# (Conic) Linear Optimization: Problem Instances II 

Yinyu Ye<br>Department of Management Science and Engineering<br>Stanford University<br>Stanford, CA 94305, U.S.A.

http://www.stanford.edu/~yyye

LY 5th, Chapter 1, Chapter 2.1-2.2 Cluegte 6

## Prediction Market I: World Cup Information Market



## Prediction Market II: Call Auction Mechanism

Given $m$ potential states that are mutually exclusive and exactly one of them will be realized at the maturity.
An order is a bet on one or a combination of states, with a price limit (the maximum price the participant is willing to pay for one unit of the order) and a quantity limit (the maximum number of units or shares the participant is willing to accept).

A contract on an order is a paper agreement so that on maturity it is worth a notional $\$ 1$ dollar if the order includes the winning state and worth $\$ 0$ otherwise.

There are $n$ orders submitted now.

## Prediction Market III: Input Order Data <br> ith order

The $i$ th order is given as ( $\mathbf{a}_{i} . \in R_{+}^{m}, \pi_{i} \in R_{+}, q_{i} \in R_{+}$): $\mathbf{a}_{i}$. is the betting indication row vector where each component is either 1 or 0

$$
\mathbf{a}_{i}=\left(a_{i 1}, a_{i 2}, \ldots, a_{i m}\right)
$$

where 1 is winning state and 0 is non-winning state; $\pi_{i}$ is the price limit for one unit of such a contract, and $q_{i}$ is the maximum number of contract units the better like to buy.

## Prediction Market IV: Output Order-Fill Decisions

Let $x_{i}$ be the number of units or shares awarded to the $i$ th order. Then, the $i$ th bidder will pay the amount $\pi_{i} \cdot x_{i}$ and the total amount collected would be $\pi^{T} \mathbf{x}=\sum_{i} \pi_{i} \cdot x_{i}$.
If the $j$ th state is the winning state, then the auction organizer need to pay the winning bidders

$$
\left(\sum_{i=1}^{n} a_{i j} x_{i}\right)=\mathbf{a}_{\cdot j}^{T} \mathbf{x}
$$

where column vector

$$
\mathbf{a}_{\cdot j}=\left(a_{1 j} ; a_{2 j} ; \ldots ; a_{n j}\right)
$$

The question is, how to decide $\mathrm{x} \in R^{n}$, that is, how to fill the orders.

## Prediction Market V: Worst-Case Profit Maximization

$$
\begin{aligned}
\max \pi^{T} \mathbf{x}-\max _{j}\left\{\mathbf{a}_{\cdot j}^{T} \mathbf{x}\right\} & \\
\mathbf{x} & \leq \mathbf{q} \\
\mathbf{x} & \geq \mathbf{0}
\end{aligned}
$$




This is NOT a linear program.

## Prediction Market VI: LP Representation

However, the problem can be rewritten as

where e is the vector of all ones. This is a linear program.

$$
\begin{aligned}
\max & \pi^{T} \mathbf{x}-y \\
\text { s.t. } \quad A^{T} \mathbf{x}-\mathbf{e} \cdot y+s_{0} & =\mathbf{0} \\
\mathbf{x}+\mathbf{s} & =\mathbf{q} \\
\left(\mathbf{x}, s_{0}, \mathbf{s}\right) & \geq \mathbf{0}, \quad y \text { free },
\end{aligned}
$$

## Max-Cut Problem

This is the Max-Cut problem on an undirected graph $G=(V, E)$ with non-negative weights $w_{i j}$ for each edge in $E$ (and $w_{i j}=0$ if $(i, j) \notin E$ ), which is the problem of partitioning the nodes of $V$ into two sets $S$ and $V \backslash S$ so that

$$
w(S):=\sum_{i \in S, j \in V \backslash S} w_{i j}
$$

is maximized. A problem of this type arises from many network planning, circuit design, and scheduling applications.


