}\}
$$

for multipliers α, β, is the linear combination of \mathbf{x} and \mathbf{y}, and it is the hyperplane containing origin and \mathbf{x} and \mathbf{y}. When $\alpha \geq 0, \beta \geq 0$, it is called the conic combination...

Convex Set

- Ω is said to be a convex set if for every $\mathbf{x}^{1}, \mathbf{x}^{2} \in \Omega$ and every real number $\alpha \in[0,1]$, the point $\alpha \mathbf{x}^{1}+(1-\alpha) \mathbf{x}^{2} \in \Omega$.
- Ball and Ellipsoid: for given $\mathbf{y} \in \mathcal{R}^{n}$ and positive definite matrix Q :
$E(\mathbf{y}, Q)=\left\{\mathbf{x}:(\mathbf{x}-\mathbf{y})^{T} Q(\mathbf{x}-\mathbf{y}) \leq 1\right\}$.
- The intersection of convex sets is convex, the sum-set of convex sets is convex, the scaled-set of a convext set is convex
- The convex hull of a set Ω is the intersection of all convex sets containing Ω. Given column-points of A, the convex hull is $\left\{\mathbf{z}=A \mathbf{x}: \mathbf{e}^{T} \mathbf{x}=1, \mathbf{x} \geq \mathbf{0}\right\}$.
SVM Claim: two point sets are separable by a plane if any only if their convex hulls are separable.
- An extreme point in a convex set is a point that cannot be expressed as a convex combination of other two distinct points of the set.
- A set is polyhedral if it has finitely many extreme points; $\{\mathrm{x}: A \mathrm{x}=\mathrm{b}, \mathrm{x} \geq 0\}$ and $\{\mathrm{x}: A \mathrm{x} \leq \mathrm{b}\}$ are convex polyhedral.

Proof of convex set

- All solutions to the system of linear equations, $\{\mathbf{x}: A \mathrm{x}=\mathbf{b}\}$, form a convex set.
- All solutions to the system of linear inequalities, $\{\mathrm{x}: A \mathrm{x} \leq \mathrm{b}\}$, form a convex set.
- All solutions to the system of linear equations and inequalities, $\{\mathrm{x}: A \mathrm{x}=\mathrm{b}, \mathrm{x} \geq 0\}$, form a convex set.
- Ball is a convex set: given center $\mathbf{y} \in \mathcal{R}^{n}$ and radius $r>0, B(\mathbf{y}, r)=\{\mathbf{x}:\|\mathbf{x}-\mathbf{y}\| \leq r\}$.
- Ellipsoid is a convex set: given center $\mathbf{y} \in \mathcal{R}^{n}$ and positive definite matrix Q, $E(\mathbf{y}, Q)=\left\{\mathbf{x}:(\mathbf{x}-\mathbf{y})^{T} Q(\mathbf{x}-\mathbf{y}) \leq 1\right\}$.

More on proof of convex set

Consider the set B of all \mathbf{b}, for a fixed A, such that the set, $\{\mathbf{x}: A \mathbf{x}=\mathbf{b}, \mathbf{x} \geq \mathbf{0}\}$, is feasible.

Show that B is a convex set.

Example:

$$
B=\left\{b:\left\{\left(x_{1}, x_{2}\right): x_{1}+x_{2}=b,\left(x_{1}, x_{2}\right) \geq \mathbf{0}\right\} \text { is feasible }\right\}
$$

Cone and Convex Cone

- A set C is a cone if $\mathrm{x} \in C$ implies $\alpha \mathbf{x} \in C$ for all $\alpha>0$
- The intersection of cones is a cone
- A convex cone is a cone and also a convex set
- A pointed cone is a cone that does not contain a line
- Dual:

$$
C^{*}:=\{\mathbf{y}: \mathbf{x} \bullet \mathbf{y} \geq 0 \quad \text { for all } \quad \mathbf{x} \in C\}
$$

Theorem 1 The dual is always a closed convex cone, and the dual of the dual is the closure of convex hall of C.

