
MS&E310 Lecture Note #02

(Conic) Linear Optimization: Problem Instances II

Yinyu Ye

Department of Management Science and Engineering

Stanford University

Stanford, CA 94305, U.S.A.

http://www.stanford.edu/˜yyye

LY 5th, Chapter 1, Chapter 2.1-2.2

1

MS&E310 Lecture Note #02

Prediction Market I: World Cup Information Market

Order: #1 #2 #3 #4 #5

Argentina 1 0 1 1 0

Brazil 1 0 0 1 1

Italy 1 0 1 1 0

Germany 0 1 0 1 1

France 0 0 1 0 0

Bidding Prize:π 0.75 0.35 0.4 0.95 0.75

Quantity limit:q 10 5 10 10 5

Order fill:x x1 x2 x3 x4 x5

2

MS&E310 Lecture Note #02

Prediction Market II: Call Auction Mechanism

Given m potential states that are mutually exclusive and exactly one of them will be realized at the maturity.

An order is a bet on one or a combination of states, with a price limit (the maximum price the participant is

willing to pay for one unit of the order) and a quantity limit (the maximum number of units or shares the

participant is willing to accept).

A contract on an order is a paper agreement so that on maturity it is worth a notional $1 dollar if the order

includes the winning state and worth $0 otherwise.

There are n orders submitted now.

3

MS&E310 Lecture Note #02

Prediction Market III: Input Order Data

The ith order is given as (ai· ∈ Rm
+ , πi ∈ R+, qi ∈ R+): ai· is the betting indication row vector

where each component is either 1 or 0

ai· = (ai1, ai2, ..., aim)

where 1 is winning state and 0 is non-winning state; πi is the price limit for one unit of such a contract,

and qi is the maximum number of contract units the better like to buy.

4

MS&E310 Lecture Note #02

Prediction Market IV: Output Order-Fill Decisions

Let xi be the number of units or shares awarded to the ith order. Then, the ith bidder will pay the amount

πi · xi and the total amount collected would be πTx =
∑

i πi · xi.

If the jth state is the winning state, then the auction organizer need to pay the winning bidders(
n∑

i=1

aijxi

)
= aT·jx

where column vector

a·j = (a1j ; a2j ; ...; anj)

The question is, how to decide x ∈ Rn, that is, how to fill the orders.

5

MS&E310 Lecture Note #02

Prediction Market V: Worst-Case Profit Maximization

max πTx−maxj{aT·jx}
s.t. x ≤ q,

x ≥ 0.

max πTx−max(ATx)

s.t. x ≤ q,

x ≥ 0.

This is NOT a linear program.

6

MS&E310 Lecture Note #02

Prediction Market VI: LP Representation

However, the problem can be rewritten as

max πTx− y

s.t. ATx− e · y ≤ 0,

x ≤ q,

x ≥ 0,

where e is the vector of all ones. This is a linear program.

max πTx− y

s.t. ATx− e · y + s0 = 0,

x+ s = q,

(x, s0, s) ≥ 0, y free,

7

MS&E310 Lecture Note #02

Max-Cut Problem

This is the Max-Cut problem on an undirected graph G = (V,E) with non-negative weights wij for each

edge in E (and wij = 0 if (i, j) ̸∈ E), which is the problem of partitioning the nodes of V into two sets

S and V \ S so that

w(S) :=
∑

i∈S, j∈V \S

wij

is maximized. A problem of this type arises from many network planning, circuit design, and scheduling

applications.

8

MS&E310 Lecture Note #02

3

4

1
2

6

5

Figure 1: Illustration of the Max-Cut Problem

9

MS&E310 Lecture Note #02

Max-Cut Formulation

w∗ := Maximize w(x) :=
1

4

∑
i,j

wij(1− xixj)

(MC)

Subject to (xj)
2 = 1, j = 1, . . . , n.

10

MS&E310 Lecture Note #02

Semidefinite Relaxation for (MC)

zSDP := Maximize
1

4

∑
i,j

wij(1−Xij)

Subject to Xii = 1, i = 1, . . . , n,

X ≽ 0.

When X constrained to be rank-one or X = xxT , the SDP formulation is equivalent to the original

problem.

Let X̄ be an optimal solution for (SDP). Then, generate a random vector u ∈ N(0, X̄):

x̂ = Sign(u), E[x̂ix̂j] = arcsin(X̄ij)

Theorem 1 (Goemans and Williamson)

E[w(x̂)] ≥ .878zSDP ≥ .878w∗.

