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Introduction to Conic Linear Optimization

The field of optimization is concerned with the study of maximization and minimization of mathematical

functions. Very often the arguments of (i.e., variables or unknowns in) these functions are subject to side

conditions or constraints. By virtue of its great utility in such diverse areas as applied science, engineering,

economics, finance, medicine, and statistics, optimization holds an important place in the practical world

and the scientific world. Indeed, as far back as the Eighteenth Century, the famous Swiss mathematician

and physicist Leonhard Euler (1707-1783) proclaimeda that . . . nothing at all takes place in the Universe in

which some rule of maximum or minimum does not appear.

aSee Leonhardo Eulero, Methodus Inviendi Lineas Curvas Maximi Minimive Proprietate Gaudentes,

Lausanne & Geneva, 1744, p. 245.
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Linear Programming: Nobel Prize
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Linear Programming: National Metal of Science
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Linear Programs and Extensions (in Standard Form)

Linear Programming

(LP ) minimize cTx

subject to Ax = b,

x ≥ 0.

Linearly Constrained Optimization Problem

(LCOP ) minimize f(x)

subject to Ax = b,

x ≥ 0.
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Linear Complementarity Problem Find nonnegative vectors x ≥ 0, s ≥ 0 such that

(LCP ) s = Mx+ q,

sTx = 0.

Rectified Linear Unit Operation: s = max{0, ay + b} ⇒ sx = 0, s = x+ ay + b, (s, x) ≥ 0.

Conic Linear Programming: Structured Convex Optimization

(CLP ) minimize c • x
subject to ai • x = bi, i = 1, ...,m,

x ∈ K,

where K is a closed convex cone.
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CLP: LP, SOCP, and SDP Examples

minimize 2x1 + x2 + x3

subject to x1 + x2 + x3 = 1,

(x1;x2;x3) ≥ 0;

minimize 2x1 + x2 + x3

subject to x1 + x2 + x3 = 1,√
x2
2 + x2

3 ≤ x1.

minimize 2x1 + x2 + x3

subject to x1 + x2 + x3 = 1, x1 x2

x2 x3

 ≽ 0,
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Facility Location Problem

Let cj be the location of client j = 1, 2, ...,m, and y be the location decision of a facility to be built. Then

we solve

minimizey
∑

j ∥y − cj∥p.

Or equivalently (?)

minimize
∑

j δj

subject to y + xj = cj , ∥xj∥p ≤ δj , ∀j.

This is a p-order conic linear program (POCP) for p ≥ 1.

In particular, if p = 1, it is an LP problem; if p = 2, it is an SOCP problem.

For simplicity, consider m = 3.
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Figure 1: Facility Location at Point y.
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CLP Terminology

• decision variable/activity, data/parameter

• objective/goal/target, coefficient vector

• constraint/limitation/requirement, satisfied/violated

• equality/inequality constraint, direction of inequality, non-negativity

• constraint matrix/tensor/the right-hand side vector

• feasible/infeasible solution, interior feasible solution

• optimizers and optimum values

• active constraint (binding constraint), inactive constraint, redundant constraint

We start with LP...
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Linear Programming Facts

• The feasible region is a convex polyhedron.

• Every linear program is either feasible/bounded, feasible/unbounded, or infeasible.

• If feasible/bounded, every local optimizer is global and all optimizers form a convex polyhedron set.

• All optimizers are on the boundary of the feasible region.

• If the feasible region has an extreme point, then there must be an extreme optimizer.

• LP possesses efficient algorithms in both practice and theory (polynomial-time).
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Linear Optimization Model and Formulation

• Sort out data and parameters from the verbal description

• Define the set of decision variables

• Formulate the linear objective function of data and decision variables

• Set up linear equality and inequality constraints
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Max-Flow Problem

Given a directed graph with nodes 1, ...,m and edges A, where node 1 is called source and node m is

called the sink, and each edge (i, j) has a flow rate capacity kij . The Max-Flow problem is to find the

largest possible flow rate from source to sink.