Figure 1: Illustration of the Max-Cut Problem

Max-Cut Formulation

$$
\begin{aligned}
& \text { Relatm } \underline{Z}=x x^{\top} \\
& \text { nxh }
\end{aligned}
$$



When $X$ constrained to be rank-one or $X=\mathbf{x} \mathbf{x}^{T}$, the SDP formulation is equivalent to the original problem.
Let $\bar{X}$ be an optimal solution for (SDP). Then, generate a random vecto $u \in N(0, \bar{X})$ :


Theorem 1 (Goemans and Williamson)

$$
\mathrm{E}[w(\hat{\mathbf{x}})] \geq .878 z^{S D P} \geq .878 w^{*}
$$

$$
w^{*}:=\text { Maximize } \quad w(\mathbf{x}):=\frac{1}{4} \sum_{i, j} w_{i j}\left(1-x_{i} x_{j}\right)
$$

(MB)

$$
\begin{aligned}
& \text { Subject to } \quad\left(x_{i}\right)^{2}=1, i=1, \ldots, n \text {, } \\
& \left(\sum_{i=1}^{n} x_{i}\right)^{2}=0
\end{aligned}
$$

What complicates matters in Max-Bisection, comparing to Max-Cut, is that two objectives are actually sought-the objective value of $w(\mathbf{x})$ and the size balance $\sum_{i} x_{i}$. Therefore, in any (randomized) rounding method at the beginning, we need to balance the (expected) quality of $w(\hat{\mathbf{x}})$ and the (expected) size balance of $\sum_{i} \hat{x}_{i}$.

## Semidefinite Relaxation for (MB)

$$
\begin{aligned}
z^{S D P}:=\quad \text { Maximize } & \frac{1}{4} \sum_{i, j} w_{i j}\left(1-X_{i j}\right) \\
\text { Subject to } \quad & X_{i i}=1, \quad i=1, \ldots, n \\
& \sum_{i j} X_{i j}=0 \\
& X \succeq \mathbf{0}
\end{aligned}
$$

Theorem $2(Y$ 1994) There is a randomized algorithm that generates a bisection solution $\hat{\mathbf{x}}$ from the SDP relaxation such that


## Graph Realization and Sensor Network Localization

Given a graph $G=(V, E)$ and sets of non-negative weights, say $\left\{d_{i j}:(i, j) \in E\right\}$, the goal is to compute a realization of $G$ in the Euclidean space $\mathbf{R}^{d}$ for a given low dimension $d$, where the distance information is preserved.
More precisely: given anchors $\overline{\mathbf{a}_{k}} \in \mathbf{R}^{d}, d_{i j} \in N_{x}$, and $\hat{d}_{k j} \in N_{a}$, find $\mathbf{x}_{i} \in \mathbf{R}^{d}$ such that

$$
\left\{\left\{\begin{array}{l}
\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|_{2}^{2}=d_{i j}^{2}, \forall(i, j) \in N_{x}, i<j, \\
\left\|\mathbf{a}_{k}-\mathbf{x}_{j}\right\|_{2}^{2}=\hat{d}_{k j}^{2},
\end{array}, \forall(k, j) \in N_{a} .\right.\right.
$$

This is a set of Quadratic Equations, which can be represented as an optimization problem:

$$
\min _{\mathbf{x}_{i} \forall i} \sum_{(i, j) \in N_{x}}\left(\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}-d_{i j}^{2}\right)^{2}+\sum_{(k, j) \in N_{a}}\left(\left\|\mathbf{a}_{k}-\mathbf{x}_{j}\right\|^{2}-\hat{d}_{k j}^{2}\right)^{2}
$$

Does the system have a localization or realization of all $\mathbf{x}_{j}$ 's? Is the localization unique? Is there a certification for the solution to make it reliable or trustworthy? Is the system partially localizable with a certification?

It can be relaxed to SOCP (change " $=$ " to " $\leq$ ") or SDP.

## MS\&E310 Lecture Note \#02



Figure 2: 50-node 2-D Sensor Localization.

## Matrix Representation of SNL and SDP Relaxation

Let $X=\left[\begin{array}{llll}\mathbf{x}_{1} & \mathbf{x}_{2} \ldots \mathbf{x}_{n}\end{array}\right]$ be the $d \times n$ matrix that needs to be determined and $\mathbf{e}_{j}$ be the vector of all zero except 1 at the $j$ th position. Then

$$
\underline{\mathbf{x}}_{i}-\mathbf{x}_{j}=X\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right) \quad \text { and } \quad \mathbf{a}_{k}-\mathbf{x}_{j}=\left[\begin{array}{ll}
I X]\left(\mathbf{a}_{k} ;-\mathbf{e}_{j}\right) & {\left[\begin{array}{c}
G k \\
-e_{j}
\end{array}\right] \quad \text { atd }}
\end{array}\right.
$$