Cone Examples

- Example 2.1: The n-dimensional non-negative orthant, $\mathcal{R}_{+}^{n}=\left\{\mathbf{x} \in \mathcal{R}^{n}: \mathbf{x} \geq \mathbf{0}\right\}$, is a convex cone. The dual cone is itself.
- Example 2.2: The set of all positive semi-definite matrices in $\mathcal{S}^{n}, \mathcal{S}_{+}^{n}$, is a convex cone, called the positive semi-definite matrix cone. The dual cone is itself.
- Example 2.3: The set $\left\{\mathbf{x} \in \mathcal{R}^{n}: x_{1} \geq\left\|\mathbf{x}_{-1}\right\|\right\}, \mathcal{N}_{2}^{n}$, is a convex cone in \mathcal{R}^{n} called the second-order cone. The dual cone is itself.
- Example 2.4: The set $\left\{\mathbf{x} \in \mathcal{R}^{n}: x_{1} \geq\left\|\mathbf{x}_{-1}\right\|_{p}\right\}, \mathcal{N}_{p}^{n}$, is a convex cone in \mathcal{R}^{n} called the p-order cone with $p \geq 1$. The dual cone is the q-order cone with $\frac{1}{q}+\frac{1}{p}=1$.

Polyhedral Convex Cones

- A cone C is (convex) polyhedral if C can be represented by

$$
C=\{\mathbf{x}: A \mathbf{x} \leq \mathbf{0}\} \quad \text { or } \quad\{\mathbf{x}: \mathbf{x}=A \mathbf{y}, \mathbf{y} \geq \mathbf{0}\}
$$

for some matrix A. In the latter case, K is generated by the columns of A.

- The nonnegative orthant is a polyhedral cone but the second-order cone is not polyhedral.

Figure 1: Polyhedral and non-polyhedral cones.

Real Functions

- Continuous functions
- Weierstrass theorem: a continuous function f defined on a compact set (bounded and closed) $\Omega \subset \mathcal{R}^{n}$ has a minimizer in Ω.
- The gradient vector: $\nabla f(\mathbf{x})=\left\{\partial f / \partial x_{i}\right\}$, for $i=1, \ldots, n$.
- The Hessian matrix: $\nabla^{2} f(\mathbf{x})=\left\{\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right\}$ for $i=1, \ldots, n ; j=1, \ldots, n$.
- Vector function: $\mathbf{f}=\left(f_{1} ; f_{2} ; \ldots ; f_{m}\right)$
- The Jacobian matrix of f is

$$
\nabla \mathbf{f}(x)=\left(\begin{array}{c}
\nabla f_{1}(\mathbf{x}) \\
\ldots \\
\nabla f_{m}(\mathbf{x})
\end{array}\right)
$$

- The least upper bound or supremum of f over Ω

$$
\sup \{f(\mathbf{x}): \mathbf{x} \in \Omega\}
$$

and the greatest lower bound or infimum of f over Ω

$$
\inf \{f(\mathbf{x}): \mathbf{x} \in \Omega\}
$$

Convex Functions

- f is a (strongly) convex function iff for $0<\alpha<1$,

$$
f(\alpha \mathbf{x}+(1-\alpha) \mathbf{y})(<) \leq \alpha f(\mathbf{x})+(1-\alpha) f(\mathbf{y})
$$

- The sum of convex functions is a convex function; the max of convex functions is a convex function;
- The Composed function $f(\phi(\mathbf{x}))$ is convex if $\phi(\mathbf{x})$ is a convex and $f(\cdot)$ is convex\&non-decreasing.
- The (lower) level set of f is convex:

$$
L(z)=\{\mathbf{x}: \quad f(\mathbf{x}) \leq z\}
$$

- Convex set $\{(z ; \mathbf{x}): f(\mathbf{x}) \leq z\}$ is called the epigraph of f.
- $t f(\mathbf{x} / t)$ is a convex function of $(t ; \mathbf{x})$ for $t>0$ if $f(\cdot)$ is a convex function; it's homogeneous with degree 1 .

Convex Function Examples

- $\|\mathbf{x}\|_{p}$ for $p \geq 1$.

$$
\|\alpha \mathbf{x}+(1-\alpha) \mathbf{y}\|_{p} \leq\|\alpha \mathbf{x}\|_{p}+\|(1-\alpha) \mathbf{y}\|_{p} \leq \alpha\|\mathbf{x}\|_{p}+(1-\alpha)\|\mathbf{y}\|_{p}
$$

from the triangle inequality.

- Logistic function $\log \left(1+e^{\mathbf{a}^{T} \mathbf{x}+b}\right)$ is convex.
- $e^{x_{1}}+e^{x_{2}}+e^{x_{3}}$.
- $\log \left(e^{x_{1}}+e^{x_{2}}+e^{x_{3}}\right)$: we will prove it later.