Let xij be the flow rate from node i to node j. Then the problem can be formulated as

maximize xm1

s.t.
∑

j:(j,1)∈A xj1 −
∑

j:(1,j)∈A x1j + xm1 = 0,∑
j:(j,i)∈A xji −

∑
j:(i,j)∈A xij = 0, ∀i = 2, ...,m− 1,∑

j:(j,m)∈A xjm −
∑

j:(m,j)∈A xmj − xm1 = 0,

0 ≤ xij ≤ kij , ∀(i, j) ∈ A.

13



MS&E310 Lecture Note #01

2

1

SinkSource

6

3

34

5

3

4

4

2

3

73

14



MS&E310 Lecture Note #01

The Transportation Problem
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Mathematical Optimization Model:

min
∑m

i=1

∑n
j=1 cijxij

s.t.
∑n

j=1 xij = si, ∀i = 1, ...,m∑m
i=1 xij = dj , ∀j = 1, ..., n

xij ≥ 0, ∀i, j.

The minimal transportation cost is called the Wasserstein Distance (WD) between supply distribution s

and demand distribution d (can be interpreted as two probability distributions after normalization). This is

a linear program!

What happen if supplies s are also decision variables?

The Wasserstein Barycenter Problem is to find a distribution such that the sum of its Wasserstein Distance

to each of a set of distributions would be minimized.
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A Wassestein Barycenter Application: Stochastic Approach

Find distribution of xi, i = 1, 2, 3, 4 to minimize

min WD(x,dl) +WD(x,dm) +WD(x,dr)

s.t. x1 + x2 + x3 + x4 = 9, xi ≥ 0, i = 1, 2, 3, 4;

which is an LP problem with three sets of local variables and constraints.

Or it can be viewed as nonlinear minimization: what is the gradient vector ∇xWD(x,d·)?
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The Wasserstein Barycenter (Mean) Problem in Data Science

What is the “mean or consensus” image from a set of images/distributions:
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Figure 2: Mean picture constructed from the (a) Euclidean mean after re-centering images (b) Euclidean

mean (c) Wasserstein Barycenter (self recenter, resize and rotate)

Euclidean Mean/Center:

x =
1

n

n∑
i=1

ai, or min
x

n∑
i=1

∥x− ai∥22,

which is an unconstrained optimization, or least-squares, problem
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Linear Classification: Support Vector Machine I

There are two set of points ai, i ∈ A and bj , j ∈ B, is there a(hyper)plane/line to separate the two sets

of points?

A hyperplane is defined by a normal direction or slope vector x and an intersect scalar x0. Therefore, if

the two sets can be strictly separable, we must be able to find (x, x0) such that

aTi x+ x0 > 0 ∀i ∈ A, and bT
j x+ x0 < 0 ∀j ∈ B

or

aTi x+ x0 ≥ 1 ∀i ∈ A, and bT
j x+ x0 ≤ 1 ∀j ∈ B.

This is an LP problem with the null objective function.
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Figure 3: Linear Support Vector Machine
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Linear Classification: Supporting Vector Machine II

If strict separation is impossible, we then minimize error variable β

minimize β

subject to aTi x+ x0 + β ≥ 1, ∀i ∈ A,

bT
j x+ x0 − β ≤ −1, ∀j ∈ B,

β ≥ 0.

Frequently we add the regularization term on the slope vector

minimize β + µ∥x∥2
subject to aTi x+ x0 + β ≥ 1, ∀i,

bT
j x+ x0 − β ≤ −1, ∀j,

β ≥ 0,

where µ is a fixed positive regularization parameter. This becomes a SOCP after changing objective to

β + α and adding the constraint ∥x∥2 ≤ α. If µ = 0, then it is a pure linear program (LP)!
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Quadratic Classification: Ellipsoidal Separation?

minimize trace(X) + ∥x∥2
subject to aTi Xai + aTi x+ x0 ≥ 1, ∀i,

bT
j Xbj + bT

j x+ x0 ≤ −1, ∀j,
X ≽ 0.

This type of problems is semidefinite programming (SDP). When the problem is not separable:

minimize β + µ(trace(X) + ∥x∥2)
subject to aTi Xai + aTi x+ x0 + β ≥ 1, ∀i,

bT
j Xbj + bT

j x+ x0 − β ≤ −1, ∀j,
β ≥ 0,

X ≽ 0.

This is a mixed linear and SDP program.
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Figure 4: Quadratic Support Vector Machine
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