so that

$$
\begin{gathered}
\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}=\frac{\left.\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)^{T} X^{T} X\right)\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)}{\left\|\mathbf{a}_{k}-\mathbf{x}_{j}\right\|^{2}}=\left(\mathbf{a}_{k} ;-\mathbf{e}_{j}\right)^{T}\left[\begin{array}{ll}
I & X
\end{array}\right]^{T}\left[\begin{array}{ll}
I & X
\end{array}\right]\left(\mathbf{a}_{k} ;-\mathbf{e}_{j}\right)= \\
\underbrace{}_{\left(\mathbf{a}_{k} ;-\mathbf{e}_{j}\right)^{T}}\left(\begin{array}{cc}
I & X \\
X^{T} & X X^{T} X
\end{array}\right)\left(\mathbf{a}_{k} ;-\mathbf{e}_{j}\right)
\end{gathered}
$$

Or, equivalently,

Relax $Y=X^{T} X$ to $Y \succeq X^{T} X$, which is equivalent to matrix inequality:


This matrix has rank at least $d$; if it's $d$, then $Y=X^{T} X$, and the converse is also true.
The problem is now an SDP problem: when the SDP relaxation is exact?
Algorithm: Convex relaxation first and steepest-descent-search second strategy?

## Reinforcement Learning: Markov Decision/Game Process

- RL/MDPs provide a mathematical framework for modeling sequential decision-making in situations where outcomes are partly random and partly under the control of a decision maker.
- Markov Game Processes (MGPs) provide a mathematical framework for modeling sequential decision-making of two-person turn-based zero-sum game.
- MDGPs are useful for studying a wide range of optimization/game problems solved via dynamic programming, where it was known at least as early as the 1950s (cf. Shapley 1953, Bellman 1957).
- Modern applications include dynamic planning under uncertainty, reinforcement learning, social networking, and almost all other stochastic dynamic/sequential decision/game problems in Mathematical, Physical, Management and Social Sciences.


## MDP Stationary Policy and Cost-to-Go Value

- An MDP problem is defined by a given number of states, indexed by $i$, where each state has a set of actions, denoted by $\mathcal{A}_{i}$, to take. Each action, say $j \in \mathcal{A}_{i}$, is associated with an (immediate) cost $c_{j}$ of taking, and a probability distribution $\mathbf{p}_{j}$ to transfer to all possible states at the next time period.
- A stationary policy for the decision maker is a function $\pi=\left\{\pi_{1}, \pi_{2}, \cdots, \pi_{m}\right\}$ that specifies an action in each state, $\pi_{i} \in \mathcal{A}_{i}$, that the decision maker will take at any time period; which also lead to an expected cost-to-go value for each state: the total expected cost over all time periods if the process starts from state $i$ and follows the policy.
- The MDP is to find a stationary policy to minimize/maximize the expected (discounted) sum over the infinite horizon with a discount factor $0 \leq \gamma<1$ :

$$
\sum_{t=0}^{\infty} \gamma^{t} E\left[c^{\pi_{i} t}\left(i^{t}, i^{t+1}\right)\right]
$$

- If the states are partitioned into two sets, one is to minimize and the other is to maximize the discounted sum, then the process becomes a two-person turn-based zero-sum stochastic game.


## An MDGP Toy Example: Maze Robot Runners (Simplified)



Actions are in red, blue and black; and all actions have zero cost except the state 4 to the exit/termination state 5 . Which actions to take from every state to minimize the total cost (called optimal policy)?

## Toy Example: Game Setting



States $\{0,1,2,5\}$ minimize, while States $\{3,4\}$ maximize.

## The Cost-to-Go Values of the States



Cost-to-go values on each state when actions in red are taken: the current policy is not optimal since there are better actions to choose to minimize the cost.