Theorem 2 Every local minimizer is a global minimizer in minimizing a convex objective function over a convex feasible set. If the objective is strongly convex in the feasible set, the minimizer is unique.

Theorem 3 Every local minimizer is a boundary solution in minimizing a concave objective function (with non-zero gradient everywhere) over a convex feasible set. If the objective is strongly concave in the feasible set, every local minimizer must be an extreme solution.

Proof of convex function

Consider the minimal-objective value function of \mathbf{b} for fixed A and \mathbf{c} :

$$
\begin{aligned}
z(\mathbf{b}):=\text { minimize } & \mathbf{c}^{T} \mathbf{x} \\
\text { subject to } & A \mathbf{x}=\mathbf{b} \\
& \mathbf{x} \geq \mathbf{0} .
\end{aligned}
$$

Show that $z(\mathbf{b})$ is a convex function in \mathbf{b} for all feasible \mathbf{b}.

Theorems on functions

Taylor's theorem or the mean-value theorem:
Theorem 4 Let $f \in C^{1}$ be in a region containing the line segment $[\mathbf{x}, \mathbf{y}]$. Then there is a $\alpha, 0 \leq \alpha \leq 1$, such that

$$
f(\mathbf{y})=f(\mathbf{x})+\nabla f(\alpha \mathbf{x}+(1-\alpha) \mathbf{y})(\mathbf{y}-\mathbf{x})
$$

Furthermore, if $f \in C^{2}$ then there is a $\alpha, 0 \leq \alpha \leq 1$, such that

$$
f(\mathbf{y})=f(\mathbf{x})+\nabla f(\mathbf{x})(\mathbf{y}-\mathbf{x})+(1 / 2)(\mathbf{y}-\mathbf{x})^{T} \nabla^{2} f(\alpha \mathbf{x}+(1-\alpha) \mathbf{y})(\mathbf{y}-\mathbf{x})
$$

Theorem 5 Let $f \in C^{1}$. Then f is convex over a convex set Ω if and only if

$$
f(\mathbf{y}) \geq f(\mathbf{x})+\nabla f(\mathbf{x})(\mathbf{y}-\mathbf{x})
$$

for all $\mathbf{x}, \mathbf{y} \in \Omega$.
Theorem 6 Let $f \in C^{2}$. Then f is convex over a convex set Ω if and only if the Hessian matrix of f is positive semi-definite throughout Ω.

System of Linear Equations

Solve for $\mathbf{x} \in \mathcal{R}^{n}$ from:

$$
\begin{aligned}
\mathbf{a}_{1} \mathbf{x} & =b_{1} \\
\mathbf{a}_{2} \mathbf{x} & =b_{2} \\
\ldots & \cdot \\
\mathbf{a}_{m} \mathbf{x} & =b_{m}
\end{aligned} \Rightarrow A \mathbf{x}=\mathbf{b}
$$

Figure 2: System of linear equations

Fundamental Theorem of Linear Equations

Theorem 7 Given $A \in \mathcal{R}^{m \times n}$ and $\mathrm{b} \in \mathcal{R}^{m}$, the system $\{\mathrm{x}: A \mathrm{x}=\mathrm{b}\}$ has a solution if and only if that $A^{T} \mathbf{y}=0$ and $\mathbf{b}^{T} \mathbf{y} \neq 0$ has no solution.

A vector \mathbf{y}, with $A^{T} \mathbf{y}=\mathbf{0}$ and $\mathbf{b}^{T} \mathbf{y} \neq 0$, is called an infeasibility certificate for the system.
Example Let $A=(1 ;-1)$ and $\mathbf{b}=(1 ; 1)$. Then, $\mathbf{y}=(1 / 2 ; 1 / 2)$ is an infeasibility certificate.
Alternative systems: $\{\mathbf{x}: A \mathbf{x}=\mathbf{b}\}$ and $\left\{\mathbf{y}: A^{T} \mathbf{y}=\mathbf{0}, \mathbf{b}^{T} \mathbf{y} \neq 0\right\}$.

Figure $3: \mathbf{b}$ is not in the set $\{A \mathbf{x}: \mathbf{x}\}$, and \mathbf{y} is the distance vector from \mathbf{b} to the set.