11

MS&E310 Lecture Note #02

Max-Bisection Formulation

w∗ := Maximize w(x) :=
1

4

∑
i,j

wij(1− xixj)

(MB)

Subject to (xi)
2 = 1, i = 1, . . . , n,

n∑
i=1

xi = 0.

What complicates matters in Max-Bisection, comparing to Max-Cut, is that two objectives are actually

sought—the objective value of w(x) and the size balance
∑

i xi. Therefore, in any (randomized)

rounding method at the beginning, we need to balance the (expected) quality of w(x̂) and the (expected)

size balance of
∑

i x̂i.

12

MS&E310 Lecture Note #02

Semidefinite Relaxation for (MB)

zSDP := Maximize
1

4

∑
i,j

wij(1−Xij)

Subject to Xii = 1, i = 1, . . . , n,∑
ij Xij = 0,

X ≽ 0.

Theorem 2 (Y 1994) There is a randomized algorithm that generates a bisection solution x̂ from the SDP

relaxation such that

E[w(x̂)] ≥ .699zSDP ≥ .699w∗.

13

MS&E310 Lecture Note #02

Graph Realization and Sensor Network Localization

Given a graph G = (V,E) and sets of non–negative weights, say {dij : (i, j) ∈ E}, the goal is to

compute a realization of G in the Euclidean space Rd for a given low dimension d, where the distance

information is preserved.

More precisely: given anchors ak ∈ Rd, dij ∈ Nx, and d̂kj ∈ Na, find xi ∈ Rd such that

∥xi − xj∥2 = d2ij , ∀ (i, j) ∈ Nx, i < j,

∥ak − xj∥2 = d̂2kj , ∀ (k, j) ∈ Na.

This is a set of Quadratic Equations, which can be represented as an optimization problem:

min
xi∀i

∑
(i,j)∈Nx

(∥xi − xj∥2 − d2ij)
2 +

∑
(k,j)∈Na

(∥ak − xj∥2 − d̂2kj)
2.

Does the system have a localization or realization of all xj ’s? Is the localization unique? Is there a

certification for the solution to make it reliable or trustworthy? Is the system partially localizable with a

certification?

It can be relaxed to SOCP (change “=” to “≤”) or SDP.

14

MS&E310 Lecture Note #02

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 2: 50-node 2-D Sensor Localization.

15

MS&E310 Lecture Note #02

Matrix Representation of SNL and SDP Relaxation

Let X = [x1 x2 ... xn] be the d× n matrix that needs to be determined and ej be the vector of all zero

except 1 at the jth position. Then

xi − xj = X(ei − ej) and ak − xj = [I X](ak;−ej)

so that

∥xi − xj∥2 = (ei − ej)
TXTX(ei − ej)

∥ak − xj∥2 = (ak;−ej)
T [I X]T [I X](ak;−ej) =

(ak;−ej)
T

 I X

XT XTX

 (ak;−ej).

16

MS&E310 Lecture Note #02

Or, equivalently,

(ei − ej)
TY (ei − ej) = d2ij , ∀ i, j ∈ Nx, i < j,

(ak;−ej)
T

 I X

XT Y

 (ak;−ej) = d̂2kj , ∀ k, j ∈ Na,

Y = XTX.

Relax Y = XTX to Y ≽ XTX , which is equivalent to matrix inequality: I X

XT Y

 ≽ 0.

This matrix has rank at least d; if it’s d, then Y = XTX , and the converse is also true.

The problem is now an SDP problem: when the SDP relaxation is exact?

Algorithm: Convex relaxation first and steepest-descent-search second strategy?

17

MS&E310 Lecture Note #02

Reinforcement Learning: Markov Decision/Game Process

• RL/MDPs provide a mathematical framework for modeling sequential decision-making in situations

where outcomes are partly random and partly under the control of a decision maker.

• Markov Game Processes (MGPs) provide a mathematical framework for modeling sequential

decision-making of two-person turn-based zero-sum game.

• MDGPs are useful for studying a wide range of optimization/game problems solved via dynamic

programming, where it was known at least as early as the 1950s (cf. Shapley 1953, Bellman 1957).

• Modern applications include dynamic planning under uncertainty, reinforcement learning, social

networking, and almost all other stochastic dynamic/sequential decision/game problems in

Mathematical, Physical, Management and Social Sciences.

18

MS&E310 Lecture Note #02

MDP Stationary Policy and Cost-to-Go Value

• An MDP problem is defined by a given number of states, indexed by i, where each state has a set of

actions, denoted byAi, to take. Each action, say j ∈ Ai, is associated with an (immediate) cost cj of

taking, and a probability distribution pj to transfer to all possible states at the next time period.