## The Cost-to-Go Value in General



## The Optimal Cost-to-Go Value Vector

Let $\mathbf{y} \in \mathbf{R}^{m}$ represent the cost-to-go values of the $m$ states, $i$ th entry for $i$ th state, of a given policy.
The MDP problem entails choosing an optimal policy where the corresponding cost-to-go value vector $\mathbf{y}^{*}$ satisfying:

$$
y_{i}^{*}=\min \left\{c_{j}+\gamma \mathbf{p}_{j}^{T} \mathbf{y}^{*}, \forall j \in \mathcal{A}_{i}\right\}, \forall i
$$

with optimal policy

$$
\pi_{i}^{*}=\arg \min \left\{c_{j}+\gamma \mathbf{p}_{j}^{T} \mathbf{y}^{*}, \forall j \in \mathcal{A}_{i}\right\}, \forall i
$$

In the Game setting, the conditions becomes:

$$
y_{i}^{*}=\min \left\{c_{j}+\gamma \mathbf{p}_{j}^{T} \mathbf{y}^{*}, \forall j \in \mathcal{A}_{i}\right\}, \forall i \in I^{-}
$$

and

$$
y_{i}^{*}=\max \left\{c_{j}+\gamma \mathbf{p}_{j}^{T} \mathbf{y}^{*}, \forall j \in \mathcal{A}_{i}\right\}, \forall i \in I^{+}
$$

They both are fix-point or saddle-point optimization problems. The MDP problem can be cast as a linear program; see next page.

## The Maze Runner Example

The Fixed-Point formulation:

$$
\begin{aligned}
& y_{0}=\min \left\{0+\gamma y_{1}, 0+\gamma\left(0.5 y_{2}+0.25 y_{3}+0.125 y_{4}+0.125 y_{5}\right)\right\} \\
& y_{1}=\min \left\{0+\gamma y_{2}, 0+\gamma\left(0.5 y_{3}+0.25 y_{4}+0.25 y_{5}\right)\right\} \\
& y_{2}=\min \left\{0+\gamma y_{3}, 0+\gamma\left(0.5 y_{4}+0.5 y_{5}\right)\right\} \\
& y_{3}=\min \left\{0+\gamma y_{4}, 0+\gamma y_{5}\right\} \\
& y_{4}=1+\gamma y_{5} \\
& y_{5}=0\left(\text { or } y_{5}=0+\gamma y_{5}\right)
\end{aligned}
$$

The LP formulation:

$$
\operatorname{maximize}_{\mathbf{y}} \quad y_{0}+y_{1}+y_{2}+y_{3}+y_{4}+y_{5}
$$

subject to change each equality above into inequality

## The Equivalent LP Formulation for MDP

In general, the fixed-point model can be reformulated as an LP:

$$
\begin{aligned}
& \operatorname{maximize}_{\mathbf{y}} \quad \sum_{i=1}^{m} y_{i} \\
& \text { subject to } \quad y_{1}-\gamma \mathbf{p}_{j}^{T} \mathbf{y} \quad \leq \quad c_{j}, j \in \mathcal{A}_{1} \\
& y_{i}-\gamma \mathbf{p}_{j}^{T} \mathbf{y} \quad \leq \quad c_{j}, j \in \mathcal{A}_{i} \\
& y_{m}-\gamma \mathbf{p}_{j}^{T} \mathbf{y} \leq c_{j}, j \in \mathcal{A}_{m} .
\end{aligned}
$$

Theorem 3 When y is maximized, there must be at least one inequality constraint in $\mathcal{A}_{i}$ that becomes equal for every state $i$, that is, maximal $y$ is a fixed point solution.

## The Interpretations of the LP Formulation

The LP variables $\mathbf{y} \in \mathbf{R}^{m}$ represent the expected present cost-to-go values of the $m$ states, respectively, for a given policy.

The LP problem entails choosing variables in $\mathbf{y}$, one for each state $i$, that maximize $\mathbf{e}^{T} \mathbf{y}$ so that it is the fixed point

$$
y_{i}^{*}=\min _{j \in \mathcal{A}_{i}}\left\{\mathbf{c}_{j_{i}}+\gamma \mathbf{p}_{j_{i}}^{T} \mathbf{y}\right\}, \forall i
$$

with an optimal policy

$$
\pi_{i}^{*}=\arg \min \left\{\mathbf{c}_{j}+\gamma \mathbf{p}_{j}^{T} \mathbf{y}, j \in \mathcal{A}_{i}\right\}, \forall i
$$

It is well known that there exist a unique optimal stationary policy value vector $\mathbf{y}^{*}$ where, for each state $i$, $y_{i}^{*}$ is the minimum expected present cost that an individual in state $i$ and its progeny can incur.

## States/Actions in the Tic-Tac-Toe Game



## Action Costs in the Tic-Tac-Toe Game



Any action leading to win has cost -1 Any action leading to lose has cost 1