Linear least-squares problem

Given $A \in \mathcal{R}^{m \times n}$ and $\mathbf{c} \in \mathcal{R}^{n}$,

$$
\begin{array}{lll}
(L S) & \text { minimize } & \left\|\mathbf{c}-A^{T} \mathbf{y}\right\|^{2} \\
& \text { subject to } & \mathbf{y} \in \mathcal{R}^{m} .
\end{array}
$$

A close form solution:

$$
\begin{gathered}
A A^{T} \mathbf{y}=A \mathbf{c} \quad \text { or } \quad \mathbf{y}=\left(A A^{T}\right)^{-1} A \mathbf{c} \\
\mathbf{c}-A^{T} \mathbf{y}=\mathbf{c}-A^{T}\left(A A^{T}\right)^{-1} A \mathbf{c}=\mathbf{c}-P \mathbf{c}
\end{gathered}
$$

Projection matrix: $P=A^{T}\left(A A^{T}\right)^{-1} A$ or $P=I-A^{T}\left(A A^{T}\right)^{-1} A$.

Figure 4: Projection of conto a subspace

Choleski decomposition method

$$
\begin{aligned}
& A A^{T}=L \Lambda L^{T} \\
& L \Lambda L^{T} \mathbf{y}^{*}=A \mathbf{c}
\end{aligned}
$$

System of nonlinear equations

Given $\mathbf{f}(\mathbf{x}): \mathcal{R}^{n} \rightarrow \mathcal{R}^{n}$, the problem is to solve n equations for n unknowns:

$$
\mathbf{f}(\mathbf{x})=0
$$

Given a point \mathbf{x}^{k}, Newton's Method sets

$$
\mathbf{f}(\mathbf{x}) \simeq \mathbf{f}\left(\mathbf{x}^{k}\right)+\nabla \mathbf{f}\left(\mathbf{x}^{k}\right)\left(\mathbf{x}-\mathbf{x}^{k}\right)=\mathbf{0}
$$

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\left(\nabla \mathbf{f}\left(\mathbf{x}^{k}\right)\right)^{-1} \mathbf{f}\left(\mathbf{x}^{k}\right)
$$

or solve for direction vector d_{x} :

$$
\nabla \mathbf{f}\left(\mathbf{x}^{k}\right) \mathbf{d}_{x}=-\mathbf{f}\left(\mathbf{x}^{k}\right) \quad \text { and } \quad \mathbf{x}^{k+1}=\mathbf{x}^{k}+\mathbf{d}_{x}
$$

Figure 5: Newton's method for root finding

The quasi Newton method

For minimization of objective function $f(\mathbf{x})$, then $\mathbf{f}(\mathbf{x})=\nabla f(\mathbf{x})$

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\alpha\left(\nabla^{2} f\left(\mathbf{x}^{k}\right)\right)^{-1} \nabla f\left(\mathbf{x}^{k}\right)
$$

where scalar $\alpha \geq 0$ is called step-size. More generally

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\alpha M^{k} \nabla f\left(\mathbf{x}^{k}\right)
$$

where M^{k} is an $n \times n$ symmetric matrix. In particular, if $M^{k}=I$, the method is called the gradient method, where f is viewed as the gradient vector of a real function.

Convergence and Big 0

- $\left\{\mathrm{x}^{k}\right\}_{0}^{\infty}$ denotes a seqence $\mathrm{x}^{0}, \mathrm{x}^{1}, \mathrm{x}^{2}, \ldots, \mathrm{x}^{k}, \ldots$.
- $\mathrm{x}^{k} \rightarrow \overline{\mathrm{x}}$ iff

$$
\left\|\mathrm{x}^{k}-\overline{\mathbf{x}}\right\| \rightarrow 0
$$

- $g(x) \geq 0$ is a real valued function of a real nonnegative variable, the notation $g(x)=O(x)$ means that $g(x) \leq \bar{c} x$ for some constant \bar{c};
- $g(x)=\Omega(x)$ means that $g(x) \geq \underline{c} x$ for some constant \underline{c};
- $g(x)=\theta(x)$ means that $\underline{c} x \leq g(x) \leq \bar{c} x$.
- $g(x)=o(x)$ means that $g(x)$ goes to zero faster than x does:

$$
\lim _{x \rightarrow 0} \frac{g(x)}{x}=0
$$