• A stationary policy for the decision maker is a function π = {π1, π2, · · · , πm} that specifies an

action in each state, πi ∈ Ai, that the decision maker will take at any time period; which also lead to

an expected cost-to-go value for each state: the total expected cost over all time periods if the process

starts from state i and follows the policy.

• The MDP is to find a stationary policy to minimize/maximize the expected (discounted) sum over the

infinite horizon with a discount factor 0 ≤ γ < 1:

∞∑
t=0

γtE[cπit (it, it+1)].

• If the states are partitioned into two sets, one is to minimize and the other is to maximize the

discounted sum, then the process becomes a two-person turn-based zero-sum stochastic game.

19

MS&E310 Lecture Note #02

An MDGP Toy Example: Maze Robot Runners (Simplified)

Actions are in red, blue and black; and all actions have zero cost except the state 4 to the exit/termination

state 5. Which actions to take from every state to minimize the total cost (called optimal policy)?

20

MS&E310 Lecture Note #02

Toy Example: Game Setting

States {0, 1, 2, 5} minimize, while States {3, 4} maximize.

21

MS&E310 Lecture Note #02

The Cost-to-Go Values of the States

Cost-to-go values on each state when actions in red are taken: the current policy is not optimal since there

are better actions to choose to minimize the cost.

22

MS&E310 Lecture Note #02

The Cost-to-Go Value in General

yi = cj + pT
j y; when j ∈ Ai action is taken.

23

MS&E310 Lecture Note #02

The Optimal Cost-to-Go Value Vector

Let y ∈ Rm represent the cost-to-go values of the m states, ith entry for ith state, of a given policy.

The MDP problem entails choosing an optimal policy where the corresponding cost-to-go value vector y∗

satisfying:

y∗i = min{cj + γpT
j y

∗, ∀j ∈ Ai}, ∀i,

with optimal policy

π∗
i = argmin{cj + γpT

j y
∗, ∀j ∈ Ai}, ∀i.

In the Game setting, the conditions becomes:

y∗i = min{cj + γpT
j y

∗, ∀j ∈ Ai}, ∀i ∈ I−,

and

y∗i = max{cj + γpT
j y

∗, ∀j ∈ Ai}, ∀i ∈ I+.

They both are fix-point or saddle-point optimization problems. The MDP problem can be cast as a linear

program; see next page.

24

MS&E310 Lecture Note #02

The Maze Runner Example

The Fixed-Point formulation:

y0 = min{0 + γy1, 0 + γ(0.5y2 + 0.25y3 + 0.125y4 + 0.125y5)}
y1 = min{0 + γy2, 0 + γ(0.5y3 + 0.25y4 + 0.25y5)}
y2 = min{0 + γy3, 0 + γ(0.5y4 + 0.5y5)}
y3 = min{0 + γy4, 0 + γy5}
y4 = 1 + γy5

y5 = 0 (or y5 = 0 + γy5)

The LP formulation:

maximizey y0 + y1 + y2 + y3 + y4 + y5

subject to change each equality above into inequality

25

MS&E310 Lecture Note #02

The Equivalent LP Formulation for MDP

In general, the fixed-point model can be reformulated as an LP:

maximizey
∑m

i=1 yi

subject to y1 − γpT
j y ≤ cj , j ∈ A1

...

yi − γpT
j y ≤ cj , j ∈ Ai

...

ym − γpT
j y ≤ cj , j ∈ Am.

Theorem 3 When y is maximized, there must be at least one inequality constraint in Ai that becomes

equal for every state i, that is, maximal y is a fixed point solution.

26

MS&E310 Lecture Note #02

The Interpretations of the LP Formulation

The LP variables y ∈ Rm represent the expected present cost-to-go values of the m states, respectively,

for a given policy.

The LP problem entails choosing variables in y, one for each state i, that maximize eTy so that it is the

fixed point

y∗i = min
j∈Ai

{cji + γpT
jiy}, ∀i,

with an optimal policy

π∗
i = argmin{cj + γpT

j y, j ∈ Ai}, ∀i.

It is well known that there exist a unique optimal stationary policy value vector y∗ where, for each state i,

y∗i is the minimum expected present cost that an individual in state i and its progeny can incur.

27

MS&E310 Lecture Note #02

States/Actions in the Tic-Tac-Toe Game

28

MS&E310 Lecture Note #02

Action Costs in the Tic-Tac-Toe Game

29

